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Abstract

Incorporating the concept of the scattering number and the idea
of the vertex-neighbor-connectivity, we introduce a new graph pa-
rameter called the vertex-neighbor-scattering number, which mea-
sures how easily a graph can be broken into many components with
the removal of the neighborhoods of few vertices, and discuss some
properties of this parameter. Some tight upper and lower bounds for
this parameter are also given.
Keywords: vertex-neighbor-scattering number; vertex-neighbor-connectivity;
vulnerability

1 Introduction

The notion of the scattering number of graphs first appeared in literature
in a paper of Jung [1]. It turned out that this parameter is convenient in
the measure of the connectivity of a graph. In 1978, Gunther and Hartnell
2] introduced, and in 1985-86, Gunther (3, 4] further developed the idea of
modeling a spy network by a graph whose vertices represent the stations
and whose edges represent lines of communication. If a station is destroyed,
the adjacent stations will be betrayed so that the betrayed stations become
useless to network as a whole. Therefore, considering the question of not
only removing some vertices but also of removing all of their adjacent ver-
tices, Cozzens and Wu introduced the vertex-neighbor-connectivity (VNC)
in [5] and the vertex-neighbor-integrity (V.NI) in [6] of a graph to measure
the vulnerability of a spy network. As shown in section 4, VNC is sensitive
to the number of edges present in a graph, and using only VNC or VNI
can not distinguish the vulnerability of different networks very well in some
situations. Therefore, incorporating the concept of the scattering number

ARS COMBINATORIA 102(2011), pp. 417-426



and the idea of the vertex-neighbor-connectivity, we introduce a new graph
parameter called the vertex-neighbor-scattering number in this paper.

Let G = (V,E) be a graph and u a vertex of G. We call N(u) =
{v € V(G)|u # v,u and v are adjacent} the open neighborhood of u, and
Nlu] = N(u) U {u} the closed neighborhood of u. A vertex u in G is said
to be subverted if its closed neighborhood N[u] is deleted from G. A set of
vertices S C V(G) is called a vertez subversion strategy of G if each of the
vertices in S is subverted from G. By G/S we denote the survival subgraph
that remains after each vertex of S is subverted from G. A vertex set S
is called a cut-strategy of G if the survival subgraph G/S is disconnected,
or is a clique, or is empty. The vertez-neighbor-connectivity of G, denoted
by K(G), is defined to be the minimum size of all cut-strategies of G. A
graph G is m-neighbor-connected if K(G) = m.

Let G be a connected noncomplete graph. The vertez-neighbor-scattering
number (VN S) of G is defined as

VNS(G) = max {w(G/S) - IS]},

where the maximum is taken over all S, the cut-strategy of G, and w(G/S)
is the number of components of G/S. We call S* C V(G) a VNS-set of G
if VNS(G) = w(G/S*) — |S*|. For the complete graph, subverting any one
vertex will betray the entire graph, so we define VNS(K,) = 1.

Example 1. Let K, n,,....n, be a complete p-partite graph with a partition
(N1, Ng, ..., Np), where |[N;| =n; >1,i=1,2,...,p. Let v be a vertex in
Knyngyny V€ N;, then K, n,,....n,/{v} is composed of n; — 1 isolated
vertices, i = 1,2,...,p. It is easy to check that a V NS-set has size one.
Therefore, VNS(Kn, ng,....n,) = m?x{n;—l}—l = maz{ni,ng,...,np}—2.

In particular, for a star graph S; , (n > 2), we have VNS(S5),,) = n-2.

We use Bondy and Murty [7] for terminology and notation not defined
here and consider only finite simple connected graphs. Throughout this
paper, [z] denotes the smallest integer greater than or equal to z, and |z
denotes the greatest integer less than or equal to z.

2 The vertex-neighbor-scattering number of
some specific graphs
Theorem 1. Let P, be a path of order n (> 3). Then

0, if n=3,4

VNS(P")={ 1, if n>5.
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Proof. The cases n = 3 and 4 are trivial, so we assume n > 5.
It is clear that for any S C V(P,), we have w(P,/S) < |S] + 1. Thus,

VNS(Pn) = max {w(Pa/S)-|S]}<|S|+1~-|5]=1.

On the other hand, there exists a vertex v in P, such that w(P,/{v}) =2,
so we have

VNS(P,) = max {w(Pa/S) - |5} 2 w(Po/{o}) - l{e}| =2-1=1.

Therefore, VNS(FP,) = 1. O

A wheel, denoted by W) ,, is & graph obtained from a cycle Cy, (n > 4)
by adding a new vertex and edges joining it to all vertices of the cycle; the
new vertex is called the center of the wheel.

Theorem 2. Let Wi, be a wheel, where n > 4. Then

-1, if n=6,T;
VNS(Win) = { 0, ifn=450rn>8.
Proof. The cases n = 4,5,6 and 7 are trivial, so we assume n > 8.

If a non-center vertex is subverted from Wj ,, then the survival sub-
graph is a path of order n — 3 (= 5). If the center is subverted from
W) n, then the survival subgraph is empty. By the definition of VNS and
Theorem 1, we have VNS(W; ) = max{VNS(P,_3) -1,0-1}=0. O

Theorem 3. Let C,, be a cycle of order n (> 4). Then

_J =1, if n=6,T,
VNS(C")‘{O, if n=4,50rn>8.

Proof. The cases n = 4,5,6 and 7 are trivial, so we assume n > 8.

Note that for any vertex v € V(C,), we have [N[v]| = 3, and C,,/{v} isa
path of order n—3 (> 5). Then, for any S C V(C,,), we have w(C,/S) < ||
and

VNS(Ca) =  max {w(Ca/S)~IS[} <IS| - |S| = 0.

On the other hand, choose two vertices u and v in C,, such that dc, (u,v) >
4. Then w(Cp/{u,v}) = 2 and w(Crn/{u,v}) — |{u,v}| = 0. Therefore,
VNS(C,)=0. O

A comet C,, is a graph obtained by identifying one end of a path P,
(t > 2) with the center of a star Sy (r > 2). The center of Sy, is called
the center of Cy,r.
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Theorem 4. Let C;, be a comet, both t and v are at least 2. Then

_fr—1, if t=23;
Proof. Suppose V(P;) = {v1, v, ..., v}, and v; is the center of C; ..

Clearly, C;, is 1-neighbor-connected. In other words, if S is a VN S-set
of Ci ., then |S| > 1. If t = 2,3, then C,,./{vz2} is a graph composed of r
isolated vertices. If t > 4, then C;,/{v2} is a graph composed of a path of
order t — 3 and r isolated vertices. So we have

1, if t=2,3;
if t>4.

If |S| = 1 and S # {v2}, then C.,/S is connected, or w(C,/S) < r,
ie. w(Cir/S)—1|8] < 7—1. If |S| > 1, then it is easy to check that
w(Csr/S) = |S| <7 —1 (ift =2,3) and w(C:r/S) = |S| < r (if t 2 4).
Therefore,

VNS(Ciy) > { T

r—1, if t=2,3;

VNS(Cir) = { r, if t2>4.

O

Let G; and G; be two graphs. The Cartesian product of G, and Gg,
denoted by G1 x Gz, is a simple graph, where V(G1 xG3) = V(G1)xV(G»),
and for uy,v; € V(Gl), Uz, V2 € V(Gz), ((ul,uz), (1)1,‘02)) € E(G1 xG») if
and only if vy = v, and (UQ,'UQ) € V(Gg) or uz = v and (U1,'l)1) € V(Gl)

Lemma 1. ([8]) Let K, and K,, be two complete graphs. Then Km X K,
is r-neighbor-connected, where r = min{m —1,n —1}.

Theorem 5. Let K,, and K, be two complete graphs. Then VNS(K,, x
K,) = 2 — min{m,n}.

Proof. Since K, x K, is r = min{m — 1,n — 1}-neighbor-connected, we
have VNS(K, x Kp) <1 -1 =2 —min{m, n}.

Denote V(Kp) = {u1,u2,...,um} and V(K,) = {v1,v2,...,vn}. As-
sume S C V(Km % Ky), S = {(tiy,v4,), (%, V3),- - -» (¥i,,95,)}, and the
number of different subscripts of u and v is p, g, respectively, where 1 <
p,q < s. From the structure of K, X Ky, it is not difficult to see that Kn, x
Kn/S = Kmn—p X Kn—g. Let M = {(ui,, vi)y (ipy vig)s---s(uis vi)}
where r = min{m — 1,n — 1}. It is easy to check that M is a smallest
cut-strategy of Km X K, and w(Km,m X Kn/M) = 1. Therefore, w(Km x
K,/M)—|M|=1-r =2—min{m, n}. O
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3 Bounds for the vertex-neighbor-scattering
number

In this section we give several lower and upper bounds for the vertex-
neighbor-scattering number.

Theorem 6. Let G be a connected noncomplete graph. Then VNS(G) >
-K(G).

Proof. Assume X is a smallest cut-strategy of G. Then |X| = K(G) and
w(G/X) 2 0. Therefore,

VNS(G) = mx. {(G/S) - IS}

2w(G/X) - |X|
= —K(G).

O

Theorem 7. Let G be a connected noncomplete graph. Then VNS(G) >
—0(G), where o(G) is the vertez dominating number of G.

Proof. Let X be a smallest vertex dominating set of G. Then |X| = o(G)
and G/S = ¢. So we have

VNS(G) = max {w(G/S) - |S]}

>w(G/X) - |X|
= -o(G)

O

Remark 1. The lower bounds of VNS in Theorem 6 and Theorem 7 are
tight. This can be shown by W; g or Wy 5.

Definition 1. Let n be an integer at least 2. We construct a graph of
order n, denoted by G,,, as follows:

(1) If [vn)? < n < [Vn][v/n], let n = ny + nz + -+ + n| ) such that
[ni —n;] <1 for i # j. Replace the vertices of the complete graph K| =,
by cliques Kn,, Kn,,... ’K"'l v respectively, then add edges such that:
(a) Kn, and K, (i # j) are joined by an edge exactly.

(b) Each vertex in Ky, is incident to, at most, one edge not entirely con-
tained in K,,, ¢ =1,2,...,|/n].

(2) If |vn][vn] < n < [Vn]? let n = ny +ny + - + np /7 such that
|n; —nj| <1 for i # j. Replace the vertices of the complete graph K|
by cliques K, Kn,, ..., Kn sz, respectively, then add edges as in (1).
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_ For example, when n = 18, we decompose 18 = 4444545, The graph
Gs is shown as the following figure.

Figure 1: The graph Gis

Theorem 8. VNS(G,) = { g: lf{%]: :; L\gﬁ% ; k@ﬂ/{ﬁ'—l’

Proof. Observe that deleting any |v/n] — 2 (or [/n] — 2) neighborhoods
in G, is equivalent to deleting the |\/n] — 2 (or [v/n] — 2) corresponding
vertices in K| ) (or K[ m). Since K| ) is ([v/n| — 1)-connected and

K[/ is ([v/n] — 1)-connected, we have

K(é )= [vn] -1, if I.\/EJZ <n < |yvn|[v/nl];
" [VRl -1, if [vaj[va] <n<[va]2

Since Gy, contains |/n] (or_[/n]) cliques, it is not difficult to know
that, for any cut strategy S of G, S| > K(Gr) and w(G,/S) < 1. Then
VNS(Gn) <1—-K(G).

On the other hand, we can find a cut strategy S in G such that |S| =
K(G,) and w(G,/S) = 1. Therefore,

_ . 2-|va), if [va)? ’
VNS(Gn) =1-K(Gn) ={ 9_ }% if {&'—J rjllz:r[afjr[/\/_l—lz

The proof is complete. (]

Gunther et al. [3, 8, 9] described a number of special families of k-
neighbor-connected graphs. All of these are k-regular and k-neighbor-
connected. In particular, Gunther (3] found a classification of all mini-
mal k-regular, k-neighbor-connected graphs which contain k-cliques. These
turn out to have order k(k +1). If n = k(k + 1), then G, is a k-regular,
k-neighbor-connected graph which contain k + 1 k-cliques.
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Gunther [3] proved that K(G) < §(G) for any graph G, where §(G) is
the minimum vertex degree of G. Then for any graph G of order k(k + 1),
we have K(G) < k. Otherwise, if K(G) > k, then §(G) > k and o(G) <
5%‘%)9. But o(G) > K(G) > k, a contradiction. Therefore, we have
VNS(G) > 1 — K(G) = 1 — k for any noncomplete graph G of order
k(k +1).

( We )conjecture this conclusion holds for any noncomplete graph G of
order n, i.e., VNS(G) > VNS(Gy) =1—-VNS(Gn).

Conjecture. Let G be a noncomplete graph of order n. Then
2- VA, I VA2 <n< |Val[va];
VNS@ 2 { 5[V it Al v < e TvaT
Remark 3. If the conjecture is true, then the lower bound is tight. This
can be shown by G,..

The following Theorem gives an upper bound for the vertex-neighbor-
scattering number.

Theorem 9. Let G be a connected noncomplete graph of order n. Then
VNS(G) < n— K(G)(6(G) +2), where §(G) is the minimum vertez degree
of G.

Proof. For any VN S-set S of G, we have |S| > K(G). Since G is connected,
we know that for any v € V(G), |N[v]| = 6(G) + 1. So G/S contains at
most n — K(G)(8(G) + 1) vertices, i.e., w(G/S) < n — K(G)(6(G) + 1).
Therefore,

VNS(G) = msx. {(C/S) IS}

<n-K(G)(é(G) +1) - K(G)
= n— K(G)(5(G) +2).
O

Remark 4. The upper bound in Theorem 9 is tight. This can be achieved
by the star graphs.

4 The vulnerability and the vertex-neighbor-
scattering number of graphs

In this section, the notation vulnerability of a graph is considered under
the neighbor sense, that is when deleting a vertex from a graph, all its
adjacent vertices are deleted at same time.
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The definition of the vertex-neighbor-scattering number shows that the
parameter considers not only the amount of work done to damage the
network but also how badly the network is damaged. Graphs with large
VNS are more vulnerable. For example, when n > 8, VNS(P,) = 1 and
VNS(C,) =0. In fact, P, is more vulnerable than C,,.

It is true that the vulnerability of a graph may be determined by the
vertex-neighbor-connectivity. For a graph, the smaller its vertex-neighbor-
connectivity is, the more vulnerable it is and vice-versa. But the property
of being k-neighbor-connected is sensitive to the number of edges present
in the graph. The complete graph K, is highly connected, but is not even
1-neighbor-connected. It seems that if there are too many edges present
in the graph, the neighbor-connectivity actually decreases. In other words,
the graph is easier to attack. Unfortunately, it is not at all clear what
constitutes too many edges. As pointed out in [8], the complicated rela-
tionship that holds between vertex-neighbor-connectivity and the number
of edges present is manifested by the sequence of diagrams in the Figure 2.
The first diagram shows C}3, which is 2-neighbor-connected. In the second
diagram, we add an edge to Ci2, and its vertex-neighbor-connectivity is
now 1. If, however, we add the third edge, then we again re-established
2-neighbor-connectivity in the resulting graph.

T T u
® [ ® \ ] [ >< ®
y v Yy

Figure 2: The VNC is sensitive to the number of edges present in a graph

One finds that the VNS value of a graph is closely related to its VNC.
Generally, the smaller the VNC is, the larger the VNS is and vice-versa.
But graphs with the same VINC may have different VNS. The following
examples show that the VNS is independent to the VINC and the former
is better than the latter in measuring the vulnerability of graphs in some
situations.

Example 2. When n > 8, K(K3 x K4) = K(Cp) = 2, but VNS(K3 x
K;)=-1, VNS(C,)=0.

Example 3. When n > 5 and t > 4, K(C:,) = K(P,) = 1, but
VNS(C:,)=r,VNS(P,) = 1.

The vertex-neighbor-integrity, introduced by Cozzens and Wu [6], is
defined as VNI(G) = min{|X| + 7(G/X) : X C V(G)}, where 7(G/X)
stands for the maximum order of the components of G/X. The following
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examples show that the VNS is better than the VNI in measuring the
vulnerability of graphs in some situations.

Example 4. VNS(Cys) = 6, VNS(Kss) = 3, but VNI(Cyg) =
VNI(Ks5) = 2.

Example 5. VNS(P;) = 1, VNS(Cs) = 0, VNS(Ks x K3) = -1, but
VNI(P;) = VNI(Co) = VNI(Ks x K3) = 3.

As one can see, when n > 4, VNS(W, ) = VNS(Cy). But K(Wy,5) =
1,K(C,) = 2, and VNI(W1,) =1, VNI(Cy) = [24/n] — 3. This example
means that VNS has its defects too. So using the above three parameters
rather than only one or two is more desirable in measuring the vulnerability
of a graph. An example is given in the following table. Among them, G2
is the most stable and S 1; is the most vulnerable. As for C;2 and Wi,
we can say the former is more stable than the latter. :

Table 1: The VNS, VNI and VNC of 7 graphs of order 12

Gia | KaxKy | Cia | Wonn | Pra | Cse | Sin
VNS -2 -1 0 0 1 6 9
VNI 3 4 4 1 4 3 1
VNC 3 2 2 2 1 1 1
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