STAIRCASE VISIBILITY AND KRASNOSEL'SKII-TYPE
RESULTS FOR PLANAR COMPACT SETS

MARILYN BREEN

ABSTRACT. Some Krasnosel’skii-type results previocusly established
for a simply connected orthogonal polygon may be extended to a
nonempty compact planar set S having connected complement. In
particular, if every two points of S are vigible via staircase paths from
a common point of S, then S is starshaped via staircase paths. Forn
fixed, n > 1, if every two points of S are visible via staircase n-paths
from a common point of S, then S is starshaped via staircase (n+1)-
paths. In each case, the associated staircase kernel is orthogonally
convex.

1. INTRODUCTION.

We begin with some definitions from [2]-[6]. Let A be a simple polygonal
path in the plane whose edges [vi-1,vi]),1 < ¢ < n, are parallel to the
coordinate axes. Path X is a staircase path if and only if the associated
vectors alternate in direction. That is, for an appropriate labeling, for :
odd the vectors 7;—1v, have the same horizontal direction, and for i even
the vectors T;_;v; have the same vertical direction. Edge [v;—1,v;] will be
called north, south, east, or west according to the direction of vector v;_717;.
Similarly, we use the terms north, south, east, west, northeast, northwest,
southeast, southwest to describe the relative position of points. Forn > 1,
if the staircase path A is a union of at most n edges, then A is called a
staircase n-path. If the staircase path A is a union of exactly n edges, then
n is the length of A.

Let S C R?. For points z and y in set S, we say = sees y (z is visible from
y) via staircase n-paths if and only if there is a staircase n-path in S which
contains both z and y. Set S is called staircase n-convez (orthogonally n-
convex) provided for every z,y in S, = sees y via staircase n-paths. Similarly,
set S is starshaped via staircase n-paths if and only if, for some point pin S, p
sees each point of S via staircase n-paths, and the set of all such points p is
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the staircase n-kernel of S, denoted Ker, S. Of course, parallel definitions
hold for staircase paths.

"Many results in convexity that involve the usual notion of visibility via
straight lineé segments have analogues that employ the idea of visibility
via staircase paths. A natural choice for a set in which to use staircase
visibility is the orthogonal polygon, a connected union of finitely many
planar boxes whose edges are parallel to the coordinate axes. (See [2}-[6].)
However, recent work by Magazanik and Perles ([11], [12]) extends the use
of staircase visibility from an orthogonal polygon to an arbitrary nonempty
compact planar set. In this paper, we use a similar approach to extend
to a more general setting some previously established Krasnosel’skii-type
staircase results.

Throughout the paper, ¢l S and bdry S will denote the closure and
boundary, respectively, for set S. If A is a simple path containing points z
and y, A(z,y) will represent the subpath of A from z to y. We call A(z,y)
an z — y path. If \(z,y) is a staircase path, we call it an z — y staircase.
When z and y are distinct, L(z,y) will represent their corresponding line.
Readers may refer to Valentine [14], to Lay [10], to Danzer, Griinbaum,
Klee [7), and to Eckhoff [8] for discussions on Helly and Krasnosel’skii-type
theorems, visibility via straight line segments, and starshaped sets. Readers
may refer to Nadler [13] for information on the Hausdorff metric.

2. THE RESULTS

The first theorem is an analogue of an orthogonal polygon result in [4,
Corollary 1).

Theorem 1. Let S be a nonempty compact set in the plane, with R2\S
connected. If every two points of S are visible via staircase paths from a
common point of S, then S is starshaped via staircase paths. Moreover, the
associated staircase kernel of S will be orthogonally convex. The number
two is best possible.

Proof. The proof relies on the following preliminary result.

Proposition 1. For all  in the set S above, the associated visibility set
Vz = {y : = sees y via staircase paths} is closed.

Proof. Assume that {y,} is a sequence in V; and converging to y, to
show that y € V;. Observe that if  and y lie on a horizontal or vertical line,
then the associated sequence of £ — y,, staircase paths in S will converge
(in the Hausdorff metric) to [z,y], and [z,y) C S, finishing the proof. Thus
we will assume that [z, y] is not horizontal, not vertical.

Clearly ye S, so by hypothesis z and y are visible via staircase paths
from a common point of S. For convenience, assume that this point is the
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origin 8, and let A;(,6),)y(y,0) denote associated staircase paths in S
from z to 6, y to 6, respectively.

We consider cases according to possible locations for = and y.

Case 1. Assume that points z and y are in the same quadrant, say
quadrant 1.

Case 1a. Assume that z is strictly northeast of y. Then the z — 8
staircase Az(z,0) either contains a point north of y or contains a point east
of y. Without loss of generality, assume that the former situation occurs,
and let z be such a point.

We assert that [2,y] C S. Suppose on the contrary that (2,y)\S # ¢,
to obtain a contradiction. (See Figure 1.) Choose a point p in R?\ $ and
strictly northeast of z. Since S is compact, we may select p so that the
horizontal line H at p lies in R?\ S. Since R?\ S is open and connected, it
is polygonally connected, so there is a simple polygonal path z = u(a,p)
in R?\ S from some a in (z,y)\S to p. Certainly there is a last point of u
on [z,y], so we may assume that a is the only point of z N (z,y]. Letting
T denote the closed, simply connected region bounded by [z,y]U Ay (y,8) U
Az (x,8), since p is disjoint from Ay (y,8) U Az(z,8), certainly uNT = {a}.

Let L = L(z,y). Then z lies strictly east of L, say in the open halfplane
L; determined by L. Also, by comments above, the first segment of u lies
in L, U {e}. Similarly, point z lies strictly south of H, say in the open
halfplane H; determined by H. Since H C R?\S, we may assume that p is
the only point of uN H. Hence u\{p} C H; as well.

Moreover, point z lies in a component C of Hy N L, \u. Clearly bdry C
lies in HULUy (and possibly just in LUp). Of course, y ¢ C. In fact, since
the first segment of y lies in L U {a}, uN[2,y] = {a}, and pnA;(z,z) = ¢,
by examining possible intersections of u with L, it is easy to show that
[y,@) N ¢l C = ¢, also. We will use this to obtain a contradiction.

Since {yn} converges to y, for n sufficiently large, yn e R?\ clC. For
convenience, assume that this is true for all n. Similarly, by passing to a
subsequence if necessary, we may assume that either {y,} C L1, {yn} C L,
or {yn} C L2 (where L is the opposite open halfplane determined by L).
We consider each possibility.

If {yn} € L1, choose any n and any yn — T staircase path d, in S. Then
8. C L, N Hy. Since 8, passes from y, ¢ R?\ clC to zeC, J, contains a
boundary point of C in L; N Hy, hence a point of 4. However, 8, C S while
u C R\ S, s0 6, N = ¢. We have a contradiction, and this situation
cannot occur.

If {ya} C L, choose n sufficiently large that [yn,y] C R2\clC. Again
let 8, denote any y, — z staircase path in S. Observe that d, N L either
is a degenerate segment containing only y, or is a nondegenerate north
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segment with endpoint y,,.. Either way, 8, N L is strictly south of a and lies
in [ya,y]U[y,a) € R?\clC. Remaining points of d,, lie in Ly N H. Again
0n passes from R?\ ¢l C to C at a boundary point of C in L; N H;. That
is, dp meets . However, this is impossible, so the second situation cannot
occur either.

Finally, if {yn} C La, for each n choose an x — y, staircase path &,
(ordered from z to y,). Certainly 6, N L # ¢ for each n, so we may let
wy, denote the first point of §, on L. By the argument above, {w,} cannot
converge to y, 50 we may assume that {wn} is bounded away from y and
lies on one of the rays emanating from y in L. Since {yn} converges to y,
it is clear that {wn} cannot be south of ¥ on L, so {w,} must be north of
y. If any w,, were on (a,y] C R?\clC, again a previous argument would
yield a contradiction. Therefore, {w,} must be north of @ on L. However,
then a subsequence of {d,(wn,yn)} will converge (in the Hausdorff metric)
to a segment containing [e,y], forcing a to lie in S. Again we have a
contradiction, and the third situation cannot occur.

Since none of these three situations can occur, our original supposition
must be false. That is, [z,y] C S, establishing the assertion. We conclude
that S contains the z — y staircase A\;(z,z) U[2,y], and y e V%, finishing the
argument for Case la.

w
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Figure 1

Case 1b. Assume that y is strictly northeast of x. With the roles
of x and y reversed, repeat the argument in Case la to obtain point z,
point a ez, z]\ S line L = L(z, 2), path u(a,p), and set C, with yeC and
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[z,a) C R?\ clC. For n sufficiently large, y,eC and yp, is strictly northwest
of z. For such an n and for any z — yn staircase path d, in S, an argument
like the one in Case 1a (the second situation) shows that 6,NL C R?\clC
and 6, Nz # ¢, impossible. Thus [z, 2] C S, producing the y — z staircase
Ay(y,2) U [2,2] C S. This completes Case 1b.

Case 1c. Assume that one of the points z,y is strictly southeast of the
other. Without loss of generality, assume that z is strictly southeast of y.
Select point 2z strictly south of y and strictly west of z. We will show that
the staircase 2-path [y, z] U [2,z] lies in S.

To show that [y, 2] C S, suppose on the contrary that (y,z]\S # ¢ to
obtain a contradiction. (See Figure 2.) Asin Case 1a, select point p in R2\S
so that p is strictly northeast of both = and y and’so that the associated
horizontal line H lies in R?\S. Let u(a,p) denote a simple polygonal path
in R2\S from a € (y, 2]\S to p, with uN[y,z] = {a} and uN H = {p}. Label
open halfplanes determined by H and L = L(y, z) so that zeH, N L,. For
C the component of Hy N L;\p which contains z,[y,e) N clC = ¢. We
may assume that {yn,} NclC = ¢ as well. Considering possible locations
for {yn}, arguments like those in Case la (situations 1, 2, 3) show that our
original supposition is false and [y, 2] C S.

A simplified version of the same argument (much like the argument in
Case 1b) shows that {z,z] C S. We conclude that [y, z]U[2,z] C S, finishing
Case 1c and completing Case 1.

Figure 2
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Case 2. Assume that points = and y are not in the same quadrant. If z
and y are in opposing quadrants, then Az(z,0) U A\y(8,y) wil be an z — y
staircase path in S, finishing the argument. Hence we may assume that z
and y are in consecutive quadrants, say in quadrants 4 and 1, respectively.

In case x is strictly southeast of y, then A;(z,0) contains a point 2
strictly south of y, and an argument like the one in Casela shows that
[2,9] € S. Hence S contains the z — y staircase A;(z,z) U [2,y].

If  is strictly southwest of y, then A, (y,8) contains a point z stnctly
north of . An argument like the one in Case 1b shows that {z,z] C S, and
S contains the y — z staircase Ay(y, z) U [z, z].

This finishes Case 2 and completes the proof of Proposition 1.

Now we are ready to prove Theorem 1. Using Proposition 1, the V;
sets are closed. hence compact. By arguments like those in [3, Theorem
1), each set V; is simply connected and every two of the V. sets have a
path connected intersection. Further, using an argument like the one in [4,
Theorem 1), every three of the V; sets meet. Hence we may use a version of
Molnér’s theorem by Karimov, Repovs, and Zeljko (see [9, Theorem 1.2] and
concluding remarks of this paper) to conclude that every finite subfamily of
{Vz : zin S} has a nonempty intersection. Since the V; sets are compact,
this implies that N{V; : zinS} # ¢. For z in this intersection, z sees
every point of S via staircase paths. We conclude that S is starshaped via
staircase paths, establishing the main result in the theorem.

Moreover, it is easy to show that the staircase kernel of S, Ker S, is
orthogonally convex. Let z,y belong to KerS and let A be any z — y
staircase in S, to show that A C KerS. For z in S,z and y see z via
staircase paths dz(z,z) and &,(y, z), respectively. By [6, Lemma 2], the
simply connected region T bounded by AU 6 U J, is orthogonally convex,
and from our hypothesis, T' C S. Hence z sees every point of A via staircase
paths in S, and A C V. Since this is true for every z in §,A C Ker S, and
Ker S is orthogonally convex.

Finally, it is clear that the number two in the theorem is best possible,
and the proof is complete.

An example in [2, Example 2] illustrates that Theorem 1 fails without
the requirement that R2\S be connected. Further, [5, Example 2] shows
that no Krasnosel’skii number exists without this condition.

The following easy example shows that a compact connected set S with
connected complement need not have closed visibility sets Vz.

Example 1. For n > 1, let A, denote the east-north staircase path with
vertices (kf-‘uﬁ-"f—T) and (i'ﬁ'»k%f) ,0 <k <n,andlet § = cl(U{An:
n > 1}). (See Figure 3.) Letting 0 represent the origin, the associated
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staircase visibility set Vj contains every staircase path A, yet fails to contain
the limit point (1,1). Hence Vj is not closed

(1,

’
’
x4
,
’

G

0.0 (L0)

Figure 3

Of course, even when set S satisfies the full hypothesis of Theorem 1,
there need not be a ceiling on the lengths of the associated staircase paths.
That is, S need not be starshaped via staircase n-paths for any n. (See
(11, Remark 2] for an example.) However, if we restrict the lengths of the
staircase paths, we obtain the following analogue of (2, Theorem 1].

Theorem 2. Let S be a nonempty compact set in the plane, with
R?\S connected. Let n be fixed, n > 1. If every two points of S are visible
via staircase n-paths from a common point of S, then S is starshaped via
staircase (n + 1)—paths. Moreover, Kern4; S is staircase (n + 1)-convex.
The number two is best possible and the number n + 1 is best possible for
n>2

Proof. As in [2, Theorem 1}, for each point z in S, we define the asso-
ciated visibility set W, = {y : zseesy via staircase (n + 1) — paths in S}. A
standard convergence argument shows that W is closed. The arguments
in [2, Theorems 1 and 2] finish the proof.

3. CONCLUDING REMARKS.

A very interesting recent paper by Karimov, Repov, and Zeljko {9]
has revealed that results by the writer in [1], as well as the statement
of the classical Molnér theorem in [7], need some additional hypotheses.
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Arguments in [1] require that the simply connected sets in question have
connected complements. Molnér’s theorem, used in [1], requires a stronger
hypothesis as well, as in the following version from [9): Let F be a finite
family of simply connected compact or open sets in the plane. If every two
members of F have a path-connected intersection and every three members
of ¥ have a nonempty intersection, then N{F : FinF} # ¢. An example in
[9]) shows that the word path cannot be omitted. (Of course, when members
of F are compact, we may delete the word finite.)
These comments suggest the following question: In the version of Molnér’s

theorem above, if we require members of F to have connected complements,
may we delete the word path?
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