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1. Introduction and Motivations

Let PG(r,q) denote the projective space of dimension r and order ¢, where g=p"
is a prime power. Quadrics in PG(4,9) are very interesting objects with many
combinatorial properties. One is that planes can only meet a quadric in few
ways. So we may consider a family of planes that all meet a non-singular
quadric in the same way. This family has remarkable properties. An important
question is whether we may use these properties to characterize them. In order
to give a better picture of the current interest in this type of characterization, the
reader is referred to [1], [2], [3], [4], [5] and [6]. The following result enter into
this scheme of things.

Result ([2] D. K. Butler, 2007).- Let X be a set of planes in PG(4,q), such that:

49} Every points lies on g* or g*+¢* planes of K;
(1)  Every line lies on 0 or ¢ planes of K;
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{m Every 3—space contains at least one plane of X.
Then K is the set of planes meeting a non-singular quadric of PG(4,9) in a
conic.

Let X denote a k—set of planes, i.e. a set of k planes of PG(4,q). We call K an
intersection set if every 3—space, considered as the set of its planes, meets X in
at least one plane. We recall that a star of planes is the set of all the planes
through a same line. Moreover a hyperstar of planes is the set of all the planes
through a same point. We recall that the characters of K, with respect to star
(hyperstar) of planes, are the numbers 7=t(K) of stars (hyperstars) meeting K in
exactly i planes, 0<isg?+q+1 (0Si<g*+g’+2q"+q+1). Denote by m and » two
non-negative integers with 0sm<ns<g*+g+1 (0sm<n<q’+g’+24°+q+1). A set K is
said to be of type (m,n) with respect to star (hyperstar) of planes, if any star
(hyperstar) contains either m or » planes of K, and such stars (hyperstars) do
exist, see [11] and [12]. A set of type (m,n) is also called two character set. If m
and » are polynomial in g we call X a two polynomial character set.

In this paper we give a characterization of the set of planes of PG(4,q) meeting
a non-singular quadric of PG(4,9) in a conic as a polynomial two character set
with respect to either stars or hyperstars of planes which intersects every
3-space, considered as the set of its planes. In particular, we prove the
following

Theorem.- In PG(4,q), an intersection (¢*+q*)-set of planes having two
polynomial character respect to either stars or hyperstars, and exactly

LH 0 _ 9 s
”—qzug— pairs of planes which meet in exactly one point, is the set of

planes meeting a non-singular quadric in a conic.

2. The proof of the Theorem

We first consider the case where our set has two polynomial characters with

respect to stars.

Let m=m(q) and »n=n(q) denote two non-negative polynomials in ¢ with
0<m<n<q’+g+1. Suppose that K is a k—set of planes of type (m,n) respect to
stars in PG(4,q). By counting in double way the total number of stars, of
incident planes-stars pairs (@,S) with aeKnS, and triples (a,8S) with
a,feKnS, we have what are referred to as the standard equations on the
integers #,=t,(K) and t,=t,(K), see [10],
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t+1,=¢"+q"+2q* +2¢° +2¢° +q+1
Q1) {mt,+nt, =klg* +q+1) :

m(m -1}, +n(n-1), = k(k-1)-27
where 7 denotes the number of plane—pairs of X which meet in exactly one
point. Thus, a two character set with respect to stars of planes depends by four
parameters k, 7, m and n and a complete classification seems to be extremely
difficult, see [6], [7], [8], [9], [13] and [14].

12 10 _ 9 s
For k=(¢*+g") and m“#fi the system of equations (2.1) becomes

(1 +t,=q" +q°* +2¢* +2¢° +2¢" +q+1

22) {mt +nt = (q6 + q‘Xq2 +q+ l)

(m(m -1}, +nln-1},=¢"+¢"+¢" -¢*-¢* - ¢'
From the first two equations of (2.2), we get

’t =ﬂg“ +q’ +2q" +2¢° +2¢° +q+l)

n-m
_(g*+q'+24°+¢’ +¢')
(23) 4; =(qa+q7n+2”:]s+qs+q4)

n-m

_ m(q6 +q° +2q' +2¢° +2¢4° +q+l)
L n—-m
Since #,>0, by the second equation of (2.3) we have that
@ +q" 424"+ +q"-m(g+g+24" 24+ 27+q+1)>0

And so,
_ g +9'+q +q’
¢ +q +2¢° +2¢° +2¢* +q+1°

m<q’

Therefore, 0<m<g’-1.
By substituting (2.3) into the third equation of (2.2) we get

(m) (g +q+24"+q+q")-mn(¢*+q*+24"+ 24 12 +q+1)
=4 *+q"+2q"+q'+q",
from which we get

_d°+g+2g+q +q" )

g +a 240+ 4 )

—m(qs +q +2¢°+q° +q‘)

-mlg® +q° +2¢" +2¢° +2¢* +q+1)’
Since 0<m<g’~1, we can write m as a polynomial function of degree 2,
m=aq®+Bq+y.
By substituting m into (2.4) we get

(2.4)
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g'lla-1)g* +(a+8-1) +
(a 1) +a+p-1)g° +(a+B+y-1)g* +
+a+B+y-1)g +(B+r)g+7]
+Ha+B+7) +la+B+r) +(B+rlg+r’

Puting  N(g)=¢‘lle-1)g* +(a+B-1)g +(a+B+y-1)g* +(B+7)g+7]

and
D(q)=(a—1)q‘+(a+ﬂ-l)q’+(a+,6+7—-l)q‘+(a+ﬁ+y)q’
+(@+p+y)g* +(B+7)g+7, wehave that n= gg)
As n is an integer, then the remainder R(q) in the division of N(g) by D(g) must
be zero for any g.
Firstly, suppose a=1.
Then m=q* + fg+y and
g'[62 +(B+7)a* +(B+1)g+7]
"B R R

Putting N(g)= ¢*[Bg’ +(B+7)a* +(B+7)g +7] and

Dlg)=pa* +(B+7)* +(B+y+1)g +(B+y+1)g* +(B+7)g+7, we have

that n= N Q) .
D\g

As n is an integer, then the remainder R(q) in the division of M(q) by D(g) must

be zero for any g.

If =0 the remainder R(g) in the division of N(g) by D(g) is:

Rg)=¥=E) e B +Be=V-r-1 s po=U-r=1, (B+7), . 7

B B B B B

Since R(g) must be zero for any g, we need that the coefficients of the

polynomial R(g) must be zero for any g. We obtain a system of five equations

and two variables £ and ¥ which has no solution.

42
_ then =g +7 and nm (g’ +q+1) _
If a=1 and f=0,thenm=q" +y and n w' +(+0)g +G+1)g +g+y

PuttingN(q)=;q‘(q’+q+l) and D(q)=7q‘+(7+l)q’+(7+l)q’+;q+7 we

have that n=%(9-%.
D\g

If y=0 the remamder R(q) in the division of N(g) by D(q) is:

+1 eyt ty+l -1 1
(q) 7 q:_}' 72 4 qz+7 g-—.
4 ¥ Y
Since R(q) must be zero for any g, the coefficients of the polynomial R(g) must

be zero for any g.
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We obtain a system of four equations in the variable y which has no solution.
If o=1, #=0 and y=0, then m= q2 and #=0, a contradiction because m<n.

Now assume a1.
Putting N(q)=q‘[(a-1)q‘ +(a+ﬂ-1)q’ +(a+ﬂ+7-1)q’ +(ﬁ+7)q+7] and

D(g)=(a-1)¢* +.(a+,6-l)q’ +la+B+y-1)g' +(a+B+7)’

+(@+B+y)g +(B+y)g+7, we have that n=%(g%.
U}

As n is an integer, then the remainder R(g) in the division of Mgq) by D{(g) must
be zero for any g.

The remainder R(g) in the division of N(@g) by D(g) is
Rlg)=-og'-(a+ Bl -(B+7)7 -’

Since R(g) must be zero for any g, the coefficients of the polynomial R(g) must

be zero for any g.
We obtain a system of four linear equations in three variables a, £ and y which

has one solution (a,5,y)=(0,0,0).
Therefore, m=0 and n=¢*. Thus K is a (¢°+g*)-set of type (0,g%) with respect to
stars of planes in PG(4,9).
We now consider the case where our set has two polynomial characters with
respect to hyperstars.
Let a=a(q) and b=b(q) denote two non-negative polynomials in g with
0<a<b<q*+q*+2¢°+q+1. Suppose that X is a k-set of type (a,b) with respect to
hypestars in PG(4,q). By counting in double way the total number of hyperstars
and of incident planes-hyperstars pairs (a,h) with aeK~h, we have what are
referred to as the standard equations on the integers 7,~t,(K) and #;,=t,(K), see
(10], :
25 {ta +,=¢"+q’ +q* +q+1 .

at,+bt, = k(q’ +q+ l)
In order to make the proof clearer, we call a-point (resp. b—point) the centre of
a hyperstar which intersects X in a (resp. b) planes. Since X is a set of type (0,
q°) with respect to stars of planes, we call 0-/ine (resp. g°~line) the centre of a
star which intersects X in 0 (resp. ¢°) planes. Consider a point P. We show that
the number x=x(P) of ¢*~lines through P does not depend from P, but only from
the parameters a and b. Indeed, by counting in double way the number of pairs
(r,@) where Perca, r is a g*-line and a is a plane belonging to K, we get
q*x=(g+1)a if P is an a—point,
g*x=(g+1)b if P is a b—point.
Therefore, the number of g’-lines through one a-point (resp. b—point) is

____(q-t l) a (resp. _(q -: l) b).
q q
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In order to have a third equation on the integers t=t,(K) and t,=t,(K),
independent from the two of (2.5), we count the number 7 of plane—pairs of K
which meet in exactly one point. We get

2.6) [(;)-"q—‘:la(i ]]t +[(Z)—%;—1b(q; J]z, =7, substituting

” 0_ 9, .8
=9 *4 > q +q
(VX)) a2t¢,+bzt,,—q 219" +3¢"%+g°+24%.

For k=(¢°+g") the system of equations (2.5) becomes
t,+t,=¢'+q'+q’ +q+1
2.8 o .
@8) {at,+bt, =(q‘+q‘Xq’+q+l)
From the two equations of (2.8), we get

and simplifying yields:

¢ = blg' +q¢' +¢* +q+1)-(¢" +q" +2¢° +¢° +g*)

a b_a
2.9) . __q‘+q’+2q‘+q’+q‘—a(q‘+q’+q’+q+l) )
=
b-a

Since #,>0, by the second equation of (2.9) we have that
(@*+9"+24%+q"+q")-a(g*+q+"+g+1)>0

a<q4+q2-q+ AP 1 2

q' +q +q +g+1°
Therefore, 0sasg’+g*~q.
By substituting (2.9) into the equation (2.7) we get
(b+a)(g™+q'+24™+q"+q")-ab(g*+q +g+g+1)=q'*+q " +3¢'*+g"+24",
from which we get
2.10) b= q +q '+3¢" +4° +2q -a(q +q +2¢°+q +q‘)‘
g +q' +2¢°+q’ +q' -alg' +q’ +q* +g+1)
Since 0<asg®+g*-g, we can write a as a polynomial function of degree 4,
acag'+ g +g* +g+¢.
By substituting a into (2.10) we get
[(a -1)g* +(z+p-1)g" +(a+p+y-3)°
(@-1g* +la+8-1)g" +(@+p+y-2)°
+{a+28+y+6-1) +(@+B+2y+5+e-2)q"
+la+pB+y+s-1g' +(@+p+y+5+e-1)g*
+(ﬁ+7+2§+£)q’+(y+5+2§)q’+(5+£)q+£] .
+(B+y+6+6)g +(y+6+e)g* +(6+elg+e |

and so,




Putting
Ng)=[la-1)g* +(@+B-1)g" +(2a+p+r-3)°
+a+28+y+6-1g" +(a+p+2y+5+e-2)"

+(B+y+20+6)g+(y+8+26)g* +(6+e)g+ g

and

Dlg)=(a-1)g"+(@+p-1)g" +(a+B+r-2)¢°
+la+pry+-1)g +(a+p+y+s+e-1)*
+(B+y+6+e)g +(r+o+e)g +(6+e)g+e.

N(g)
We have that b= .
D(q)

As b is an integer, then the remainder R(g) in the division of N(q) by D(g) must

be zero for any q.
Firstly, suppose a=1, then the remainder R(g) in the division of N(g) by D(q) is:

R(g)=-¢" +(a-1)¢" + Bg* + 4’ + 87" + &g , which is not zero.
Therefore =1, thena=gq* + g’ +13° + & +& and
g'(g* +1)lBg* +(B+y-1)g* +(B+y+3)g +(y +6+¢)g’
ﬁq +(B+y-1)g° +(B+ry+6)’ +(B+y+5+e)g’(g+1)
+(5+&)g+é]
+(y+o+e)g +(6+e)g+e
Putting

q) g +1)ag’ +(B+r-1)g* +(B+y+) +(y+5+e)g* +(5+e)g+¢
D(q)=ﬂq’+(ﬂ+7—l)q°+(ﬂ+y+é’)q’+(ﬂ+y+6+£)q’(q+l)

+(y+6+e) +(6+e)g+e,
N(g)

we have that b= .
Diqi

As b is an integer, then the remainder R(g) in the division of Mg) by D(g) must

be zero for any g.
Suppose §=0, the remainder R(g) in the division of N(g) by D(q) is:

+y-1 +y+3 *+B+y+S+e
R(q)=ﬁ Y qaLﬂ Y qs+ﬂ B+y q'

B " B B
+ﬂ(7+]);7+5+£q’+ﬂ5+7;5+5q’+ﬂ8+;+8q+%.

Since R(gq) must be zero for any q, we need that the coefficients of the

polynomial R(g) must be zero for any g.
Thus we obtain a system of seven equations in four variables S, y, §and ¢

which has no solution.
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Therefore a=1 and =0, then a=q* + 5° + & +& and
be g'(@* + )y -1)g* +(r +0)g’ +(y + 5+ 6)g* + (5 + £)g + £]

(-1 +(r+0)’ +(y+o+e)’(g+1)+(r+S+5)* +(5+e)g+e
Putting N@)=q'(g*+ My -1)g* + ( + 8)g* +(r+ 5+ 6)g* + (6 +£)g + 5]

and

Dig)=(y-1)g* +(r+6)g* +(y+5+¢)g*(g+1) +(y + s +&)g* +(6 +e)g +¢,

N{q)
we have that b= .
Dlg)

As b is an integer, then the remainder R(g) in the division of N(g) by D(g) must
be zero for any g.
Suppose y#1, the remainder R(g) in the division of N(g) by D(g) is:
—_— — — z — -—
Rlg)= yle-6-1) 51 5 Ly (y+8+e)s+1)
(r-1) (r-17

= -#E+1)-8 —5(s+l)-sq,

(r-1)
(-1 (-8)+(5+2py+8 +8(e+1)+5-1 ,
(7_1): q
+ r’e—y(5+26)-5(6+s)q_5(74-6)
(r-1y -

Since R(g) must be zero for any g, we need that the coefficients of the
polynomial R(q) must be zero for any ¢g. Thus we obtain a system of six
equations in three variables y, §and & which has one solution (3,4,£)=(0,0,0), for
which we get a=¢* and b=¢q" +¢’.
Now suppose y=1. If a=1, #=0 and y=1, thena=gq' + ¢’ + &g+ £ and

q‘(q2 +11(5+1)q’ +(6+e+1)g +(6+s)q+5]
E+1)g° +(6+e+1)g (g +1)+(F+e+1)g* +(6+e)g+e&
Putting N(g)=g'(g* + 1|6+ 1)’ + (5 + £ +1)g* + (5 + £)g + £] and
D(g)=(6+1)g’ +(6+&+1)g°(g+1) +(6 +e+1)g* +(6 +£)g+ £, we have that

-2,
q

As b is an integer then the remainder R(g) in the di.vision of N(g) by D(q) must
be zero for any gq.
Suppose &#—1, the remainder R(g) in the division of N(q) by D(q) is:
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R(g)= (5;;-:;’)8 . +6’+25’+i(ss-:l-}l)+e’(a+l)q,

L9426+ +8e(e +1)+ (s +a+1)q,

B
3[5’+35’+5(s+2)+s ] e (6 +e+1)
g+ .
(@+1y (@+1)
Since R(g) must be zero for any g, we need that the coefficients of the

polynomial R(g) must be zero for any g.
Thus we obtain a system of five equations in two variables J and &, which has

the unique solution (8,6)=(0,0) for which we get a=g'+¢* and b=gq', a
contradiction because a<b.
Therefore 5=-1. If a=1, #=0, =1 and &=-1, thena=¢"* +¢’ -g+¢£ and
be g'(q* +ag* +(e-1)g+5]
a'lg+1)+ag* +(e-t)g+&”
Putting N(g)= q‘(q’ + lIaq’ +(e-1)g+ 8] and
N(g)
q

Dlq)=a7’(g+1)+&* +(e-1)g+&, we have that b= D

As b is an integer then the remainder R(g) in the division of N(g) by D(g) must
be zero for any g.
Suppose 20, the remainder R(g) in the division of N(g) by D(q) is

2 —
Rlg)= G "'2) ) (1 -aze)q’ + (g +: 1 q +%, which is not zero.

If a=1, ,8=0 v=1, &=-1 and &0, then a=¢'+q’-q and b=4°+q', a
contradiction because b<q4+q3+2q2+q+l

Therefore, a=¢* and b=q*+¢* and K is a (g°+g")~set of type (¢*,g*+¢?) with
respect to hyperstars of planes in PG(4,q)

Thus K is an intersection (¢°+¢*)-set of planes of type (0,4°) with respect to
stars and of type (¢*,¢*+¢%) with respect to hyperstars in PG(4,9). Then, by the
Result, X is the set of planes meeting a non-singular quadric of PG(4,q) in a
conic and the Theorem is completely proved.

3. Conclusion

In this paper the planes meeting a non-singular quadric of PG(4,q) in a conic are
characterized by incidence properties with respect to points, lines and 3-spaces.
The arguments leading to these results are combinatorial arguments based
largely on the integrality of the parameters at stake. By requiring the existence
of an appropriate set of planes enjoying the same properties for all g, sporadic
cases are not considered.
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