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Abstract

This paper considered the concepts of monophonic, closed mono-
phonic, and minimal closed monophonic numbers of a connected
graph G. It was shown that any positive integers m,n,d and k satis-
fying the conditions that4 <n < m,3 < d < k,and k > 2m—n+d+1
are realizable as the monophonic number, closed monophonic num-
ber, m-diameter and order, respectively, of a connected graph. Also,
any positive integers n,m,d and k with 2 < n < m, d > 3, and
k > m+d—1 are realizable as the closed monophonic number, mini-
mal closed monophonic number, m-diameter and order, respectively,
of a connected graph. Further, the closed monophonic number of the
composition of connected graphs was also determined.
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1 Introduction

Let G = (V(G), E(G) be a connected simple graph. The order of G is the
cardinality |V (G)] of the vertex set of G. An edge joining the vertices u
and v in G is denoted by uv. In this case, u and v are said to be adjacent
vertices. For any vertices u and v of G, a u-v geodesic is meant any shortest
path in G with endvertices u and v. The symbol dg(u,v) denotes the length
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of & u-v geodesic. The set Ig[u,v] is defined as the set of all vertices of G
lying on any w-v geodesic. If S C V(G), then the geodetic closure of S is
the set Ig[S] = U{l¢[u,v] : u,v € 8}. If Ig[S] = V(G), then S is called a
geodetic set of G. By a monophonic path in G is meant any path P in G
such that no two nonconsecutive vertices in P are adjacent. The length of
any longest monophonic path is called the m-diameter of G, and is denoted
by diam,,(G). A m-diametral path is any monophonic path with length
equal to diam,,(G). For any vertices v and v of G, the closed monophonic
interval Jg[u,v] is the set of all vertices of G lying in any u-v monophonic
path. For any nonempty S C V(G), the set Jg[S] = U{lg[u,v] : u,v € S}
is the monophonic closure of S. If Jg[S] = V(G), then S is called a
monophonic set of G. Since Ig[S] C Jg[S], geodetic sets of G are also
monophonic sets of G. The minimum cardinality among all monophonic
sets of G, denoted by m(G), is called the monophonic number of G. This
invariant is introduced in [2], and some results concerning this parameter
are given in (3] and [5].

2 Closed Monophonic Number of a Graph

Given a connected graph G, a monophonic set S can be obtained in the
following way: Choose v; € V(G), and put 81 = {v1}. Then choose v; €
V(G)\ Sy, and put Sy = {v1,v2}. For k > 3, choose v € V(G) \ Jg(Sk-1l,
and put Sy = {v1,v2,...,v}. Since V(G) is a finite set, there is a smallest
positive integer k for which Sy = §. Any such monophonic set obtained in
this way is called a closed monophonic set of G. The minimum cardinality
among all closed monophonic sets of G is the closed monophonic number
me(G) of G. It is worth mentioning that this new process of selecting ver-
tices and forming new sets actually results with the "monophonic” version
of two classes of graphical games called the achievement and avoidance
games introduced in [2] (see also (1] and [7]).

Let G be a connected graph. Choose u,v € V(G) such that the
diamm(G) is the length of some u-v monophonic path. Construct a closed
monophonic set S with v; = u and v = v. Then

[V(G)| 2 (diamm(G) +1) + (me(G) — 2) = mc(G) + diamm(G) - 1,

so that
me(G) £ |V(G)| — diamn(G) + 1.

If, in particular, G is obtained by joining n distinct edges [vg,ui), ¢ =
1,2,...,n, tothe path P = (v, v, . ..,vq] involving d = diamm,(G) vertices,
then m(G) = n+1, and is determined by the closed monophonic set {v1,u1,
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..., un} of G. With this graph G, |V(G)| = d+n = m(G) +d—1, showing
that the above inequality is sharp.

For a connected graph G, m.(G) = |V(G)| if and only if G is complete.
For k = 2,3, m(G) = k if and only if m(G) = k. It will be shown that the
same is also true for k = |V(G)| — 1, but not necessarily true for any other
k.

A neighborhood of a vertex v in a connected graph G is the set N(v) of
all vertices of G adjacent to v. A vertex v is an extreme vertex if for every
pair u,w € N(v), u and w are adjacent. The symbol Ezt(G) denotes the
set of all extreme vertices of G. It is known that Ext(G) C S for every
monophonic set S of G. Consequently, we have

Lemma 2.1 For any connected graph G, Ext(G) C S for every closed
monophonic set S of G.

Theorem 2.2 Let G be a connected graph of order n and with diam,(G) =
d. Then m(G) = n—d+1 if and only if G has a u-v m-diametral path P,
u,v € V(G), such that {u,v} U(V(G)\ V(P)) C Ext(G).

Proof: Let u,v € V(G) and P be a m-diametral u-v path in G with
u,v,z € Ext(G) for all z € V(G)\ V(P). By Lemma 2.1, {u,v,z: z €
V(G)\ V(P)} C S for all closed monophonic sets S of G. Thus m.(G) >
n —d + 1. Therefore, m¢(G) =n—d+1.

Conversely, suppose that m.(G) = n —d + 1, and let u,v € V(G)
such that there is a m-diametral path P in G connecting v and v. Then
Jg[u,v] = V(P). For suppose that there exists z € Jge[u,v] \ V(P). Con-
struct a closed monophonic set S = {v1,v2,...,vx} withv; =u and vy = v.
Since z € Jg[u,v], K < n —d+ 1, a contradiction. Moreover, similar argu-
ments show that Jg[{u,v,z}] = V(P) U {z} for all = € V(G) \ V(P).

We first show that dg(z, V(P)) = min{dg(z,w) : w € V(P)} = 1for all
z € V(G)\V(P). Suppose that, in the contrary, there exist z € V(G)\V(P)
and w € V(P) such that dg(z,w) = de(z, V(P)) = 2. Let [z, 2,w] be a z-w
geodesic in G. Construct a closed monophonic set S, = {v1,v2,...,v%} of G
with v; = 4, v = v and v3 = z. Then z € Jg[S3), yielding |J¢[Ss]| = d+3.
This implies that £ < n —d + 1, a contradiction.

Now let P = [u = uy, ug,...,Ud, Ud+1 = V).

Claim 1: u,v € Ezt(G). If [N(u)| = 1, then [u, up)] is a pendant in G, and
so u € Ext(G). Suppose that [N(u)| = 2, and let x € N(u) \ V(P). Since

u is an endvertex of a m-diametral path and Jg{{u,v,z}] = V(P)U{z}, z
is adjacent to v; for some j = 2,3,...,d+ 1. If j # 2, then z € Jg[u,v],
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a contradiction. Thus, dg(z,u2) = 1. Let z,y be distinct vertices in
N(u) \ V(P). Then dg(z,us) =1 = dg(y,u2). If dg(z,y) = 2, then both
[x,u2,us,...,ud+1] and [y,uz,us,...,uds+1] are m-diametral paths in G.
Moreover, V(P) U {z,y} C Jg[{z,y,v}]. Thus, a closed monophonic set S
of G can be constructed starting with z,y,v. The preceding set inclusion
implies that |S| < n—d+1, which is impossible. Hence, dg(z,y) = 1. This
implies that u € Ext(G). Similarly, v € Ezt(G).

Claim 2: = € Ext(G) for all z € V(G) \ V(P). Let z € V(G) \ V(P).
If |N(z)| = 1, then z € Ext(G). Suppose that |N(z)| > 2, and suppose
further that there exist y,z € N(z) with dg(y,2) > 2. There are three
cases:

Casel: Suppose that y,z € V(P). Then y = u; and z = u; for some
1<i<j<d+1. Since the path [uy,u2,..., %, T, %), Ujs1,. .-, Ud+1] I8
monophonic, z € Jg[u,v], a contradiction.

Case 2: Suppose that y € V(P) and z ¢ V(P). Let y = u; and z be
adjacent to u;. assume i < j. Then [u1,u2,...,ui,z, 2] is monophonic.
Construct a closed monophonic set S = {v1,v2,...,%} With v; = v,
vy = v and v3 = 2. Then z € Jg[S;) so that k < n —d + 1. This is
impossible.

Case 3: Finally suppose that y,z ¢ V(P). If y € Jg[{u,v,z}], then a
closed monophonic set Sk = {v1,va, . ..,vk} can be constructed with v; = u,
vg = v and vz = z. Certainly, k < n—d + 1, which is a contradiction. If
y & Je[{u,v, z}], then a closed monophonic set Si = {vq,v2,...,vx} with
vi=u,vp=v,v3=2andvg=y. Thenz € Jg[Sy] sothat k <n—-d+1,
a contradiction. This completes the proof of the theorem. ]

Corollary 2.3 Let G be a connected graph of order p. Then m.(G) =p—1
if and only if m(G) =p—1.
Proof: Suppose that m,(G) = p — 1. Then G is not complete. We claim
that diam.;,(G) = 2. Suppose that, in the contrary, diamm(G) > 2 and
is determined by some vertices u and v. Construct a closed monophonic
set § = {v1,v2,...,vx} such that v; = u and v, = v. Since |Jg[y,v]| >
4, k < p— 1, a contradiction. Thus diamm(G) = 2. By Theorem 2.2,
G = ({w}) + UjKy,, where ny + ng + -+ +n, = p— 1. It follows that
m(G)=p-1.

Conversely, suppose that m(G) = p— 1. Then m.(G) 2 p—1. Since G
is not complete, m.(G) =p— 1. [ ]

Theorem 2.4 For any positive integers m,n,k and d such that4 <n <m,

4<d<kandk>2m—n+d+3, there exists a connected graph G such
that |V(G)| = k, diamm(G) = d, m(G) = n and mc(G) = m.
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Figure 1: Graphs G, and G2

Proof: Letr = m—n+4 and | = k—2m+n~d—3. Let W = {v1,v2,...,v,}
and U = {u1,u2,...,Ur41} be the partite sets of the complete bipartite
graph G, = Ko (r41)-

Let P denote a path [wy,ws, ..., wd—1), and obtain the graph G, as in
Figure 1, by adding to P distinct pendant edges [z;, wg—1], i = 1,2,...,n—
4. Using G; and G, form graph G, as in Figure 2, by joining the vertex
w; of G3 to the vertices v; and u; of G1, = 1,2,...,7i=1,2,...,(r+1).
Then |[V(G)| =7+ (r +1) + (d = 1) + (n — 4) = k, diam,(G) = d and
E:Ct(G) = {::1, Toyeuoy xn_4}.

Since Jg[Ezt(G) U {v1,vr,u1,ur+1}] = V(G), m(G) < n. Let S be
a minimum monophonic set in G. Since Ezt(G) C S, n—4 < S|. If
S is a minimum monophonic set of G, then S contains the vertices of
a m-diametral path of G, and thus contains a vertex v; for some j =
1,2,...,r or contains a vertex u; for some j = 1,2,...,r+l. Since Ezxt(G)U
{¢',v",u} and Ext(G) U {v',u",v} are not monophonic sets of G for all
vertices v,v’,v” € W and u,u’,u” € U, |S| > n. Therefore, m(G) =n.

The set Ext(G)U {v1,vs,...,V,} is a closed monophonic set of G. Thus
me(G) < m. Let S be a minimum closed monophonic set of G. Then
IS| > n. Thus S contains Ext(G) U {v;,v;} for some 1 < i,j < r or
S contains Ext(G) U {u;,u;} for some 1 < 4,5 <7 +1. Sincel > 1 and
U C Jg|Ext(G)U{v;,v;}], the definition of S implies that v;,vz,...,v- € S.
Thus m.(G) = m. This proves that m.(G) = m, and completes the proof
of the theorem. [ ]
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Figure 2: Graph G satisfying the conditions in Theorem 2.4

3 Minimal Closed Monophonic Number of a
Graph

A minimal closed monophonic set of a connected graph G is any closed
monophonic set S of G such that S contains no subset which is itself a
closed monophonic set of G. The maximum cardinality among the minimal
closed monophonic sets of G, denoted by m?(G), is the minimal closed
monophonic number of G, i.e.,

m¥(G) = maz{|S|: S is minimal closed monophonic set of G}.

Clearly, 2 minimum closed monophonic set of G is necessarily a minimal
closed monophonic set of G. Thus we always have m.(G) < mF(G).

Obviuosly, m} (G) = |V(G)| if and only if G is complete. We also have
G = ({w}) + UjKp,, where ny +ng + - +np = |[V(G)| — 1 if and only if
m}(G) = |V(G)| — 1. In these cases, mf (G) = mc(G).

For any connected graph G, |V(G)| > m}(G) +d — 1.

Theorem 3.1 For every set of positive integers m,n,k andd with2 <n <
m,d >3 and k > m+d — 1, there erists a connected graph G such that
[V(G)| = k, m}(G) =m, m(G) =n and diamn,(G) = d.

Proof: Let r=m—-n+landl=k—m—d+12>0. Let {vy,va,...,0r}
and {z,y} be the partite sets of K,,2. If { =0, put Gi=K,a,butifl >1,
let G; be that graph as in Figure 3 obtained by adding ! Pss [z,z;,9],
1< j <1to Kyz2. Let G, be the graph as in Figure 3 obtained by adding
to Py_3 = [w1,wa,...,wq-3) n—1 pendant edges [wa-3,45], 1 <j<n-—-1
Using G; and Ga, form the graph G (see Figure 4) by joining the vertex w;
to the vertices y and z;, 1 < j <I. Then [V(G)| = k and diamm(G) = d.

Now let S be a minimal closed monophonic set of G. By Lemma 2.1,
Ezt(G) = {u1,u2,...,un-1} C S. Since Jg[Ezt(G)] = Ezt(G)U{wa-3} #
V(G), S # Ext(G). Suppose that z € S. Since Ezt(G) U {z} is a closed
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monophonic set of G, the minimality of S implies that S = Ezt(G) U
{z}. Suppose that z ¢ S. Since v; ¢ Jg[S\ {v;}], v; € S for all j =
1,2,...,r. Since Ezt(G) U {v1,v2,...,vr} is a closed monophonic set of
G, the minimality of S implies that § = Ezt(G) U {v1,v2,...,vr}. Thus
either |S| = n or |S| = r + (n — 1) = m. This means that m.(G) = n and
m¥(G) =m.

Un—-1

Figure 4: Graph G satisfying the conditions in Theorem 3.1

If | = 0 for the graph G in Figure 4, the resulting graph is the graph G
given in Figure 5. With this graph, if d = 3, then |V(G)| = m}(G) + 2.
The removal of a vertex from G yields m}(G) = |V(G)| — 1, in which case
m}(G) = mc(G). This means that if kK = m + d — 1, then the graph G in
Theorem 3.1 is of minimum order satisfying the desired properties. From
this, the following corollary follows immediately.
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Figure 5: Graph G of minimum order satisfying the conditions in Theorem
3.1

Corollary 3.2 For every set of positive integers m,n and d with2 < n <
m and d > 3, there is a connected graph G of minimum order such that
me(G) = n, m¥(G) = m and diamm(G) =d.

4 Composition of Graphs

The composition G{H| of two graphs G and H is that graph with V(G[H]) =
V(G) x V(H) and (u,v)(v,v') € E(G[H]) if and only if either uu’ € E(G)
or u = v’ andvv’ € V(H). It is known that z € Ext(G) if and only if
(z,y) € Ext(G[Knm)) for every y € V(Kn) (6], [4].

Given S C V(G[H]), the G-projection Sg (resp. H-projection Sy) of S
is the set of all first (resp. second) components of S. That is,

Se={r € V(G): (z,y) € S for somey € V(H)}.

Lemma 6.1 Let G be a connected nocomplete graph, and let m > 1. If
[(u1,v1), (u2,v2), ..., (uk, vk)] is @ monophonic path in G[Ky,), then [u1,uz,
... U] is a monophonic path in G. Conversely, if [uj,ug,...,ux] s a
monophonic path in G, then [(u1,v1), (u2,v2),...,(ux, V)] is @ monophonic
path in G[Ky,] for any vi,ve, ..., vk € V(Kn).

Proof: Let P = [(u1,v1),(u2,v2),..., (tk, Vx)] be a monophonic path in
G|K). First we claim that uj,us,...,ux are distinct vertices in G. For
suppose that u; = u; for some % < j. Then dgx,,)((ui, vi), (¥j41,Vj41)) =
1. That is, the edge [(us,vi), (uj+1,vj+1)] is a chord of P in G[Kn], a
contradiction. Suppose that there exist nonconsecutive vertices u; and u; in
[u1,ua,...,ux] such that dg(ui,u;) = 1. Then dgx,,)((usi, vi), (u5,v5)) =
1, implying that the edge [(u:,v:),(u;,v5)] is a chord of P in G[Ky], a
contradiction. Thus [uy,ug, ..., ux] is monophonic in G.



Now, let [uj,usz,...,ux] be a monophonic path in G, and let v;,vs,
vtk € V(Ky). Since do(ui, uir1) = 1, dopr,) (2, i), (i1, vi41)) =
1. Thus, P = [(u1,v1), (u2,v2),..., (uk,vk)] is a (ui,v;)-(uk, ve) path in
G[Ky,). Finally, suppose that (u;,v;) and (u;,v;) are nonconsecutive ver-
tices in P with dg(k,,.)((ui, v:), (wj,v;)) = 1. Then either u; = u; or
dg(ui,v;) = 1, which is impossible since [u;,us,...,ux] is monophonic.
This implies that P is monophonic.

Lemma 6.1 yields the following lemma.

Lemma 6.2 Let G be a connected nocomplete graph, and let m > 1. Let
u,v,w € V(G). Ifw ¢ Jg[u,v], then for any z1,z2,23 € V(Ky), (w,21) €
Joik . [(u, z2), (v,73)]. Conversely, if z1,73,23 € V(Ky) and (w,z)) ¢
JG(KM][(u,xz), ('U,:L‘s)], then w ¢ Jglu, 'U].

Theorem 6.3 Let G be a connected graph, m > 1, and let S C V(G[Kn)).
If S is a closed monophonic set of G[Kn], then Sg is a closed monophonic
set of G.

Proof: Let S be a monophonic set of G[K,,|, and let z € V(G) \ Sg.
Pick any y € V(K,,). Then there exist (u;,v;), (u2,v2) € S such that
(z,y) € Jo[km)[(v1,v1), (u2,v2)]. By Lemma 6.1, £ € Jg[uj,uz]. Thus,
V(G) = Jg[Sg). Futhermore, by Lemma 6.2, if S, in canonical form, is
given by S = {(u1,v1), (u2,v2),..., (uk,vk)}, then {uy,us,...,u;} defines
a canonical representation for Sg. Therefore, Sg is a closed monophonic
set of G. : [ ]

Given a connected graph G and vertices u,v € V(G), we define
Ja(u,v) = Jg[u,v] \ {u,v}. For a nonempty S C V(G), we define

s° = |J [8nJa(u,v).
u,vES

In view of Lemma 2.1, If S is a closed monophonic set of G, then Ext(G) C
S\ S°.
Theorem 6.4 Let G be o connected graph, m > 1, and S C V(G[K,,)).
Then S is a closed monophonic set of G|Ky] if and only if

S=[(A\A°) x V(K )JUT

for some closed monophonic set A of G and some T C V(G[Kn]) with
Te = A°.
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Proof: Let S be a closed monophonic set of G[Kp). Put A = Sg and
T = {(u,v) € S : u € A°}. By Theorem 6.3, A is a closed monophonic set
of G. Clearly, S C [(A\ A°) x V(K,,)]UT. Since T C S, to establish equal-
ity, we only show the inclusion [(A\A°)xV(K,)] € S. To this end, suppose
that there exist z € A\ A° and y € V(K») such that (z,y) ¢ S. There
exist (u1,v1),(u2,v2) € S such that (z,9) € Jgk,.jl(v1,v1), (u2,v2)] \
{(u1,v1), (u2,v2)}. By Lemma 6.1, z € Jg[uy,ua] \ {v1,u2}. This means
that £ € AN A°, a contradiction. Thus, [(4 \ 4°) x V(K)] € S, and
therefore, S = [(A \ A°) X V(Kn)]UT.

Conversely, suppose that S = [(A\ 4°) X V(Kn)] UT, where A is a
closed monophonic set of G and T C V(G[Kn)) such that Tg = A°. Let
(z,y) € V(G[Km]). If z € A\ A°, then (z,y) € S C Igx,,[S]- Suppose
that = € A°. Then there exist u,v € A such that z € Jg[u,v] \ {u,v}. Let
[ = z1,Z3,...,2x = v] be a monophonic path in G containing z. Choose
vo,v§ € V(Km) such that (u,v),(v,v5) € S. By Lemma 6.1, the path
[(xlv 1)0), (7:2, y)! vey (zk—ly y)1 (.'I:k, ‘Ua)] is monophonic in G[Km] Conta‘ining
(z,y). Thus, (z,y) € Joik.,)[S]- Suppose that z € V(G) \ A. Since A
is a monophonic set of G, there exist u,v € A such that z € Jg[u,v].
Similarly as the preceding argument, if (u, ), (v,v3) € S, then (z,y) €
Jok ] [(%s v0), (v, v3)] € Jgik.,)[S]- Therefore, V(G[Km]) = Jgix..)[S]-

Finally, we prove that S can be written in the required canonical form.
Suppose that A, in canonical form, is given by A = {u1,ug, ..., ux}. Put
S = {a),09,...,0,}, such that if 1 <4 < j < n and o = (u,,v) and
o; = (ur,v*), then s < r. Note that for each u € 4, if S(u) = {(v,v) €
S :v € V(Km)}, then (S(u)) is a complete subgraph of G[Kp]. Thus, for
distinct vertices z, ¥ and z in V(Kp,), (u,z) € Je[(u,y), (v, 2)]. This and
Lemma 6.2 imply that ax ¢ Jg(x,,)[, @] whenever ¢, j < k. Therefore, S
is a closed monophonic set of G[Kp,). |

Theorem 6.5 If A is a minimal closed monophonic set of a connected
graph G and v € V(K,), m 2 2, and if

S=[(A\ A°) x V(Km)] U[4° x {v}],

then S is a minimal closed monophonic set of G[Kp).

Proof: Let A C V(G) be a minimal closed monophonic set of G, and let
v € V(Kym). By Theorem 6.4, the set S = [(A\A°) x V(Knm)|U[A® x {v}] is
a closed monophonic set of G[K,,]. We claim that S is minimal. Suppose
that §' C § and S’ is a closed monophonic set of G[Kn]. By Theorem
6.4, S’ = [(B\ B°) x V(Kn)] UT for some closed monophonic set B of
G and some T C V(G|Ky)) with Tg = B°. If z € B\ B®, then (z,y) €
(B\B°) x V(Kn)] C 8 C S forally € V(Kp), and thus z € A If
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z € B®° = T, then (z,y) € T C § for some y € V(K,,), showing that
z € A. Thus B C A. The minimality of A implies that A = B. Moreover,
since TN[(B\B°) x V(K,»)] = 0 and Tg = B° = A°, we have T = A° x {v}.
Therefore, S = S’, and S indeed is minimal. |

Theorem 6.6 Let G be a connected graph, and let m > 2. Let S C
V(G[Kn)). If S is a minimal closed monophonic set of G[K ), then
S=[(A\A°) x V(Kn)]UT,

where A is a closed monophonic set of G and T C V(G[K,)) with Tg = A°
and |T| = |A®|. '

Proof: Let S C V(G[Ky,]) be a minimal closed monophonic set of G[K,y,).
By Theorem 6.4, there exist a closed monophonic set A such that S = [(A\
A°)x V(K,)]UT, where Tg = A°. Suppose that (z,y) € T. We claim that
(z,2) ¢ T forall z € V(K,)\{y}. Let z € V(K,,,)\{y}. Sincez € Tg = A°,
z € Je[A\ {z}]. In view of Lemma 6.1, (z,z) € Jgx.,.)[S \ {(z,2)}].
Moreover, for any (u,v), (s,t) € V(G[Kn]), if (v,v) € Jgik,,)[(2, 2), (5, 1)],
then (u,v) € Jgik,.((,9), (s,t)]. Thus the minimality of S implies that
(z,2) ¢ T. It means that for every z € A° there is exactly one y € V(K,,)
for which (z,y) € T. This proves that [T'| = |A°|. | |

Corollary 6.7 Let G be a connected graph, and let m > 2. Then
me(G[Km]) = min{m|A| - (m —1)|A°|: Ais a closed
monophonic set of G},
and
mI(G[Km]) = maz{m|A|—(m—1)|A°|: Aisa minimal closed
monophonic set of G}.

Proof: For convenience, let
Ly =min{m|A| — (m — 1) |A°| : Ais a closed monophonic set of G}
and
Ly = maz{m|A|— (m—1)|A° : Ais a minimal closed
monophonic set of G}.

Let A be a closed monophonic set of G. Pick any v € V(K,,), and put
S = [(A\ A°) x V(Km)] U [A° x {v}]. By Theorem 6.4, S is a closed
monophonic set of G[K,,]. Thus

Me(GKm]) < |S| =m|A| - (m - 1)]4°|.

43



Since A is arbitrary, m.(G[Kn]) < L;.

Conversely, let § be a closed monophonic set of G[K,,] of minimum
cardinality. Then S is a minimal closed monophonic set of G[K,,]. By
Theorem 6.6, there exists a closed monophonic set A of G such that S =
[(A\ A°) x V(Km)]UT, where Tg = A° and |T| = |A°|. Thus

Me(G[Km]) = |S| =m|A| — (m —1)|4°| 2 L.

This establishes the first formula.

Let us turn to the second formula. Let A be a minimal closed mono-
phonic set of G, and let v € V(K,;). By Theorem 6.5, the set S =
[(A\ A°) x V(K,)] U [A° x {v}] is a minimal closed monophonic set of
G[Km). Thus m}(G) > |S| = m|A| — (m — 1) |A°|. Since A is arbitrary,
m} (G[Km]) = L,.

Now, among the minimal closed monophonic sets of G[K,] of maximum
cardinality, we choose S such that |Sg| is minimum, i.e,

IS¢l = min{|Sg|:S* is a minimal closed monophonic set
of G|Kp) with|S*| = m} (G[Km))}.
By Theorem 6.6, S = {(A\ A°) x V(Kn)]UT, where A = Sg and T = A°
and |T| = |A°|. In view of Theorem 6.5, we can assume that T = A° x {v}
for some v € V(K,,). We claim that A is a minimal closed monophonic

set of G. Suppose that such claim is false, and let z € A be such that
B = A\ {z} is a closed monophonic set of G. By Theorem 6.5, the set

§'=[(B\ B°) x V(Km)]U[B° x {v}]

is a closed monophonic set of G[K,,). By the definition of S, || < |S].
Clearly, B° C A° \ {z}. If B° = A°\ {z}, then S’ is a proper subset of
S, a contradiction. Now, suppose that D = (A4°\ {z}) \ B® # 0. Then
|A°| —|B°| > 2 and B\ B° = (A\ A°)UD. Thus

§' = {[(A\ £°) U D] x V(Km)} U[B® x {v}]
so that
5’| 1S] + (m — 1)(|A°| - |B°|) —m
S| +2(m~1)-m
[S|+m -2
|S].

AV | I AVAR |

By the definition of S, S’ is not minimal. Let T be a proper subset of S’
which is itself a closed monophonic set of G[K,,], and put M =T\ [D x



V(Km)]. Then M is a proper subset of S. The minimality of S implies
that Jgik,.)IM] # V(G[Kn]). And since ({u} x V(K,,)) is a complete
subgraph of G[Ky,] for every u € D, we have T = M U (Do x V(K,,)) for
some nonempty proper subset Do of D. Let a € D\ Dy. Then a ¢ B°.
On the other hand, there exist u,w € Tg such that a € Je[u.w] \ {u,w}.
This means that a € B°. This contradiction establishes the above claim.

Therefore m} (G[Kp)) = |S| < L,. ]

Corollary 6.8 If G is an extreme geodesic graph (i.e., Ext(G) is a mini-
mum geodetic set of G), then m(G[Km]) =m - m(G) and m} (G[K,,]) =
m-mF(G) for allm > 2.
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