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Abstract

Let T denote a d-bounded distance-regular graph with diameter
d > 2. A regular strongly closed subgraph of I' is said to be a
subspace of I. Define the empty set @ to be the subspace with
diameter —1in T, For 0 < i € d—1, let £(< i) (resp. £(2 %))
denote the set of all subspaces in I’ with diameters < i (resp. > 8)
including " and . If we define the partial order on £(< ) (resp.
L(> i) by reverse inclusion (resp. ordinary inclusion), then £(< i)
(resp. L(> i) is a poset, denoted by La(< ) (resp. Lo(2 1))
In the present paper we give the eigenpolynomials of Lr(< i) and
Lo(= i).
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1 Introduction

In this section we first recall some terminology and definitions about fi-
nite posets ([1, 3]), then introduce some concepts concerning d-bounded

distance-regular graphs and our main results.
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Let P be a poset. For a,b € P, we say a covers b, denoted by b <-a, if
b < a and there exists no ¢ € P such that b < ¢ < a. If P has the minimum
(resp. maximum) element, then we denote it by O (resp. 1) and say that
P is a poset with O (resp. 1). Let P be a finite poset with 0. By a rank
function on P, we mean a function r from P to the set of all the integers
such that 7(0) = 0 and r(a) = r(b) + 1 whenever b <- a.

Let P be a locally finite poset and let R be a commutative ring with
unit element. Assume that g : P — R is a binary function on the poset
P, then p is called the Mébius function of P if the following (i) - (iii) hold.

(i) For any a € P, u(a,a) =1.
(ii) For a,b € P, if a < b dose not hold, then u(a,b) = 0.

(iii) For a,b€ P,ifa <b,then ) u(a,c)=0.
a<Lc<Lh
Let P be a poset with minimal element 0 and maximal element 1.
Assume that 7 is the rank function of P. The polynomial

x(Pz) =Y u(0,a)c" "
is said to be the eig:ri;olynomial on P, where p is the Mébius function of
P.

Now we shall introduce some concepts concerning d-bounded distance-
regular graphs. Let ' = (X, R) be a connected regular graph. For vertices u
and v in X, let 8(u, v) denote the distance between u and v. The maximum
value of the distance function in I is called the diameter of I, denoted by

d = d(T"). For vertices u and v at distance i, define

C(uv ‘U) = C,'(’U;, 'U) = {w l a(u,w) =i- lra(w’v) = 1}’

A(u,v) = Ai(u,v) = {w | (u,w) =14,0(w,v) = 1}.
For the cardinalities of these sets we use lower case letters c;(u,v) and
ai(u,v).

A connected regular graph I’ with diameter d is said to be distance-

regular if ¢i(u,v) and a;(u,v) depend only on i for all 1 < i < d. The
reader is referred to [2, 4] for general theory of distance-regular graphs.



Recall that a subgraph induced on A of I' is said to be strongly closed
if C(u,v) U A(x,v) C A for every pair of vertices u,v € A. Suzuki ([9])
determined all the types of strongly closed subgraphs of a distance-regular
graph.

A distance-regular graph I with diameter d is said to be d-bounded, if
every strongly closed subgraph of I is regular, and any two vertices  and y
are contained in a common strongly closed subgraph with diameter 8(z, y).

Weng ([10, 11]) used the term weak-geodetically closed subgraphs for
strongly closed subgraphs, obtained many important results when a distance-
regular graph is d-bounded. A regular strongly closed subgraph of I is said
to be a subspace of I'.

The results on the lattices generated by subspaces in d-bounded distance-
regular graphs can be found in Gao, Guo and Liu ([5]), Guo and Gao ([7]),
Guo, Gao and Wang ([8]).

Let I' = (X, R) denote a d-bounded distance-regular graph with diame-
ter d > 2. Define the empty set @ to be the subspace with diameter —1in T,
For0<i<d-—1,let £(< 1) (resp. £(= 1)) denote the set of all subspaces
in I with diameters < i (resp. 2 %) including I" and 0. If we define the
partial order on £(< %) (resp. £(> i)) by reverse inclusion (resp. ordinary
inclusion), then £(< %) (resp. £(2 1)) is a poset, denoted by Lp(< 1) (resp.
Lo(2 1)). Our main result is the following.

Theorem 1.1. Let I’ be a d-bounded distance-regular graph with diameter
d>2andlet0<i<d—1. Then

x(Lr(L i), t) =tF2 -1 - i: N'(m,d)gr(m,t),

m=0

d
X(Lo(2 i),t) =41 =3 " N'(,, d)go(l; t),

: I=i
where

9r(m, t) =TT o(~1)m=i Qeigimiuasin) - pnc1 e

x N'(j, m)(t”’rl - 1)

d—1
= bibipy-biys_1 -
go(l,t) = sg(—l)’ TPy (i ey E e o LA
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and

N’(h u) _ (bo—=bu) (b1 =by)-(bp~1—by) (1+2;.=1 (Bo—bn)(b:l—:;?:;:i(bj—l-bu)
' (bo—ba) (b1 =ba)-+ (bn—1—bn) (148, LoRICAoR - Dini ST

2 Proof of Theorem 1.1

Proposition 2.1. ([11, Lemma 4.2]) Let T’ be a d-bounded distance-regular
graph with diameter d, and let A be a subspace of ' and 0 < i < d(A).
Then A is distance-regular with intersection numbers ¢;(A) = ¢;, a;(A) =
ag, b‘(A) = bi - bd(A)-

Proposition 2.2. (/5, Lemma 2.1]) LetT' be a d-bounded distance-regular
graph with diameter d > 2. For 0 < i,s,t <dandi+1<i+s <
i+s+t <d, suppose A and A’ are strongly closed subgraphs with diameter
i and i + s + t, respectively, and with A C A’. Then the number of the
strongly closed subgraphs A with diameter i + s satisfying A C A C A,
denoted by N(i,i+ s;i+ s +t), is determined by i,s and t, independent of
the choice of A and A'; it is

Lemma 2.3. (/6, Lemma 2.8]) Let T’ be a d-bounded distance-regular graph
with diameter d. For 0 <i <1+ s <d, suppose that A is a fized subspace
with diameter i+s in the I'. Then the number of the subspaces with diameter
i in A, denoted by N'(i,i + 8), is determined by 7 and s, independent of
the choice of A; it is

i bo—b. by —b. eeu(by_q —by
(bo—bi+.)(b1-bi+.)-"(bi-x—b&+.)(1+2g{ (bo—biya) 1c':::.)c‘ (51 :+.y))
" B0—0;){b1—0g) " +(bg_q—b;
(bo—b.-)(bx—b.-)“-(b‘_l—-b;)(1 P, (oo =5:)( :lc;.)"q( 1—1 .))

Proof. By Proposition 2.2, for each £ € V(A), there are N(0,%;i + s)
subspaces with diameter ¢ in A. Thus there are total |[V(A)|N(0,i;¢ +
s) such subspaces. But each of these subspaces repeats a times, where
a equals the number of vertices in a subspace with diameter . So the
number of the subspaces with diameter ¢ in A is |V (A)[{N(0,%;i+s)/a. By
Proposition 2.1,

IV(A)] = 1+ it Gobosadba—biga)(roy=bize)

ciczrcp



a=1+ E;_ (Bo—b:) (b1 —bi)---(bi— 1—b.)

c1C3+*+Cp
So we have the desired result. a

Let T be a d-bounded distance-regular graph with diameter d > 2 and
let A be the subspace with diameter m in I, where 0 < m < d. Let £L,,(A)
denoted the all subspaces in A including the empty set @. If we define the
partial order on £,,(A) by reverse inclusion, then £,,(A) is a poset, which
is also denoted by L,,(A).

Lemma 2.4. Let T’ be o d-bounded distance-regular graph with diameter

d > 2. Then the Mobius functzon of /.'.m(A) is

(b s ifA < A" #9,

AI’AII —_

AL ") ifA < A" =0,
otherwise,

where A!, A" € L,(A), d(A') =i+ s and d(A”) = i. In particular, we set
p(A,A")Y=14fs=0 and u(A",A")=-14fs=1.

Proof. For any A’ € L£,,(A), it is obvious that u(A’,A’) = 1. For any
A A" € Lp(D) with A’ < A” # 0, d(A’) =i+ s and d(A”) = 4, similar.
to the proof of Theorem 4.4 of [5], we have

t+3)(bt+2 - z+a) (bi+a-1 — bi+s) . (1)
(b = bit1)(Bs — bit2) -+ (bi — bits—1)
For any A/, A" € L,,(A) with A’ < A” =0, d(A’) = s — 1, we have by
Lemma 2.3 and (1),

Z M(A,i 8) = 1+(_1)1N’(S_278—1)
AlsZSAH

(', a7 = (-1 &t

H+(—1)2e=aztesl Nr(5 — 3,5 — 1)

s—3—bs—2
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+u(A',0)
=0. a
Lemma 2.5. LetT be a d-bounded distance-regular graph withd > 2. Then
the eigenpolynomial on L, (A) is
X(Lm(B),8) = Tieo(-1)" 7Y
x N'(§,m)(t7+! = 1).

Proof. 1t is clear that for any A’ € L (A), r(A) = m — d(A’) is the rank
function on L,,(A). So,

X(Em(BA), )= > (A, A)O-TED,
A'ELM(A)

For A’, A” € Lm(A) with d(A") = d(A"), we have
fr@)=r(A") _ (841 _ dA )41 _ gr@—r(A")

It follows from Lemma 2.4 and Lemma 2.3 that
X(Lm(A),t) = t™+1 + (-1)!N'(m — 1, m)t™

(1) gtz N (m - 2, mjem!

x N'(j,m)(t#+! —1). a

1t is obvious that x(Lm(A),t), denoted by gr(d(A),t), is uniquely de-
termined by d(A) = m.

Let T be a d-bounded distance-regular graph with diameter d > 2 and
let A be a fixed strongly closed subgraph with diameter2inI’, 0 <4 < d-1.
Suppose that P(A) is a set of all strongly closed subgraphs containing A
in T. If the partial order on P(A) is defined by ordinary inclusion, P(A)
is denoted by Po(A).



Lemma 2.6. (/7] Lemma 2.9) Let T be a d-bounded distance-regular graph
with diameter d > 2. Then the eigenpolynomial of Po(A) is

d—i
— bibi web, - d—i—
x(Po(8),) = 3 (- 1)’ sl o buaade- bt

It is obvious that x(Po(A),t), denoted by go(d(A),t), is uniquely de-
termined by d(A) = i.

Proof of Theorem 1.1. For any A € Lg(< i), define

i+1—d(A), ifA#T,

A) =
TR(A) {o, fA =T,

It is clear that the function rg is a rank function on Lg(< i). Write
L=Lp(<1i). For Ae L, let

LA ={A e L]A" > A}
It is easy to see that LT = L. So the eigenpolynomial on £ be
x(L,t) = Z u(T, A)tra(w)-m(A) = Z u(T, A)ti+2-rn(A).

T AeL
By the Mébius inversion formula

tit? = Z x(L4,1).
A€EL
By Lemma 2.5, we can deduce that

x(£,t) = X(['F’t)
= ¢i+2 _ E X(CA,t)

Ael\{r}

AEL,0<d(A)<i

= tt+2 — 1 —_ Z N'(m, d)gR(m, t)-
m=0

For any A € Lo(> i), define

d(A)—i+1, ifA#0,

0, ifA=0.

It is clear that the r¢ is the rank function on Lo (> 7). Write P = Lo (> ).
For A € P, define the set PA as follows:

ro(A) =
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PA={AePlACA}={AecPlA<A}.
It is clear that P? = P. For any A € P\{0}, P2 is the set of all subspaces
containing A in I'. It follows from Lemma 2.6 that

X(PAv t) = gO(d(A)’t)'
By the definition of eigenpolynomisal on P,
x(Pt)=x(P"1) = 3 p(@,A)ro®=ro®.

AeP®
By the Mébius inversion formula,

td_‘+1 - Z X(PA,t)-
AeP?
It follows from Lemma 2.6 and Lemma 2.3 that

X(P5 t) = ¢4+l Z X(PAat)

A€P\{0}
— =i+l _ Z x(P4,t)
A€P,d(A)>i
. d
= gd—it+l _ ZN'(Z, d)go(l,t). O

=t
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