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Abstract

Let G be a graph with vertex set V(G), and let £ > 2 be an
integer A spanning subgraph F of G is called a fractional k-factor
if d&(z) = k for all z € V(G), where di(z) = 3, g, h(e) is the
fractional degree of z € V(F) with E; = {e : e = zy € E(G)}. The
binding number bind(G) is defined as follows,

bind(G) = min{ 'Nfﬁ‘“ @ # X C V(G), No(X) # V().
In this paper, a binding number condition for a graph to have frac-
tional k-factors is given.
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1 Introduction

We consider only finite undirected simple graph G with vertex set V(G)
and edge set E(G). For z € V(G), the degree of z in G is denoted by dg(z).
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The minimum vertex degree of G is denoted by §(G). For any S C V(G),
we denote by N¢(S) the neighborhood set of S in G, by G[S] the subgraph
of G induced by S, by G — S the subgraph obtained from G by deleting
vertices in S together with the edges incident to vertices in S. A vertex set
S C V(G) is called independent if G[S] has no edges. The binding number
of G is defined by Woodall [1] as

bind(G) = min{ (Xl I Igl . 5 2 X c V(@) No(X)  V(G)).

Let k be an integer such that & > 1. Then a spanning subgraph F of G
is called a k-factor if dp(z) = k for all z € V(G). If k = 1, then a k-factor is
simply called a 1-factor. A fractional k—factor is a function h that assigns
to each edge of a graph G a number in [0,1], so that for each vertex = we
have d&(z) = k, where d(z) = 3.5, h(e) (the sum is taken over all edges
incident to z) is a fractlonal degree of z in G. If k = 1, then a fractional
k-factor is a fractional 1-factor. The other terminologies and notations not
given in this paper can be found in (2,3].

Many authors have investigated k-factors [4-7], and fractional factors[8,9].
In [7], P. Katerinis and D. R. Woodall gave a binding number condition for
a graph to have a k-factor. Recently, Sizhong Zhou obtained some sufficient
conditions for graphs to have factors or fractional factors [10-12]. There is
a necessary and sufficient condition for a graph to have a fractional k-factor
which was given by Guizhen Liu [13].

Theorem 1 13 Let G be a graph. Then G has a fractional k-factor if and
only if for every subset S of V(G),

6c(8,T) = k|S| — k|T| + dg-s(T) 2 0,
where T = {z:z € V(G) \ S,dg-s(z) < k}.
In [1], D. R. Woodall gave the following result.

Theorem 2 1 Let G be a graph of order n with bind(G) > c. Then
§(G) >n— 2L,

In (7], P. Katerinis and D. R. Woodall gave a binding number condition
for a graph to have a k-factor.

Theorem 3 (7] Let k be an integer such that k > 2, and let G be a graph
of order n such that n > 4k — 6, kn is even, and bind(G) > ‘%(-n—?é%
Then G has a k-factor.
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In this paper, we give a binding number condition for a graph to have
fractional k-factors. Our main result is a similar that of Theorem 3.

Theorem 4 Let k > 2 be an integer, and let G be a graph of order n such
that n > 4k — 6. Then

(1) If kn is even, and bind(G) > G=U08, then G has a fractional k-
factor; and

(2) If kn is odd, and bind(G) > U210 then G has o fractional k-

factor.

2 The Proof of Theorem 4

Proof. If kn is even, and bind(G) > $f=13=1) By Theorem 3, G has
a k-factor. We have known that a k-factor is a special fractional k-factor.
Thus, G has a fractional k-factor. In the following, we prove (2).

Suppose that G does not have a fractional k-factor. Then, according to
Theorem 1, there exists some S C V(G) such that
66(S,T) = k|S| — k|T| + dg-s(T) < -1, (1)
where T = {z : z € V(G) \ S,dg—_s(z) < k}. We choose such subsets S
and T so that |T| is as small as possible.
Claim 1. |T|>2k+1.

Proof. According to Theorem 2, we have

S|+ dg-s(z) 2 do(z) 26(G)>n- _b;{;'( cl:)
n(k—1)+2k—3
2 2% — 1
S (k-6)(k-1)+2k-3
2 % — 1

> 2k-32k (since k > 2 is odd).

If |T| < k, then by (1) we obtain
“1 > 66(S,T) = KIS| +do-s(T) — kIT|
2 TS|+ de-s(T) — |T|

3 (181 + de_s(z) — k) 2 0,
zeT
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which is a contradiction.
Claim 2. dg_g(z) <k—-1forallzeT.

Proof. If dg_s(x) > k for some € T, then the subsets S and T\{z}
satisfy (1). This contradicts the choice of S and 7.

Define

h = min{dg_s(z)|z € T}.

Then by Claim 2, we have

0<h<Lk-1.

Choose z; € T such that dg_s(z;) = h. The proof splits into two cases.

Casel 1<h<k-1

Let Y = (V(G)\ S)\ Ng_s(z1). Thenz; € Y'\ Ng(Y),s0Y # @ and
Ng(Y) # V(G), and |[Ng(Y)| > bind(G)|Y|. Thus, we obtain

n—12 |Ng(Y)| 2 bind(G)|Y| = bind(G)(n — |S| - h),

i.e.

IS|2n—h- ——— >n—h

n—1 _k(n—2)+2 @
bind(G) %—1 )

Subcase 1.1 3<h<k-1
By (1) and (2), and |T| < n — ||, we have

-1

v vy

\%

6c(5,T) = k|S| + dg-s(T) - k|T)|
k|S| - k|T| + h|T|

k|S| = (k — h)|T|

k|S| — (k= h)(n - |S])

(2k — h)|S| — kn + hn

(2k-h)(n-h-'°("2—;f)1+_2)-kn+hn

k(n—-2)+2

n = (2% ~ h)h = (2 — ) ==L

Let f(h) = kn — (2k — h)h — (2k — h) 22242 Then

k(n—2)+2

£(r) = ~2k +2h+ ==L
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Since 3 < h < k—1, we have

, k(n —2)+2
f = —2k+6+——2k_1
—4k2 42k +12k—6+kn—2k+2
2% —1
kn —4k? +12k -4
2k -1
k(4k — 6) — 4k? + 12k — 4
2k —1

> 0.

6k —4
2k -1
Thus, we get

f(R) 2 £(3),
ie.

-1 > f(h) > f(3) =kn—3(2k —3) - (2k — 3) k(n2 - E)1+ 2

9%2n — kn — (6k — 9)(2k — 1) — (2k — 3)(k(n — 2) + 2)

2% —1
_ 2kn—8k®+14k—3
- 2k -1
2h(4k —6) — 8k2 + 14k —3 2k —3
> =
2 %% —1 %=1

which is a contradiction.
Subcase 1.2 h=2

Claim 3. (k—2)(2k—1)|T| < k[(n—2)(2k—1)— (k(n—2)+2)]-+(2k—1),

that is, |T| < gkz(n —2 — 32242y 4 L

Proof. If (k—2)(2k—1)|T| > k[(n—2)(2k—1) — (k(n—2) +2)] + (2k —
1) +1, that is, [T| > giz(n— 2 — 2522032 4 Ly 4 by Then, by
(2), we obtain

k(n—2)+2 & k(n—2)+2
ISI+IT] > n-2- =5 4 o (n -2 - =)
1 1

F—2 T @E-DE=2)

-+

k(n—-2)+2 1
“ o1 O ti—3
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1
tEE=DE=2)

kn —4k? + 6k — 1 1
"R DGE=2) T @R-DE-2)
k(4k — 6) — 4k2 + 6k — 1 1
e (T 1130 ) B g § T s
1 1
"D -2) T @k-DE-2) "

This contradicts |S| + |T| < n.
By combining Claim 3 with (1) and (2), we obtain
-1 8c(S,T) = k|S| + dg-s(T) — k|T|
k|S| — k|T| + 2|T|
k|S| - (k= 2)IT]
kn-2)+2,
2k -1

k
ka2

v v

\%

k(n—-2-—

kn—2)+2, 1
-1 )t E=2)

=(k—2)(
= -1,
a contradiction.
Subcase 1.3 h=1
Subcase 1.3.1 |T| < giy(n—1- 532242 4 Lo
By combining this with (1) and (2), we have that
-1 2 05(S,T) =k|S| +de-s(T) — k[T|

> kiS|—k|T|+|T)
= KIS| - (k-1)IT|

k(n—2)+2 1
- %=1 ) tE=D

k
= -1,
a contradiction.
Subcase 1.3.2 |T| > gip(n—1- X722y 4 Lo
In view of (2), we obtain

k(n—2)+2

IS|+IT] > n-1-=5=
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k k(n—2)+2 1

teoit Tl T O tRoT
2k -1 k(n—2)+2 1
> Fog e Ty T ) T
_ Icn—n—1+ 1
T T k-1 k—1_ ™~
This contradicts |S| + |T| < n.

Case2 h=0

Let m be the number of vertices z in T such that dg_gs(z) = 0, and let
Y =V(G)\ S. Then Ng(Y) # V(G) since h =0, and Y # @ by Claim 1,
and so |[Ng(Y)| 2 bind(G)|Y|. Thus

n—m 2 |Ng(Y)| 2 bind(G)|Y| = bind(G)(n — |S]).

So
(3

n—m
ISIZR—W

In view of (1) and (3), and |T}| < n — S|, we get that

-1 2 (8, T) =k|S| +dg-s(T) — kIT|
> k|S|-KT|+|T|-m
2 kS| - (k-1)(n—|S])-m
= (2k-1)|S|-kn+n-—m
n—m
> (2k—1)(n—m)—kn+n—-m
_ _n(2k-1) m(2k-1) _
= 2kn—n 5ind(C) bind(G) kn+n-m
n(2k—1) m2k-1)
k= 3ind@) T bind@) ™
> g PEE=1) 2%k-1

~ 5ind(G) T bind(G)

(n=1)@k-1)
5ind(C)

> kn—(k(n—-2)+2)—1=2k-3>0.

= kn-—

This is a contradiction.

From all the cases above, we deduced the contradiction. Hence, G has
a fractional k-factor.
Completing the proof of Theorem 4.
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Remark. Let kn be even. Then, let us show that the condition
bind(G) > %ﬁ? in Theorem 4 can not be replaced by bind(G) >

2";12";3 Let r be a positive integer and let ! = rk—1 and m = 2l—2r, so

that km = 2l(k—1)—2 and n = m+2l = (4k—2)r—4. Let H = K\, \/ LK.
Let X = V(IK;). Then for any z € X, |NH(X\:1:)| = n — 1. By the
definition of bind(H), bind(H) = %ﬁn =k = Q&;—lxz)"—;gl
Let S = V(Km) C V(H), T = V(IK;) C V(H). Then |S| = m, |T| = 2L.
Thus, we get

6u(5,T) = kIS|—k|T|+dy-s(T)
k|S| — k|T| + |T| = k|S| — (k - 1)|T|
= km-2(k-1)l=-2<0.

]

By Theorem 1, there are not any fractional k-factors in H. In the above
sense, the result in Theorem 4 is best possible.

Let kn be odd. Then, let us show that the condition bind(G) >

Qf(-n—lé%l in Theorem 4 can not be replaced by bind(G) > 3-2,:3(;—1)5(%

Let 7 > 1,k > 3 be two odd positive integer and let | = % and
m = 5kr—5r—1, so that n = m+2! = (10k—5)r—2. Clearly, n is odd. Let
H =K, VIK; Let X = V(IK3). Thenforanyz € X, |NH(X\:1:)] =n-1
By the definition of bind(H), bind(H) = a0l — a-1 — 5";12 =
Gre=l). Let S = V(Km) C V(H), T = V(IK) C V(H). Then
[S| = m, |T| = 2l. Thus, we get

6n(S,T) = k|S|—k|T|+dg-_s(T)
k|S| — kIT| + |T| = k|S| — (k - 1)|T|
km —2(k — 1)l = k(5kr — 5r — 1) — (k — 1)(5kr — 1)
-1<0.

By Theorem 1, there are not any fractional k-factors in H. In the above
sense, the result in Theorem 4 is best possible.
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