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Abstract

A point set X in the plane is called a k-distance set if there are
exactly k different distances between two distinct points in X. We
classify 11-point 5-distance sets.

1 Introduction

A point set X in the Euclidean plane is called a k-distance set if it determines
exactly k different distances. For two planar point sets, we say that they are
isomorphic if there exists a similar transformation from one to the other.
Let d(z,y) denote the distance between two planar points = and y. Let R,
denote the vertex set of a regular convex n-gon, R} be R, plus its center
point, R, — i denote a set of n — ¢ vertices of R,. When i > 2, R,, — i
has dissimilar versions depending on which i points of R,, are absent. Let
g(k) be the largest possible cardinality of k-distance set. A k-distance set
X is said to be maximum if X has g(k) points. Clearly g(k) = 2k + 1 since
Rgyy1 is a k-distance set. Erd8s-Fishburn [1] determined g(k) for k < 5 and
classified maximum k-distance sets for k£ < 4, and conjectured g(6) = 13.
Shinohara [5] classified 3-distance sets with at least five points. Shinohara
[6) proved the uniqueness of the 12-point 5-distance set and classified 8-point
4-distance sets. In this note we classify 11-point 5-distance sets, which play
an important role in the proof of the conjecture g(6) = 13.
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2 Preliminaries and related Lemmas

Let D = D(X) be the diameter of a finite set X, and let Xp = {z €
X : d(z,y) = D for some y € X} and m = m(X) = |Xp|. The diameter
graph DG(X) of X is the graph with X as its vertices and where two
vertices z,y € X are adjacent if d(z,y) = D. For v € Xp, let d(v) denote
the number of D-length segments connected with vertex v in DG(Xp).
Clearly DG(Xp) has no isolated vertex, and every two D-length segments
in DG(Xp) must cross if they do not share an end point. We denote a path
and a cycle with n vertices by P, and Cj, respectively. When indexing a
set of ¢ points, we identify indices modulo t.

As in [6] a subset H of V(G) is an independent set of V(G) if no two
vertices in H are adjacent, and H is said to be maximal if no other inde-
pendent sets contain H, the independence number «(G) of a graph G is the
maximum cardinality among the independent sets of G. An independent
set H of G is said to be maximum if |[H| = a(G). We denote the set of
all n-point k-distance sets and the set of all n-point convex k-distance sets
by E,(k) and Mp(k) respectively. In the following some proofs are omitted
because of the restriction of the length of the paper.

Lemma 1. [3] [4] Suppose S is the vertex set of a convez n-gon, n > 3,
that determines ezactly t different distances. Thent > [n/2]. Moreover:
(i) if nis odd andt = (n — 1)/2, S is Ry;

(4) if n is even, t =n/2, andn > 8, S is R, or Rpy1 —1;

(tii) if (n,t) =(7,4), Sis Rg— 1 or Ry — 2;

(z’v) z'f(n,t) = (9,5), S is Rijo—1 or Ry — 2.

Lemma 2. [1] Let D be the diameter of an n-point set X with n > 3 and
m = |Xp|. Then

(a) if m > 3, the points in Xp are the vertices of a conver m-gon;

(b) D can be eliminated as an interpoint distance by removing at most [ 3]
points from X, where [%] is the smallest integer at least m/2.

Lemma 3. [6] Let G = DG(X) for X. Then

(a) G contains no Cy for any k > 2;

(b) if G contains Car41, then any two vertices in V(G) \ V(Cai41) are not
adjacent and every vertez not in the cycle is adjacent to at most one vertex
of the cycle, where V(G) denote the vertex set of the simple graph G. In
particular, G contains at most one cycle.

Lemma 4. Ifd(v) = k > 2 for v € Xp in the diameter graph DG(Xp) of
Xp, then the k vertices having D-length with v are consecutive.

Proof. By Lemma 2, Xp is a convex set. If the &k vertices having D-length
with v are not consecutive, then there exists a point p € Xp between v;
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and vg, where d(v,v;) = d(v,v) = D, d(v,p) # D. Since DG(Xp) has no
isolated vertex, there exists a point ¢ € Xp such that d(p,q) = D. Since
every two D-length segments in DG(X p) must cross if they do not share an
end point, the two segments [v, v;] and [v, vx] must cross with the segment
[p, g], this is impossible. O

Lemma 5. For a planar point set X withm = |Xp|, let Xp = {1,2,...,m},
m points are consecutive with counter-clockwise order. If for a subset S C
Xp, S={k,k+1,k+2,...,k+1—1}, the segment [k,k+1— 1] is the maz-
length segment of S and d(k, k+1i) < d(k, k+l-1) foranyi =1,2,3,...,1-2, .
then d(k,k + 1) < d(k,k+2) <d(k,k+3)<...<d(k,k+1—-1)< D.

P
k+i &

r/'/"

Okt

Figure 1: S|J{p} and S|J{q} are not convex sets

Proof. For a point k+iof S,i=1,2,3,...,1 —2, there exists at least one
point z € (Xp\S) U{k+!—1} such that d(k+:,z) = D since DG(Xp) has
no isolated vertex. Let O, denote the circle with the center a and the radius
D, and denote p, ¢ be two intersecting points about Og4: and Ogyiyy. If
d(k,k + 1) > d(k,k + i+ 1), then as shown in Figure 1, S{J{p} and S J{q}
are not convex sets, so p, ¢ do not belong to Xp, since Xp is a convex set,
that is to say, Xp contains no point which has D-length to points &k + ¢
and k 4+ i 4 1. Since DG(Xp) has no isolated vertex, it must exist a point
z € Xp [\ Ok+i+1 such that d(z,k + i+ 1) = D. In fact, the line segment
[k +i+1,z] must intersect with the line segment [k, k +1— 1], since Xp is a
convex set. But in this case we have d(k+1,z) > D, a contradiction. So we
conclude that d(k, k+1i) < d(k,k+i+1) fori =1,2,3,...,/-3. Combining
this with the condition d(k, k+1) < d(k,k+{—1) foranyi =1,2,3,...,1-2,
we obtain the result. a

Lemma 6. [2] Let X be the vertex set of convez n-gon with k interverter
distancesdy > da > --- > dy.. If a side of the convexz n-gon has the dy -length,
thenk >n—2.
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Lemma 7. Let X be a 11-point 5-distance set and m = |Xp| = 8. Then
X contains a subset Y € Eg(4) or for every point v € Xp, d(v) < 2.

Proof. Let X be the 11-point 5-distance set, and 5 distances are D = d; >
dy > d3 > dg > dg. By lemma 2, we know Xp is a convex set. Denote
Xp = {1,2,3,...,8}, eight points are consecutive with counter-clockwise
order. If Xp is a 4-distance set, by lemma 1, Xp = Rg, Ry — 1 € E3(4). So
in the following assume Xp is a 5-distance set. If d(,% + 1) = D, then by
lemma 6, Xp determines at least 6 distances, a contradiction to 5-distance.
So for any i € Xp, d(i) < 5. If d(i,i + 2) = D, then we know X contains a
subset Y € Eg(4) by removing three points i,% + 1,1 + 2 from Xp with the
diameter D been eliminated, since two D-length segments in X must cross
if they do not share an end point. So in the following we may assume for
any i € Xp, d(i) < 3, d(i,i +1) # D and d(i,i +2) # D. If for d(i) = 3
we obtain a contradiction to 5-distance or prove that X contains a subset
Y € Eg(4), then the result is correct. Now without loss of generality we
may assume d(1) = 3, and d(1,4) = d(1,5) = d(1,6) = D. Clearly for point
2, d(2,6) = D or d(2,7) = D, and for point 8, d(3,8) = D or d(4,8) = D.

Case 1: d(2,6) # D. Then d(2,7) = D, and by Lemma 5, ds = d(2, 3) <
d(2,4) < d(2,5) < d(2,6) < d(2,7) = D, ds = d(2,3) = d(3,4) = d(4,5) =
d(5,6), dg = d(4,6) = d(3,5) = d(2,4). So A345 = A456. But £345 #
Z£456, a contradiction.

Case 2: d(2,6) = D. If d(4,8) # D, then d(3,8) = D, similar as
the proof for Case 1, we can obtain a contradiction. So we may assume
d(4,8) = D.

Case 2.1: d(2,7) = d(3,8) = D. Clearly d(4,7) # D and d(3,6) # D. If
d(3,7) # D, then we know X contains a subset Y’ € Eg(4) by removing three
points 1, 2, 8 from Xp with the diameter D been eliminated. So assume
d(3,7) = D, then DG({3,8,4,1,6,2,7}) = C;. When {3,8,4,1,6,2,7} is a
3-distance set, {3,8,4,1,6,2,7} = R; since g(3) = 7 and the only convex
7-point set that determines three distances is R7 [1], but Ry |J{5} is not
a 5-distance, a contradiction. When {3,8,4,1,6,2,7} is a 4-distance set,
{3,8,4,1,6,2,7} = Rg — 1 or Ry — 2 by Lemma 1, but DG(Rs — 1) # C;
and DG(Rg — 2) # C7. Now assume {3,8,4,1,6,2,7} is 5-distance. By
Lemma 5, d(1,2) < d3, d(1,8) < d3 and the other d(z,z + 1) < d4 for
r=23,45,6,7€ Xp. Hence in the following proof we first consider the
case d(1,2) = ds or d(1,8) = d3 and give the complete proof, secondly we
consider the case d(z,z+1) < d4 for every z € Xp and the proof is omitted
since we use the similar way.

We know that there exists no point on a circle which has the same
distance to other three points on the circle, so in the following if we obtain all
points of Xp lie on a circle, then we can conclude a contradiction, and hence
Xp is not a 5-distance set. Now for the case d(1,2) = d3 or d(1,8) = ds,
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we depart two parts to proof.

Part I: d(1,2) = d3 and d(1,8) = da.

By Lemma 5, d3 = d(1,2) < d(2,8) < d(2,7) = dy, d3 = d(1,8) <
d(1,7) < d(1,6) = di, d3 = d(1,2) < d(1,3) < d(1,4) = d;. Since A138 =
A172, we know £318 = /712, and hence £312 = £718, A312 = AT1S8,
conclude d(2,3) = d(7,8) and 28||37. Since £846 = £146 — /148 = /164 —
Z162 = £264, we conclude A264 22 A846, and hence d(2,4) = d(6,8).
Clearly now A124 = A186 and £214 = /816. Since £213 = /817, we
know that £314 = £716. Combining this with d(1,3) = d(1,7) and d(1,4) =
d(1,6), we conclude A314 = A716 and hence d(3,4) = d(6,7).

Suppose d(2,3) = d(7,8) = d4. By Lemma 5, dy = d(2,3) < d(2,4) <
d(2,5) < d(2,6) = d;, dg = d(7,8) < d(6,8) < d(5,8) < d(4,8) = d;. Now
D428 =2 A682, /482 = £628, £528 = £582, and hence £526 = Z485. In
this case A526 = A584, and d(4,5) = d(5, 6). It follows that 28|37[|46 and
15 = 146 = 137 = 128. By Lemma 5 we know that d; < d(4,6) < ds.
Take d(4,6) = d3, then the five points 1, 2, 4, 6, 8 lie on a circle and
d(2,8) = d, this contradicts the fact d(2,8) = dz. So d(4,6) = d4, and
hence d(4,5) = d(5,6) = ds, by Lemma 5 we know that d4 < d(3,5) < ds.
Take d(3,5) = d4, then d(3,4) = ds and A345 = A456, this contradicts
the fact that £345 # £456. So d(3,5) = d(5,7) = ds, and hence d(3,6) =
d(4,7) = d3. Now we conclude that points 1, 2, 3, 5 lie on a circle, points
1, 3, 5, 8 lie on a circle, points 1, 2, 5, 7 lie on a circle, points 2, 4, 7, 8 lie
on a circle, points 2, 4, 6, 8 lie on a circle, clearly at last all points of Xp
lie on the circle, this contradicts the fact d(1,4) = d(1,5) = d(1,6) = d;.

Suppose d(3,4) = d(6,7) = d4. By Lemma 5, dg = d(3,4) < d(3,5) <
d(3,6) < d(3,7) = dy, d3 = d(3,5) < d(2,5) < d(1,5) = d;, dg = d(6,7) <
d(5,7) < d(4,7) < d(3,7) = dy, d3 = d(5,7) < d(5,8) < d(1,5) = d,,
ds = d(3,4) < d(2,4) < d(2,5) = da, d4 = d(6,7) < d(6,8) < d(5,8) = da.
Now we conclude that points 1, 2, 3, 5 lie on a circle, points 1, 5, 7, 8 lie
on a circle, and hence 15/||23||78. Combining this with 28|37, conclude that
dy = d(2,8) = d(3,7) = d, a contradiction.

Suppose d(2, 3) = d(7,8) = ds and d(3,4) = d(6,7) = d5. At first assume
d(5,6) = d(4,5) = d4. Then d4 = d(4,5) < d(3,5) < d(2,5) < d(1,5) = d;
and d4 = d(5,6) < d(5,7) < d(5,8) < d(1,5) = d;, and obtain 23||15||78.
Combining this with 28|37, we can see that d; = d(2,8) = d(3,7) = di,
a contradiction. Secondly assume d(5,6) = d(4,5) = ds. Then £345 =
£567 < £456, and it must have d(3,5) = d(5,7) = d4, d(4,6) = d3 and
d(2,5) = d(5,8) = d(3,6) = d(1,3) = d2. Until now all points of Xp lie
on the circle, a contradiction. At last we may assume d(4,5) = ds and
d(5,6) = dy. Then dy = d(5,6) < d(5,7) < d(5,8) < d(1,5) = d; and
dq = d(5,6) < d(4,6) < d(3,6) < d(2,6) = d,, all points of Xp lie on the
circle, a contradiction.
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Part II: d(1,2) = d3 and d(1, 8) < ds.

By Lemma 5, d3 = d(1,2) < d(2,8) < d(2,7) = dy, d3 = d(1,2) <
d(1,3) < d(1,4) = d,.

Suppose d(5,6) = ds. By Lemma 5, dy = d(5,6) < d(4,6) < d(3,6) <
d(2,6) = dy, dg = d(5,6) < d(5,7) < d(5,8) < d(1,5) =d1, d3 = d(5,7) <
d(4,7) < d(8,7) = dy, d(3,5) < ds, d(2,4) < ds3. Since d(5,7) = d(4,6) =
d3, clearly it must have d(4,5) # d(6,7). Now points 1, 2, 4, 6 lie on a
circle, points 2, 3, 6, 8 lie on a circle, points 1, 3, 5, 8 lie on a circle, points
1, 2, 5, 7 lie on a circle, points 1, 3, 4, 7 lie on a circle, points 2, 4, 7, 8 lie
on a circle. If d(2,4) = ds, then d(2,4) < d(2,5) = d; and points 2, 4, 5, 7
lie on a circle, and hence all points of Xp lie on the circle, a contradiction.
So d(2,4) = d4, then d3 < d(2,5) < da. We can prove that d(2,5) = da,
since otherwise d(2,5) = d3 and points 2, 4, 5, 6 lie on a circle, combining
this with the former results we know that all points of Xp lie on the circle,
a contradiction. Similarly d(7,8) = ds, since otherwise d(7,8) = ds and
points 2, 3, 7, 8 lie on a circle, combining this with the former results
we know that all points of Xp lie on the circle, a contradiction. Since
d(7,8) = d4, we know that d(6,8) = d3 and points 2, 4, 7, 8 lie on a circle
with d2 + d7 = d}. When d(3,5) = d4, d(4,5) = ds, points 1, 3, 5, 8 lie
on a circle with d(1,8) = dy4 since d3 + d% = d?. Then d(6,7) = dy, since
otherwise d(6,7) = ds, A456 = AT65 and £456 = £765, this contradicts
the fact Z456 > £765. Now d(1,7) = d(6,8) = d(5,7) = d3, and points
1, 5, 6, 7, 8 lie on a circle, and hence all points of Xp lie on the circle, a
contradiction. When d(3,5) = d3, points 1, 2, 3, 5 lie on a circle, finally all
points of Xp lie on the circle, a contradiction. Therefore d(5,6) = ds.

Suppose d(4,5) = d4. By Lemma 5, dy = d(4,5) < d(4,6) < d(4,7) <
d(4,8) = dy, dy = d(4,5) < d(3,5) < d(2,5) < d(1,5) = dy, d3 = d(3,5) <
d(3,6) < d(3,7) = d,, dy < d(5,7) < d3. Now points 2, 4, 7, 8 lie on
a circle, points 1, 3, 4, 7 lie on a circle, points 1, 2, 3, 5 lie on a circle,
points 1, 2, 4, 6 lie on a circle. If d(3,4) = ds, then A345 = A654 and
/345 = /654, this contradicts the fact £345 = £143 + £145 = /143 +
£154 < £154 4+ £156 = £654, a contradiction. So d(3,4) = d4, by Lemma
5, dg = d(3,4) < d(2,4) < d(2,5) = d. By the same reason, d(2,3) = d,.
Now points 2, 3, 4, 5 lie on a circle, and hence all points of Xp lie on the
circle, a contradiction. Therefore d(4, 5) = ds.

Suppose d(6,7) = d4. By Lemma 5, dy = d(6,7) < d(5,7) < d(4,7) <
d(3,7) = dy, d3 = d(5,7) < d(5,8) < d(1,5) = dy, dg = d(6,7) < d(6,8) <
d(5,8) = da. Now we can see that points 1, 2, 5, 7 lie on a circle, points 1,
3, 5, 8 lie on a circle, points 1, 3, 4, 7 lie on a circle, points 2, 4, 7, 8 lie
on a circle. If d(3,4) = dg4, dg = d(3,4) < d(3,5) < d(3,6) < d(3,7) = d;
and points 3, 4, 6, 7 lie on a circle, points 3, 5, 6, 8 lie on a circle, finally
all points of Xp lie on the circle, a contradiction. So d(3,4) = ds. Clearly
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dy = d(3,5) < d(4,6) = ds, since £345 < £456 and d(3,4) = d(4,5) =
d(5,6) = ds. Now by Lemma 5, d3 = d(4,6) < d(3,6) = d3, points 2, 3, 6,
8 lie on a circle. When d(2,3) = d4, points 2, 3, 6, 7 lie on a circle, finally
all points of Xp lie on the circle, a contradiction. So d(2,3) = ds. By the
same reason, d(7,8) = d4. Denote Z415 = a, £627 = §, Z416 = v, then
a<f<yandy=2a, L678 =m—fB—a, £567 = L(n-B)+3(m—a)—7 =
(r — B —a)+ 1(B —3a) < £678, and hence d3 = d(5,7) < d(6,8) = d3, a
contradiction. Therefore d(6,7) = ds.

Suppose d(3,4) = d4. By Lemma 5, dy = d(3,4) < d(3,5) < d(3,6) <
d(3,7) = dy, dg = d(3,4) < d(2,4) < d(2,5) < d(1,5) = d1, and we can
see that points 1, 2, 3, 5 lie on a circle, points 2, 3, 6, 8 lie on a circle.
Since d(4,5) = d(5,6) = d(6,7) = ds and £456 > /765, we can see that
dg = d(5,7) < d(4,6) = d3 < d(4,7) = da, and hence d(2,5) = d(1,7) = ds.
Then until now we can find that points 1, 3, 6, 7 lie on a circle, points 1,
3, 4, 7 lie on a circle, points 1, 2, 5, 7 lie on a circle, and conclude that all
points of Xp lie on the circle, a contradiction. Therefore d(3,4) = ds.

Suppose d(2,3) = d4. By Lemma 5, dy = d(2,3) < d(2,4) < d(2,5) <
d(2,6) = d,. Since d(3,4) = d(4,5) = d(5, 6) = d(6, 7) = d5, we can see that
dy = d(3,5) = d(5,7) < d(4,6) = d3 < d(4,7) = d(3,6) = d2, and hence
d(1,3) = d(5,8) = d(2,5) = d(1,7) = d(3,6) = d2. Now we conclude that
points 1, 2, 4, 6 lie on a circle, points 2, 3, 6, 8 lie on a circle, points 1, 2,
5, 7 lie on a circle. If d(7,8) = ds, then clearly points 3, 4, 5, 6, 7, 8 lie
on a circle, finally we can conclude that all points of Xp lie on the circle,
a contradiction. If d(7,8) = dg4, then d(7,8) < d(6,8) < d(5,8) = dz and
clearly points 2, 3, 7, 8 lie on a circle, points 2, 4, 6, 8 lie on a circle, finally
we can conclude that all points of Xp lie on the circle, a contradiction.

From now we know it must have d(2,3) = d(3,4) = d(4,5) = d(5,6) =
d(6,7) = ds. It is easy to see that d(3,5) = d(2,4) = d(5,7) = d4 and
d(4,6) = d3, and hence d(1,3) = d(3,6) = d(4,7) = d(2,5) = d(5,8) =
d(1,7) = da. Now we can conclude that points 1, 3, 4, 7 lie on a circle,
points 1, 2, 4, 6 lie on a circle, points 1, 3, 5, 8 lie on a circle, points 1, 3,
6, 7 lie on a circle, points 2, 3, 4, 5 lie on a circle, clearly at last all points
of Xp lie on the circle, a contradiction.

Case 2.2: d(2,7) = D, d(3,8) # D (d(2,7) # D, d(3,8) = D, the
proof is similar). Clearly for point 3, d(3,7) = D and d(3,6) # D. If
d(4,7) = D, then DG({1,2,4,6,7}) = Cs. When {1,2,4,6,7} = Rs, clearly
d(2,3) = d(3,4), d(4,5) = d(5,6), d(7,8) = d(8,1), and hence Rs|J{3,5,8}
has at least 6 distances, since d(3,4) < d(3,5) < d(2,4) < d(3,6) < d(3,8) <
d(1,4), a contradiction. When {1,2,4,6,7} # Rs, the set {1,2,4,6,7} has
at least 4 distances, and Xp has at least 6 distances, a contradiction. If
d(4,7) # D, we can obtain a contradiction to 5-distance too.

Case 2.3: d(2,7) # D, d(3,8) # D. If d(3,7) # D, then we know X
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contains a subset Y € Eg(4) by removing three points 1, 4, 6 from Xp with
the diameter D been eliminated. So assume d(3,7) = D. Then by lemma
5d(3,4) < d3, d(6,7) < d3, and d(z,z + 1) < d4 for the other z € Xp, The
proof is similar and more easier than the proof of Case 2.1, we can obtain
a contradiction to 5-distance. ]

Lemma 8. Let X be a 11-point 5-distance set and m = |Xp| = 8. Then
X contains a subset Y € {Ryo — 2, Ry; — 3} J Es(4).

Proof. Let Xp ={1,2,3,4,5,6, 7,8}, 8 points are consecutive with counter-
clockwise order. If DG(Xp) contains a cycle, by Lemma 3, the cycle is C3
or Cy or C7. Then the remaining points must connect with the points on
the cycle, thus there exists a point p such that d(p) > 3, a contradiction
to Lemma 7. So DG(Xp) does not contain a cycle. By Lemma 7, since
DG(Xp) has no isolated vertex, X contains a subset Y € Eg(4) or DG(Xp)
may be Ps, P(;U.Pz, P5 UP3, 2P4, P4 U2P2, 2P3 UP2 or 4P2. Clea.rly XD
is a 4-distance or 5-distance set since g(3) = 7 [1]. If Xp is a 4-distance set,
by lemma 1, Xp = Rg, Rg — 1 € Eg(4). So assume Xp is a 5-distance set
with intervertex distances D = d; > dp > d3 > d4 > ds.

%_%E % R,

e f g
Figure 2:

Assume DG(Xp) = 4P;. Denote by D = d(4,8) = d(3,7) = d(2,6) =
d(1,5) = d,. By Lemma 5 d(z,z+1) < dg4 for every z € Xp. If all the edges
of convex 8-point set Xp have the same length, then the 8 points of Xp
lie on a circle and Xp must be Rg, but Rg is a 4-distance set. So it must
exist two consecutive edges which have distinct distances, without loss of
generality we may assume d(1,2) = ds and d(1,8) = d4. Then by Lemma 5,
ds = d(1,8) < d(2,8) < d(3,8) < d(4,8) = d,, and dg = d(1,8) < d(1,7) <
d(1,6) < d(1,5) = dy, and d3 = d(1,7) < d(2,7) = ds < d(3,7) = d;. Now
we prove that Xp = R;o — 2 (the 2 points absented has D-length).

Suppose d(2,3) = d4. Then by Lemma 5, dy = d(2,3) < d(2,4) <
d(2,5) < d(2,6) = dy, dy = d(2,3) < d(1,3) < d(3,8) < d(3,7) = dy,
ds = d(1,3) < d(1,4) < d(1,5) = d,. At first assume d(7,8) = d;. Then
points 1, 2, 3, 7, 8 lie on a circle, but £137 # Z173 which contradicts
the fact d(1,3) = d(1,7) = d3. From this case we can conclude that there
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exists no four consecutive edges of Xp which have lengths dy —dy —ds —dj.
Secondly assume d(7,8) = ds. We know d(3,4) = ds, since otherwise it
exists four consecutive edges of Xp which have lengths dy — dqy — d5 — dy.
Now we conclude that points 1, 2, 3, 8 lie on a circle, points 1, 2, 7, 8 lie on
a circle, points 3, 4, 7, 8 lie on a circle, and hence points 1, 2, 3, 4, 7, 8 lie
on the circle. But £184 # £348, which contradicts d(3,8) = d(1,4) = ds.
From this case we can conclude that there exists no four consecutive edges
of Xp which have lengths ds — d4 — ds — d4. Therefore d(2,3) = ds.

Suppose d(7,8) = d4. Recall that d(1,2) = d(2,3) = ds and d(1,8) = d,.
Then by Lemma 5, dy = d(7,8) < d(6,8) < d(5,8) < d(4,8) = dy, dy =
d(7,8) < d(1,7) < d(2,7) = dy. At first assume d(6,7) = dg. Then it must
have d(5,6) = ds, since otherwise it exists four consecutive edges of Xp
which have lengths d4 — d4 — ds — ds. Now we conclude that points 1, 2, 6, 7
lie on a circle, points 2, 3, 6, 7 lie on a circle, points 1, 2, 5, 6 lie on a circle,
and hence points 1, 2, 3, 5, 6, 7 lie on the circle. Since A167 = A832, we can
prove that point 8 is also on the circle by the elementary fact (4) in [3]. But
£862 # £731, which contradicts the fact d(2,8) = d(1,7) = ds. Secondly
assume d(6,7) = dy. Then by Lemma 5, dg = d(6,7) < d(5,7) < d(4,7) <
d(3,7) = d;. Then points 1, 6, 7, 8 lie on a circle, points 2, 5, 7, 8 lie on
a circle, points 3, 4, 7, 8 lie on a circle. We can see that A185 & A874,
A187 = A876, £581 + £785 = £781 = /876 = /874 + £674, that is,
Z587 = £476, A587 = A476, d3 = d(5,7) = d(4,6). By the same reason
d3 = d(5,7) = d(1,3). Then points 1, 3, 4, 6 lie on a circle, points 1, 3,
6, 8 lie on a circle, points 1, 4, 5, 8 lie on a circle, finally all points lie on
the circle. But £862 < /826, this contradicts d3 = d(2,8) = d(6, 8), which
imply /862 = £826. From this case we can conclude that there exists no
four consecutive edges of Xp which have lengths dy — ds — ds — ds. Hence
d(7,8) = ds. Then it must have d(6,7) = ds, since otherwise it exists four
consecutive edges of Xp which have lengths ds — dg — dy — ds.

Until now we know that d(1,2) = d(2,3) = d(7,8) = d(6,7) = ds and
d(1,8) = d4, and points 1, 2, 3, 6, 7, 8 lie on a circle. In the following we
prove that d(3,4) = d(5,6) = ds and d(4,5) = d;. When d(3,4) = d(4,5) =
d(5,6) = ds, clearly all points of Xp lie on the circle. Assume Z172 = ¢,
£148 = B. Since £136 > £316, we know that d; = d(1,6) > d(3,6) = ds,
and 3a = £316 = Z137 = a + B, hence 8 = 2a. But in this case £247 =
B +2a = da = £286, and then dp = d(2,7) = d(2,6) = d;, a contradiction.
When at least two of d(3, 4),d(4, 5),d(5,6) are dy, it exists four consecutive
edges of Xp which have lengths dy —dgy —ds —ds or dg —ds —dg — ds, a
contradiction. So in the following we only need to consider the case that it
has only one of d(3,4),d(4,5),d(5,6) which is dy. When d(3,4) = d4 (for
d(5,6) = d4, the proof is similar), clearly all points of Xp lie on the circle,
and £418 < £682, and hence d; = d(4,8) < d(2,6) = d;, a contradiction.
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At last it remains to consider the case d(3,4) = d(5,6) = ds and d(4,5) = d,.

By Lemma 5, dy = d(4, 5) < d(3,5) < d(2,5) < d(1,5) =dy, dq =
d(4,5) < d(4,6) < d(4,7) < d(4,8) = dy, d3 = d(4,6) < d(3,6) < d(2, 6) =
dy. Clearly all points lie on the circle. And we can see that d(1,3) =
d(2,4) = d(5,7) = d(6,8) = d4, d(1,4) = d(5,8) = d3, and the line segments
(1,5], (2,6], [3,7), [4,8] are four diameters of the circle, since quadrangles
1256 and 3478 are rectangles. Until now very beautifully we obtain the
only convex 8-point 5-distance configuration with DG(Xp) = 4P;, that is,
R0 — 2 as shown in Figure 2a.

If DG(Xp) = Ps, Ps\UP2, Ps\JPs, 2P, P,|J2P; or 2P;|J P;, then
similarly we can prove that Xp = R, — 3 as shown in Figure 2b-2g. 0O

Lemma 9. [6] Let G = DG(X) be the diameter graph of X with |X| = n.
If G # C,, then we have a(G) > [n/2].

Lemma 10. Let X be a 11-point 5-distance set. Then X contains a subset
Ye {R7,Rg, Ryo—-2,Ry; - 3} UE8(4).

Proof. Let X be the 11-point 5-distance set. If m = |Xp| > 9, then by
Lemma 2 and Lemma 1, the subset Xp C X is a convex set, and X contains
asubset Y € | J,<5 Mo(k) = {Rg, R10—1, R11—2}. If m = 8, then by Lemma
8, X contains a'subset Y € {Ryo — 2, R11 — 3} JEs(4). If m = 7, and if
DG(Xp) = Cy, then we can prove that Xp = Ry; and if DG(Xp) # Cy,
then by Lemma 9, a(DG(Xp)) > 4, X contains a subset Y € E3(4) by
removing three points from Xp with the diameter D been eliminated. If
m < 6, then 11—-[2] > 8, by Lemma 2, X contains a subset Y € Eg(4). O

3 Classification of 11-point 5-distance sets

Lemma 11. [1] g(4) = 9 and every 9-point 4-distance set in the plane is
isomorphic to Ry or one of the three configurations given in Figure 8a-3c.

&, K, R, P

Figure 3: 9-point 4-distance sets, and a special 8-point 4-distance set

Lemma 12. [6] Every 8-point 4-distance set in the plane is isomorphic to
Ry, R}, an 8-point subset of a 9-point 4{-distance set or figure 3d.

Theorem 13. There are four 11-point 5-distance sets in the plane to within
isomorphism, that are Ry; and the three configurations given in Figure 4.
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&b & B

Figure 4: 11-point 5-distance sets

Proof. Let X be the 11-point 5-distance set. By Lemma 10, X contains
a subset Y € {R7, Ry, Ryo — 2, R1; — 3} U Es(4). If X contains a subset
Y € {R7, Ry, Ryp — 2}, then it is clear that they can not be extended to
a 11-point 5-distance set. If X contains a subset R;; ~ 3, then it is clear
that they can be extended to a 11-point 5-distance set R;;. Now assume X
contains a subset Y € Eg(4). From Lemma 12 and Lemma 11 we know all
the configurations of Eg(4) as considered in the following. At first assume
X contains a subset Y € { R}, Rg, Ry —1}, then it is clear that they can not
be extended to 11-point 5-distance sets. Secondly assume X contains an 8-
point subset of a 9-point 4-distance set of Figure 3c. The proof is similar as
in [6], it can not be extended to a 11-point 5-distance set. Thirdly assume
X contains an 8-point subset of a 9-point 4-distance set of Figure 3a, or
Figure 3b. Clearly X C La = {a(1,0) +b(}, %) : a,b € Z} and X is one
of the three 11-point 5-distance sets as shown in Figure 4. At last, assume
X contains the special 8-point 4-distance set of Figure 3d. Also we can
prove that it can not be extended to a 11-point 5-distance set. The proof

is complete. (]
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