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ABSTRACT. By the classical method for obtaining the values of the
Riemann zeta-function at even positive integral arguments, we shall
give some functional equational proof of some interesting identities
and recurrence relations related to the generalized higher-order Eu-
ler and Bernoulli numbers attached to a Dirichlet character x with
odd conductor d, and shall show an identity between generalized Eu-
ler numbers and generalized Bernoulli numbers. Finally, we remark
that any weighted short-interval character sums can be expressed as
a linear combination of Dirichlet L-function values at positive inte-
gral arguments, via generalized Bernoulli (or Euler) numbers.
Keywords: generalized higher-order Euler numbers; generalized higher-
order Bernoulli numbers; weighted short-interval character sums; Dirich-
let L-functions;
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1. INTRODUCTION

Let d be a fixed positive odd integer and let x be the Dirichlet’s character
with conductor d. For a real or complex parameter o, the generalized

higher-order Euler numbers E$®) and polynomials E$)(z) attached to x
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where [t| < %, and E',(.f;c = En,x,E,(&(a:) = Ep x(z) signify the general-

ized Euler numbers and polynomials (cf. [1]). Similarly, ,(,“,% and B,(f,';(a:)
denote the generalized higher-order Bernoulli numbers and polynomials at-
tached to x, by
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Then BSYy = Bn,y, BS(z) = Bnx(z) be the generalized Bernoulli num-
bers and polynomials (cf.[2], [14]). In particular, if x = xo (d = 1) is the
trivial character, then

E{(3) =27"E, BS, (=) = B (a),
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where B, EX®(z), B, B (z), (n > 0) be the higher-order Euler num-
bers and polynomials, higher-order Bernoulli number and polynomials, re-
spectively. Clearly, by (1.1) and (1.2) and the classical method for compar-
ing the coefficients of their generating functions, we have
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and (also cf. [1, (4)] and [10, (2.12)])
Ey x(nd) + Ey x = 2T} ,(nd), (1.3)

Bi,x(nd) — Brx = kTj_; x(nd - 1), (1.4)

where Ty (n) = ':z_%l(—l)’x(l)lk and Ty (n) = zzn:l x(0)ik.

The main intergsting of the generalized Bernoulli numbers is that they
give the values at non-positive integers of Dirichlet L-functions L(s, x) =
o0

21 x(n)n=* (o > 1) attached to x (e.g. cf.[15, (2)]):

L1—nx) = 22X (n 3 1), (1.5)

Various identities for the higher-order generalized resp. twisted Euler
and Bernoulli numbers and polynomials have been studied by T. Kim ([1}-
(13]), Kurt, G. Liu and several authors (see [16]-[20]), a great deal of in-
teresting and valuable results have been developed by analytic method,
algebraic method and elementary method et al. For instance, in [1]—[10],
T. Kim et al gave some symmetry properties for the generalized higher-
order Euler resp. Bernoulli polynomials by the classical analytic method
resp. the symmetry properties of the p-adic invariant integral on Z,. These
and many other interesting results on generalized higher-order Euler and
Bernoulli numbers and polynomials, such as g-Euler, g-bernoulli polynomi-
als, the higher-order generalized twisted Euler and Bernoulli numbers and
polynomials attached to a Dirichlet character x, readers may refer to T.
Kim et al’s work [11]—[22].

The main purpose of this paper, is to prove some identities for the gen-
eralized higher-order Euler and Bernoulli numbers by the classical method
for obtaining the values of the Riemann zeta-function at even positive inte-
gral arguments by comparing the Laurent coefficients of the partial fraction
expansion for the hyperbolic cotangent function cothz (or the cotangent
function cotz), which is a form of the Lambert series (e.g. cf. [19, Ex-
ercise5.4]). It turns out that some interesting recurrence relationship and
multiplication theorem for the generalized higher-order Euler and Bernoulli
numbers attached to x, and that an identity between generalized Euler and

3 . "+l —
Bernoulli numbers, i.e. E,, =—-2"X@8=1p ., ford>1.

2. THE IDENTITIES OF THE GENERALIZED HIGHER-ORDER EULER AND
BERNOULLI NUMBERS

2.1. Identities related to the generalized higher-order Euler Num-
bers. Let o = [ denotes any positive integer, we shall first consider the
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following functional equation
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We start from the definition of the higher-order Euler numbers E&:

t" t2n
(e‘ + e“) Z: Ea) Z g'z (2n)! (2.2)

and an identity derived by Liu[20, (1.25)]

(l) Zp(k n)lk, (2.3)

k=1

where p(k,n) defined by (2.9) (below) and s(m, k), T'(n, m) denote the Stir-
ling numbers of the first kind, the central factorial numbers which are de-
fined as following

tt—-1){t—-2)-(t-m+1)= kis(m, k)tk, (2.4)
where m > 0 (e.g. cf.[21]) and )

(e +et=-2)" (2m)l§nr(n, m) (2 ), (2.5)
From the obvious identity
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where the last term follows from Ez,,_,_1 = 0, we have conclude the RHS of
(2.1) is

Z Z 2m ( ) Z 'nll-m*-{nl!Tm'X(d) or Ty x(d)
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where > denotes the summation over all non-negative integer
oo €N
n?-lf--~~+'::le=m
ny,---,ng such that ny + .-+ n; =

Substituting (2.3) and comparing the coefficients of fl—'; on the both sides
of (2.1) (which RHS is (2.8)), we obtain the following theorem.

Theorem 2.1. By the notations above, we have

>~ (n m!
E=3 (1) T T Tuad)

m=0 ny, ,mEN
ny+---+ny=m

[n-m

a\" ™ n—-m
it nn- —-m—2k ,k)l
x (2) k; ( )( ) ;p(a
where
k —m
p5,k) = (17 3 a(m, )2 i, ) (29)
m=j )

Corollary 2.2. By the notations above, we have the recurrence relationship
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Proof. The proof follows easily from rewriting (2.1) as
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by (2.6) and (2.7) with ! = 1, comparing the coefficients of & &7 on both sides,
we complete the proof, O

2.2. Identities related to the generalized higher-order Bernoulli
Numbers. Clearly, by the same argument as we stated in §2.1, we also
have some identities related to the generalized higher-order Bernoulli Num-
bers. Recently, it is Liu [20] who applied the classical method for comparing

the coefficients of the generating function (;-fﬁ-) obtained ;
B{® =" g(k,n)a, (2.10)

where o(k,n) defined by (2.14) and b(n, k) denote the associated Stirling
numbers defined by

k — tm
(f=1-8) =k ) b(m, k)—, (2.11)
m=2k
and s(j, k) is the Stirling numbers of the first kind (see Eq.(2.4)).
For an positive integer a = I/, we may rewrite the functional equation
(1.2) as

i
ZB'(ll)x% =d-! (zx(a)eat) (edt ) , (2.12)

n=0
by the Laurent expansion
Z x(a)e®t = Z T ,x(d) (2.13)
a=1 n=0

and (2.10) we have
Theorem 2.3. By the notations above, we have
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If we appeal to another representation for higher-order Bernoulli num-
bers

= ! B, ..-B
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for n > k. Similarly, we have the following recurrence relation

Theorem 2.4. By the notations above, we have
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2.3. Identities related to the generalized higher-order Euler-Bernoulli
Numbers. Let m,! be fixed positive integers, and K, K be odd integers,
we shall consider the following functional equation

d m d-1 {
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Let M,(t) = 2( 1)*x(n)e™ and Ly(t) = 2 x(n)e™ attached to a

Dirichlet character x with odd conductor d, then the series convergence
absolutely for R(t) < 0. By the identity

Kad~1
Z (=1)*x(a)e®* = (1 + "2\ M, (t), Kod = 1 (mod 2) (2.17)

a=0

we have the Laurent expansion
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therefore (2.16) reads
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Comparing the coefficients of % of (2.18) and (2.21), we obtain the follow-
ing Theorem.
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Theorem 2.5. By the notations above, we have
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Corollary 2.6. By the notations above, we have
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Remark 2.7. We remark that by the parity argument,
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where we omit n = 0 since x(0) = x(d) = 0 for d > 1. By the obvious
identity
d—1
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and (2.19), recalling the generating function (1.1) and (1.2), we have the
Laurent expansion
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3. ON THE WEIGHTED SHORT-INTERVAL CHARACTER SUMS

For a Dirichlet character x modulo d, and N be a multiple of d, say
N = ud, then L, (t) denote the Lambert series associated to x:

Ly(-t)= ix(n)e'"', Ret >0, (3.1)
n=1

which corresponds to the hyperbolic cotangent function cothz, and let
be a positive integer prime to N. The essential case is u < r, which we so
assume. Yamamoto [25] defined the weighted short-interval sums associated
to x as
!
Sin() = Y x@f (3) (3.2)
1<ag&

and the conjugate character sum T, ;(x):

T = 3 x(@)] (3)

a=0

for a character x modulo d > 1, where f is the conjugate function (cf. [25,

p.285)) of f:
¢, 0<z<a
f(a:)—{ 0, a<z<l.

In the notation of Yamamoto [25, p. 280}, say, Syn(x) = Sz = S 7R

Comparing the coefficients of 5";;—1 on both sides of (2.19) and using (1.2)
with a = 1, they deduced (15, (6), p. 276]

(54 D)(rd)“SE N () = =Brprnr™ + Xm) S F(=N)Besraw(N). (33)
P2

where the sum is over all Dirichlet characters ¢ modulo r and ¢ being
Euler o-function. Therefore by Yamamoto’s results|25] or (3.3) or [26], we
conclude:

1. As has been completely demonstrated in this note, by applying the
functional equations of Ty x(n) resp. T ,(n), any weighted short interval
character sum may be expressed as a linear combination of L(1, x)’s and
inevitably in terms of the class number

h(d) = w—z—‘{rmlx(l,x-;al), (3.4)

via generalized Euler resp. Bernoulli numbers, where h(d), x_jq(a) =
(T%T) , w denote the class number of the imaginary quadratic field Q(\/E)

526



with discriminant d < 0, the corresponding Kronecker character, the num-
ber of roots of unity in Q(+/d), respectively. Berndt [23, pp.413-445] con-
tains a number of useful formulas, but of course is not exhaustive ( cf.
formulas in [22, Lemmal.3-1.4]). But now that we have Yamamoto’s colos-
sal theory[25), we are supposed to use it.

2. We notice that in (22, Lemmal.3-1.4]) or [26] we consider weighted
short interval character sums with polynomial weight, and a fortiors, of
Bernoulli polynomial weight, and the final formulas contain Bernoulli num-
bers and class numbers of imaginary quadratic fields (cf. [22], for p =
1 (mod 4), x-4Xp is odd, and for p = 3 (mod 4), x—, is odd ) as in
Berndt [23, pp. 413-445]. But Yamamoto also treats the case of Clausen
function weight, or what is the same thing, log sin weight. Therefore, it is
very intriguing to pursue research on class numbers of real quadratic fields
as in Chowla [24].

3. Considering Euler number congruences to the higher prime power
modulus is important from p-adic theoretic point of view. As the example
of Shiratani-Yokoyama (27), some relations on Bernoulli or Euler numbers
can be deduced by p-adic argument.
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