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Abstract. A nowhere-zero k-tension on a graph G is a mapping from the edges
of G to the set {£1,+£2,...,%(k — 1)} C Z such that, in any fixed orientation
of G, for each circuit C the sum of the labels over the edges of C oriented in
one direction equals the sum of values of the edges of C oriented oppositely. We
show that the existence of an integral tension polynomial that counts nowhere-
zero k-tension on a graph, due to Kochol, is & consequence of a general theory of
inside-out polytopes. The same holds for tensions on signed graphs. We develop
these theories, as well as the related counting theory of nowhere-zero tensions on
signed graph with values in an abelian group of odd order. Our results are of
two kinds: polynomiality or quasipolynomiality of the tension counting functions,
and reciprocity laws that interpret the evaluations of the tension polynomials at
negative integers in terms of the combinatorics of the graph.
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1. Introduction

The aim of this paper is to study chromatic polynomials of graphs and
signed graphs from a new point of view. Chromatic polynomials are well-
known functions that have been studied in framework of classical com-
binatorics and graph theory. For surveys see, e.g., Aigner (1], Biggs [4],
Brylawski and Oxley [6], Jaeger [12], Read and Tutte [17], Rota [18],
Tutte [19, 20, 21], Welsh [23] and those for singed graphs see, Zaslavsky
[25, 26, 27]. We show that the existence of an integral tension polynomial
that counts nowhere-zero k-tensions on a graph, due to Kochol, is a con-
sequence of a general theory of inside-out polytopes. The same holds for
tensions on signed graphs. We develop these theories, as well as the related
counting theory of nowhere-zero tensions on signed graph with values in an
abelian group of odd order.
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Graph coloring problems can be expressed in framework of potentials
and tensions. A nice introduction to this approach is in Berge [3]. Let
(G,€) be a digraph, and let (C, ;) be a directed circuit of G. We define a
coupling [e, e ] : E(G) — {-1,0,1} as

1, if e(z) = e.(z),z € C;
[e,ed)(z) = { -1, if &(z) # ec(z),z € C; (1.1)
0, ifz¢C.

Let I’ be an abelian group. A nowhere-zero tension of (G, €) with values
in T is a function f: E(G) — T such that for any directed circuit (C,e.),

Y leecl(@)f(z) =0, (1.2)

zeC

and which never takes the values 0. (In a certain sense, described below, f
is independent of the chosen orientation and the structure of abelian group
T.) A nowhere-zero k-tension is an integral tension (i.e., I' = Z) whose
absolute values are in [k — 1] := {1,2,...,k — 1}. Nowhere-zero tensions
are nicely studied in [7, 8, 13].

It has been known that the number of nowhere-zero tension with values
in a finite abelian group of order % is a polynomial function of k. Recently
Kochol [13] discovered the number of nowhere-zero k-tensions is also a poly-
nomial in k, although not the same polynomial. Recently, Chen also use the
group arrangement and Ehrhart theory to study the tension polynomial of
graphs [7]. Here we show that this fact is a consequence of a general theory
of counting lattice points in inside-out polytopes. Furthermore, we extend
Kochol's theorem in two ways: by a reciprocity law that combinatorially
interprets negative arguments, and to signed graphs (in which each edge is
positive or negative), where the polynomial becomes a quasipolynomial of
period two: that is, a pair of polynomials, one for odd value of k and the
other for even k; and we partially extend to signed graphs Tutte’s concept
of reciprocity in lattice-point counting leading us to a geometric interpreta-
tion of the number of acyclic orientations that are compatible with a given
k-tension.

Nowhere-zero I'- and k-tensions in a planar graph correspond to nowhere-
zero I and k-flows in the dual graph, respectively. Also the (integral) ten-
sion polynomials have their dual counterparts, (integral) flow polynomials,
this notion was introduced in [14] and in [2] it was presented in framework
of a more general setting.

2. The method of polytope, Ehrhart theory and matrix matroid

For the whole exposition is self-contained, we use the basic theory from
Beck and Zaslavsky’s (see [2, Section 2]). The theory of inside-out polytope

48



was motivated by the problem of counting the integral points of a rational
convez polytope (the convex hull of finitely many rational points in R9)
that do not lie in any of the members of a particular rational hyperplane
arrangement. A (homogeneous, real) hyperplane arrangement is a finite
set of homogeneous hyperplanes in R (that is, hyperplanes that contain
the origin); it is rational, if each hyperplane has a rational normal vector.
Suppose we are given a rational convex polytope P spanning R? and a
rational hyperplane arrangement H. Then (P, H) is a rational inside-out
polytope. More generally, P and H may lie in a rational (and homogeneous)
subspace Z that is spanned by P. We consider inside-out theory essential
to understanding our results on integral tensions.

A region (more precisely, an open region) of H is a connected component
of R4\ |JH; its closure is a closed region. The arrangement induced by H
in a subspace S of R? is

HS:={HNS:HeH,H32S)}).
The intersection lattice of H is
L(H):={)S:SCH},

ordered by reverse inclusion [28]; its elements are flats of H. L is a geometric
lattice with 0 = @ = R% and 1 = 'H. (For matroids and geometric
lattices we refer to [1] or [16] .) The Mébious function of L is the function:
#: L x L — Z defined recursively by

0, if R £ S;
p(R,S):=¢ 1, fR=S,
- rev<s MR U), fR<S.

We outline the classical Ehrhart theory [10] of lattice-pint enumeration
in polytope. We have a rational convex polytope P that spans a subspace Z.
P° denotes the interior of P. The denominator of P is the least common
denominator of all the coordinates of vertices of P. We denote by volP
the volume of P, normalized with respect to Z N Z¢; that is, we take
the volume of a fundamental domain of the integer lattice in Z to be 1.
To explain this last, we note that Z NZ? is linearly equivalent to ZdmZ C
RYm Z. o fundamental domain is a domain in Z that corresponds to the unit
hyperplane [0, 1]4imZ ¢ R4mZ ynder some invertible linear transformation
that carries Z N Z¢ to ZdimZ,

A quasipolynomial is a function Q(t) = Zg ci(t)tt defined on Z with
coefficients c; that are periodic functions of t. Then Q is a polynomial Q;
on each residue class £ modulo some integer, called the period of @Q; these
polynomials are the constituents of Q.
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The subject of Ehrhart theory is the Ehrhart counting function
Ep(t) := #(tPNZ%)

and the open Ehrhart counting function Epo(t). Ehrhart theorem is that
Ep and Ep. are quasipolynomials with leading term (vol P)tdi™ P and with
periods that divide the denominator of P. It follows that one can define
both counting functions for negative integers; the Ehrhart-Macdonald Reci-
procity Theorem is that Epo(t) = (~1)3m P Ep(-1).

An open region of (P, H) is a nonempty intersection with P° of an open
region of H (thus it is full-dimensional in the span of P). A closed region of
(P,H) is the closure of an open region. A vertez of (P, H) is a vertex of any
such region. The denominator of (P,’H) is the least common denominator
of all coordinates of all vertices.

The fundamental counting functions associated with (P,H) are two
quasipolynomials: the Ehrhart quasipolynomial,

Epn(t):= ) mpn(a),

zet—12d

where the multiplicity mpy(z) of z € R? with respect to H and P is
defined through

the number of closed regions
of (P,’H) that contains z, if z € P,

0, ifz ¢ P,

mpn(z) =

and the open Ehrhart quasipolynomial,

Epyyo(t) = # (t-lzdﬂ [P°\ U H)]) .

We may think of (P,H)° as the set P°\(|JH), called the relative interior
of (P,’H).

Theorem 2.1. ([2]) If (P,H) is a closed, full dimensional, rational inside-
out polytope in Z C R?, then Epn(t) and E(pa)e(t) are quasipolynomials
in t, with period equal to a divisor of the denominator of (P,'H), with leading
term (vol P)t3™ P and with constant term Ep3(0) equals the number of
regions of (P,’H). Furthermore,

Eprye(t) = (-1)4™PEpy(-1). (2.1)

In particular, if (P,H) is integral then Epy and E(ps) are polyno-
mials. The proof, though more general (and arrived at independently), is
similar to Kochol’s proof of Theorem 3.1(a) in [14].
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Here we need the notion of transversality: H is called transverse to P
if every flat U € L(H) that intersects P also intersects P°, and P does not
lie in any of the hyperplanes of H.

Theorem 2.2 ([2]). If P and H are as in Theorem 2.1, then

Epne®) = >, w0,U)Epsru(t), (2.2)
Uel(H)

and if H is transverse to P,

Epn(t)= Y |u(0,U)|Epnu(t). (2.3)
UeL(H)

We shall want a general lemma about matroids of hyperplane arrange-
ments induced by coordinate arrangements. We start with the hyperplane
arrangement H,,,.consisting of the coordinate hyperplanes in F™ for some
field F, and we take any subspace S. Then S induces an arrangement 3,
in S.

Any homogeneous hyperplane arrangement H has a matroid M(H),
whose ground set is the set of hyperplanes and whole rank function is rk S =
codim ((}S) for § C H. This matroid is simply the linear dependence
matroid of the normal vectors of the hyperplanes. The column matroid of
a matrix A, M(A), is the matroid of linear dependence of columns; to keep
the notation correct we take the ground set to the set of indices of columns.
The chain-group matroid of a subspace S C F™ is the matroid N(S) on [m]
whose circuits are the minimal nonempty supports of vectors in S. Lat M
denotes the lattice of closed sets of a matroid. Thus Lat M(H) & L(H).

We refer in the following lemma to orientations of oriented matroids.

Lemma 2.3 ([2]). Let A be an n x m matriz with entries in a field F, let
M = {H. : e € [m]} be the arrangement of coordinate hyperplanes in F™,
and let U = Row A, the row space, and Z = Nul A, the null space.

(i) The mapping e = H. N U is a matroid isomorphism from M(A) to
M(HY). Also, e — H.N Z is a matroid isomorphism of N(Row A)
with M(HZ).

(ii) The mapping

F— Ey(F):={e€[m]: H. D F}
is the isomorphism of L(HE) with Lat M(A) induced by the first map-
ping in (i). The mapping

F s Ez(F):={e€[m]: H. 2 F}
is the isomorphism of L(H%) with Lat N(RowA) induced by the second
mapping in (i).
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(iii) If F is an ordered field, then the regions of HY, corresponding bijectively
to the the acyclic orientations of the oriented matroid of columns of A,
and those of HZ, corresponding bijectively to totally cyclic orientations.

3. Tensions on graphs

A tension on a graph G with values in an abelian group T, called a I'-
tension, is a function f : E(G) — I' which satisfies (1.2) for every circuit
C of G (so it is like a nowhere-zero tension, but the tension value zero is
allowed). This definition requires that the edges be oriented in a fixed way.
The orientation is arbitrary; it is an artifact of notation, and to overcome
this artificiality we define, for an oriented edge e, e~! to be the same edge
in the opposite orientation and f(e~!) := — f(e). With this law for tension,
the validity of Eq.(1.2) is independent of the choice of the orientation of G.

The number of nowhere-zero I-tensions on G is a polynomial in ||,
independent of the actual group. We shall write 7(G, t) for this polynomial
and call it the (strict) modular tension polynomial of G. (Usually 7(G,t)
is called just the “tension polynomial” but we need to distinguish it from
the other tension polynomials.) It is well known that 7(G, k) is the evalu-
ation (—1)"©)¢(G;1 — k,0) of the Tutte polynomial (in fact, the classical
chromatic polynomial) of G. (r(G) is the rank, |V'|—¢(G), of cycle matroid
M(G), where ¢(G) is the number of connected components.) A nowhere-
zero Zy-tension exists only if there is a nowhere-zero k-tension, a k-tension
being an integral-valued tension whose values all satisfy |f(e)| < k. These
properties in fact follows from the well known properties of the chromatic
polynomial. However, the actual number of nowhere-zero k-tension for
k > 0, which we write as 72(G, k), does not equal the number of nowhere-
zero Zg-tensions and indeed was never known to be a polynomial until the
recent work of Kochol [13]. Kochol employed standard Ehrhart theorem
combined with a special construction to proved it. We shall show that Ko-
chol’s result is a natural consequence of inside-out polytope theory and can
be extended to a reciprocity theorem that interprets 7z(G, k) at negative
arguments (also see Chen’s recent work in [7]).

Recall that a cut in a graph G is a partition {S,T} of a vertex set
V such that the removal of [S,T), the set of all edges between S and T,
disconnected the graph G. For a digraph (G, ¢), a cut [S,T] is said to be
directed relative to € if the edges of [S,T] have the same direction under &,
either all from S to T, or all from T to S. An orientation of G is acyclic if
it has no cycles and totally cyclic if every edge lies in a cycle. We call an
acyclic orientation ¢ and a tension f compatible if f > 0 when it expressed
in terms of 0. Taking the standpoint of the tension f, the nonzero edge
set supp z has a preferred orientation, the one in which f > 0 (we call this
o(f); note that it orients only supp z) and the zero edges are free to take
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up any orientation that makes G acyclic. An loop is an edge whose two
ends are the same vertex. There is no acyclic orientation if G has a loop.

The real cut space Z is defined in RE by Eq.(1.2). To this space Z we
associated the polytope and arrangement

P:=2Zn[-1,1)%, H := (HE)?,

where H is the arrangement of coordinate hyperplanes in RZ. A (k + 1)-
tension is then precisely a point € Z N Z¢ such that }ix € Pand a
nowhere-zero k-tension is just a point z € ZN2¢ such that zz € P\(UH).

Consequently,
7(G,k+1) = Ep(k) (3.1)

and
72(G, k) = E(ppgyo (k). (3:2)

We call 72(G, t) the integral tension polynomial of G and 7(G,t) the weak
integral tension polynomial.

Theorem 3.1. Let G be a graph with the real cut space Z.

(i) ([13])) 72(G, k) is a polynomial function of k for k =1,2,8,.... It has
leading term (vol P)k™(@) if G has no loop; otherwise it is identically
zero.

(ii) Purthermore, (—1)"C)ry(G, —k) for k > 0 equals the number of non-
negative (k 4 1)-tensions counted with multiplicity equal to the number
of acyclic orientations of G that are compatible to the tension.

(iii) In particular, the absolute of the constant term |rz(G,0)| counts the
number of acyclic orientations of G, which equals (—1)7(¢)7(G,-1).

(iv) Finally, the total number of k-tensions for k > 0, nowhere zero or not,
is a polynomial 7(G, k) satisfying 7(G, k) = (-1)"O7(G, 1-k), whose
leading term is the same as that of 72(G, k) and whose constant term
is (—1)"(G),

Proof. For (i) we apply Theorem 2.1 in Z. We call upon the total uni-
modularity of the matrix of the cycle equations (1.2) to deduce that P is
a convex hull of integer lattice points. Thus, E(p e is a polynomial, and
as we saw in (3.2), it equals 72(G, k).

Since Ep (k) counts the pair of (z,R) where z € ZNP and Ris a
closed region of H that contains z, parts (ii) follows if we show that the
regions of P corresponding to the acyclic orientations of G and a region
of H whose closure contains a chosen point z € Z N Z? corresponds to a
acyclic orientation that is compatible with £ was demonstrated by Green
and Zaslavsky in [11], based on the obvious bijection between orthants of
RE and the orientations of G. The second is then easily deduced.
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Thus the constant term is the number of acyclic orientations. The fact
that this equals ¢(G;2,0) is a theorem originally due to Las Vergnas [22]
and independently proved by Chen in [7, Theorem 1.2].

Part (iv) is standard Ehrhart theory, because a k-tension is simply
a point z € Z% such that $z € P°. That is, #(G;k) = Epe(k) =
(-1)"(©)Ep(—k) by Ehrhart reciprocity. The constant term of Ep(—k) is
1, the Euler characteristic of P. It is easy to see that Ep.(k) = Ep(k — 1)
for & > 0. Therefore,

#(G;k) = (=1)" O Ep(~k) = (-1) D Epo(1 — k) = (-1)"O)F(G;1 - k)
if k is a positive integer, whence for all k. ]

Problem 3.2. Find a formula for, or a combinatorial interpretation of,
the leading coefficient vol P of the integral tension polynomials.

Problem 3.3. Is there a combinatorial interpretation of 7(G; —k) for k >
2?

Example 1. We calculated the integral tension polynomials of some small
graphs by counting integral g-tensions on a computer and interpolating to
get the polynomial. The graphs were Cy,, the m-cycle, for m = 3,4,5,6
and K4. We state our results along with the modular tension polynomials
for comparison; the latter are 7(G,t) and 7(G,t). First, Cs:

7(Csq) = ¢ 72(Csq) = (9-1)(g-2),
7(Cs,q) = 3¢°-3¢+1, 72(Csq) = 3(g—1)(g-2).
Nezxt, Cy:
HCsa) = ¢ 72(Caq) = (g—1)(¢* -3¢ +3),
7(Caq) = £2g—12§8322—8q+32’ 72(Cs,q) = 2(9—1)(8q;—22q+21)'
Nezt, Cs:
7(Ceq) = g% 7(Cs,q) = (g~ 1)(¢° - 4¢° + 69— 4),
72(Cs,q) = 115q‘—230q3-|1-é85q’—70q+12’
72(Cs, q) 5(q—1)(q—2)(l223q’—41q+36).
Nezxt, Cq:
7(Ce,q) = ¢°,7(Cs,9) = (7 - 1)(¢* — 5¢° + 10> — 10 + 5),
72(Ce,q) = 2(2q—l)(44q‘—-8fgs+71q’—27q+5)’
72(Cs,q) = (q—1)(176q4—839q3-10-01571q’—1404q+620).



Finally, K,:

7(K4,9) = ¢, 72(K4,9) = (¢ - 1)(g - 2)(g - 3),
7(Ks,q) = (29— 1)(2¢° — 2 + 1), 7z(K4,9) = 4(g—1)(g — 2)(g - 3).

Problem 3.4. Is there any general reason why in some of these ezamples
(C3 and Ky) both of the integral tension polynomials have integral coeffi-
cients and the integral nowhere-zero tension polynomial is a muptiple of the
modular polynomial ?

4. Tensions on signed graphs

The best way to understand the equations (1.2) is in terms of the circuit
incidence matrix and cocircuit incidence matrix, which we expound in the
general context of signed or bidirected graphs.

Formally, a signed graph ¥ = (G, o) consists of a graph G and a function
o from the set of lingks and loops of G to {+,—}. (A link has two distinct
endpoints; a loop has two coinciding endpoints. In signed and bidirected
graph theory it is convenient to have two more kinds of edges: a half edge
has one endpoint and a loose edge has no endpoints; neither of these has a
sign.) If ' C E, then Z|T denotes the spanning subgraph whose edge set
is T. Each circle has a sign, which is the product of the signs of its edges.
A subgraph or edge set is called balanced if it contains no halfedges and
every circle in it has positive sign. (For the general theory of signed graphs
see [24].)

l'L‘he bias matroid (or signed-graphic matroid) of ¥ [24], written M(Z),
can be defined by its rank function,

r(T) = |V| — (Z|T) for an edge set T,

where b(X|T’) is the number of components of the subgraph I|T" that are
balanced subgraphs, ignoring any loose edges. The circuits of M(Z) are
of three kinds: a positive circle, a pair of negative circles that have a
single common node, or a pair of node-disjoint negative circles together
with a minimal connecting path; here one or both negative circles may be
replaced by halfedges. A coloop of M(X) is an edge e whose deletion makes
an unbalanced component balanced; or which is an isthmus connecting
two components of ¥ \ e of which at least one is balanced. We define the
cyclomatic number of X to be |E| — |V| + b(Z). This is the rank of dual
M<L(Z) of the bias matroid.

A graph is bidirected when each end of each edge is independently ori-
ented. We express the bidirection by means of an incidence function 5
defined on the edge ends: the function is +1 if the arrow on that end
points into the incident node, and —1 otherwise. A bidirection of a graph
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is really an orientation of a signed graph. A link or loop e with ends v,
and vs has sign
o(e) := —n(v1)n(v2).

In plain language, if the two arrows on e in the same direction, then e is
positive, but if they are conflict, e is negative. We call n an orientation
of the signed graph ¥. This notion corresponds to the ordinary notion of
graph orientation if we identify an unsigned graph G with all-positive graph
+G. There exists a subgraph of G corresponding to a circuit of X, and this
subgraph can be oriented to be a directed trail. A direction of a circuit C
is an orientation € on C such that very vertex of C is neither a source nor
a sink; we denote the directed circuit as (C,e;). An orientation is acyclic
if it has no directed circuits and totally cyclic if every edge belongs to a
directed circuit.

Suppose we have a bidirected graph. Switching a node v means changing
71 to 1V defined by

(o) — v ifu(e) #v;
n"(e) = { z(;ze), if v(z) =v.

The associated switched signed graph is denoted by V. It is obtained from
¥ by negating all links incident with v.

Let (Z,¢€) be a bidirected graph, and let (C,&ec) be a directed circuit of
¥. We define a coupling [e,e¢]: E(X) — Z as

( 1, if z€ ENC, e(z,v) =¢€.(z,v) and z is
not a circuit bridge;
-1, if z€ ENC,e(z,v) # €c(z,v) and z is
[e,ec](z) = ¢ not a circuit bridge;
2, if z € ENC,e(z,v) = e.(z,v) and z is a circuit path;
-2, if x € ENC,e(z,v) # ec(z,v) and z is a circuit path;
0, otherwise.

(4.3)
The coupling [¢, ec] determines a vector in RE. We call it a circuit vector
of C in (Z,€). The spanning space of all the circuit vectors of circuits in
(Z,¢) is called circuit space, denoted Z(Z,€). If fact, it is independent of
the orientation €.
For a d-bound(B, p) of (£,¢). We define a coupling of a bound [e, &) :
E(L) > Z as

1, if z€ BN[X,Y],e"(z,v) = ;" (z,v);
-1, if z€ BN[X,Y],e¥=(z,v) # ;°(z,v);
[e,e8)(z) = 2, if z € BN Ex,e¥=(z,v) =¢;=(z,v); (4.4)
-2, if z € BN Ex,e¥(z,v) # &= (z,v);
0, otherwise.
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The coupling [e, €3] determines a vector in RE. We call it a bond vector
of B in (¥,e). The spanning space of all the bond vectors of bonds in
(Z,¢) is called bond space, denoted U(Z, €). If fact, it is independent of the
orientation €.

Let X be a directed graph on the edge set {ej,ez,...,e,} with ori-
entation € such that the family of circuits is C(X¢) = {C},Cs, ... ,Cm}.
The circuit incidence matriz A(X) of ¥ is the m x n matrix a;; in which
aij = [¢,€c](z) defined in (4.3). Similarly, the bond incidence matric H(Z)
is the k& x n matrix (h;;) in which hy; i= [, p)(2) defined in (4.4). Clearly,
the A(Z) and H(Z) are not the unimodular matrices. However, by a result
of Chen and Wang in [9] the row vector of A(Z) is orthogonal to the collum
vector of H(Z)T; that is to say,

AZ)HE)T =0. ' (4.5)

They also prove the inner product space R¥ of signed graph (Z,¢) is the
orthogonal directed sum of the circuit space Z(Z) and the bond space U(Z),
ie.,
RZ = Z(Z)o U(T).

With these convention we define a tension on ¥ with values in T' as any
f € TE for which .
A(X)f =0, (4.6)
in other words, for which f € Nul A(X). This definition generalizes that of a
tension on a graph; Naturally, then, we generalize theorems on tensions. A
k-tension is an integral tension f for which every |f(e)| < k, just as before.
The set of all tensions of (I, €) is an abelian group, denoted 7(Z, ¢;T'). Let
Tnz(Z, €;T') be the set of all nowhere-zero tensions.

4.1. Group-valued tensions.

We begin our treatment of signed graphs with the analog of the modular
tension polynomial, since as far as we know it has not been published. The
Tutte polynomial ¢(Z;z,y) of ¥ is defined to be that of M(Z). (It is not
equal to that of the underlying graph unless ¥ is balanced; see [6] for the
Tutte polynomial of a matroid.)

Theorem 4.1. For each signed graph ¥ there is a polynomial 7(Z, k) such
that the number of nowhere-zero tensions on T with values in a finite abelian
group T of odd order is 7(Z,|T'|). In fact,

7(Z,z) = (-1)"O(Z; 1 - z,0).

Proof. Let & = (G, 0) be a signed graph. Let I be an abelian group. A
coloring of ¥ with the color set I is a function f : V — I, f is called proper

57



if it satisfies f(v) # f(u)o(e : vu) for all e € E(X). Let K(X,T') denote the
set of all colorings of ¥ with colors in " and let Kp,(2,T') denote the set
of all proper colorings. If |I'| = ¢ is odd positive integer, it is well-known
that the counting function

x(Z,q) := | Kna(Z, T (4.7)

is a polynomial function of ¢, depending only on the order of I, not on the
group structure; x(Z,t) is called the chromatic polynomial of E.

Let € be an orientation of £. We denote by T'(Z; ¢, I') the abelian group
of all tensions of the (X, ) with values in T, called the tension group of
(Z,¢), and by T}, (Z, &; ') the set of all nowhere-zero tensions. If I is finite,
we shall see that |T(Z;¢,T')| and [Tp,(Z, ;)| depend only on the order of
T, but not on the abelian group structure. So, for |I'| = g, we define the
counting function

7(Z,9) = |Tnz(Z, & T)|. (4.8)
We shall see that 7(Z, q) is a polynomial function of positive odd integers
q = ||, and is independent of the orientation € and the abelian group
structure of I.

Note that a coloring of ¥ may be viewed as a potential on ¥. There is
natural difference operator d : 'V — I'F defined by

(df)(e) = e(u, e) f(u) + (v, ) f(v), (4.9)

where e = uv is an edge with the orientation ; see [9, 27].
In order to obtain our result, we shall use the following lemma, which

is obtained by Chen and Wang in [9].

Lemma 4.2. (a) Im(d) =T(Z,&T).

(b) d : K(Z,T) —» T(Z,&;T) is a group homomorphism with Ker(d) ~
I%X), where b(X) is the number of balanced components of .

(c) The restriction d : Kyp(Z,T) — Tz (2, €;T) is well defined.

Corollary 4.3. The chromatic polynomial x(Z,t) and the modular tension
polynomial T(X,t) are related by

x(Z,t) = t*®E)r(L,1), (4.10)
where b(X) is the number of balanced components of L.
Proof. It follows from (b) and (c) of Lemma 4.2, O
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By a result of Zaslavsky in [27], we have the relationship between the
chromatic polynomial x(Z, ) and the characteristic polynomial p(¢) as the
follows;

XE) = 3 HOE = 3 (@, A =" Ep(e).  (4.11)
SCE(Z) A€LatT

By (6.20) of [6], the characteristic polynomial p(t) of T is related to the
Tutte polynomial ¢(X; z,y) by

p(t) = (-1)"®4(Z;1 - ¢£,0). (4.12)
By Egs. (4.10)-(4.12) we obtain
7(Z,z) = (-1)"®(T;1 - 2,0).
o

Problem 4.4. Is there any significance to 7(%, k) evaluated at even natural
number k7

Theorem 4.1 means there is a polynomial 7(X,z), which we call the
(strict) modular tension polynomial, such that for any odd positive number
k, 7(%, k) is the number of nowhere-zero tensions on ¥ with values in any
fixed abelian group of order k. In [2] the authors guess that there could be
something similar with the modular flow polynomial, and whether flows and
colorings might be connected through duality of signed graphs, analogously
to the duality of colorings and flows on planar graphs. In fact Theorem 4.1
has positively answer their suspection; precisely, it is just the tensions and
flows which'are connected through duality of signed graphs, analogously to
the duality of colorings and flows on planar graphs.

Corollary 4.5. The number of acyclic orientations of L equals
(-1)r®r(x, -1).

Proof. The number of acyclic reorientations of an orientation of a matroid
M is t(M;2,0) [22]. Since cycles in an orientation of ¥ are the same as
cycles in the corresponding orientation of M(X) [27], the number of acyclic
orientations of T equals t(M(Z);2,0) = (-1)"®)7(ZT, -1). O

4.2. Integral k-tensions on signed graphs

It is time for integral tensions. A k-tension for a signed graph is an integral
tension f for which every |f(e)| < k, e € E(X), just as before. For k > 0
let

72(Z, k) := the number of nowhere-zero k-tensions on X.
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As with abelian-group tensions, 1z(Z, k) = 0 if there is a loop in M(X).
Let
72(X, k) := the number of all k-tensions on %,

for all & > 0. We take U := U(X) to be the real bond space Nul A(X),
which is a solution space of Eq.(4.6) and just as unsigned graphs,

P:=Un[-1,1)E, H:= (Hg)Y,

where Hg is the arrangement of coordinate hyperplanes in RE. As with
ordinary graphs, a tension f and an orientation € are compatible if f > 0
when expressed in terms of €.

Theorem 4.6. (a) For any signed graph T, 12(Z, k) is a quasipolynomial
function of k for k=1,2,3,.... It’s period is1 or 2, and is 1 if ¥ is
balanced. Tz(Z, k) has leading term (volP)k™(®) if M(Z) has no loops;
otherwise 1z(X, k) is identically zero.

(b) Furthermore, (—1)"(®)ry(Z, —k) equals the number of (k + 1)-tensions
counted with multiplicity equals to the number of compatible acyclic
orientations of X.

(¢) In particular, the constant term 7z(X,0) equals the number of acyclic
orientations of £, which equals (—1)"®) (T, ~1).

(d) Finally, 72(Z, k) is a quasipolynomial of period 1 or 2 (period 1 if X is
balanced) whose leading term is the same as that of 72(X, k) and whose
constant term is (—1)"(5), Furthermore, 72(Z, k) = (=1)"E) 7> (T, 1-
k).

Lemma 4.7. The vertices of (P,’H) are half integral.

Proof. For the fundamental circuits according to a base of M (Z) we choose
the elements suitably such that the matrix A(Z) contains an identity matrix
I... A vertex is a solution of A(X)f = 0 with |E| — m coordinates of f set
equal to fixed values in {0,1, —1}. Let B be the edge set whose coordinates
in f are left undetermined, let B¢ := E \ B, and write f = (fB, f<)T.
Then f is the unique solution of H(Z|B)fg = —H(X|B®)fg-.

The null space Nul A(Z) is 2-regular (see Proposition 9.1 of [15]) and if
Q is a nonsingular square matrix for which Nul[Z|Q] is 2-regular, then
Q-1b is half integral for every integral vector b (a special case of [18,
Proposition 6.1]). These facts applied to @ = H(X|B) imply that the
solution of H(E|B)f = b is half integral for any b € ZZ. Apply this to
b= —H(Z|B°)fB-. ]

Proof of Theorem 4.6. This proof is similar to that of Theorem 3.1. In (a)
and (d), instead of total unimodularity we have Lemma 4.7 to tell us that
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the denominator of (P, ’H), hence the period of the Ehrhart quasipolyno-
mials, divides 2.

For (b) we need to show that the regions of H corresponds to the acyclic
orientations of ¥. The latter are the acyclic reorientations of the natural
orientation of M(X), which is the oriented matroid of columns of A(Z); see
Theorem 3.3 of [27]. Now we apply Lemma 2.3 (ii).

For (c) we use Corollary 4.5. O

4.3. Nowhere-zero tensions reduce to tension with Mdébius com-
plications

The final main result express the nowhere-zero integral tension polynomial
in terms of the weak integral tension polynomials of subgraphs. We begin
with structural lemmas. As before, U is the bond space, P := [-1,1]EnU,
and H := HY. For a flat F € £L(H) we define

E(F):={ee E:FCH,}={ecE: f(e)=0forall f € F}

This is the Ey(F') of Lemma 2.3 (ii). We see that E(F)° is the union of
the supports of the vectors in F.

Lemma 4.8. The lattice of flats of H is isomorphic to the lattice of closed
sets of the biased matroid M(X). The isomorphism is given by F — E(F).
The corresponding matroid isomorphism M(Z) = M(H) is given by e €
H.NU.

Proof. There is an application of Lemma 2.3. The matrix is A(X) and the
matroid M(A(Z)) is the dual biased matroid M+(Z) by Theorem 8A.1 of
(27), so M(X) is the chain-group matroid of Row A(Z). The lemma applies
since the real bond space U = Nul A(X). ]

Lemma 4.9. 712(%, k) is identically zero if and only if M(X) has a loop.

Proof. By a result of Bouchet’s on integral chain-group matroids [5]: the
chain-group has a nowhere-zero chain if and only if the dual matroid has
no loop. In our case the chain-group is the group of the integral tensions,
NulA(Z) by definition. Its chain-group matroid is dual to that of RowA(Z),
which is dual to the column matroid of A(X), which is M(Z). a

Lemma 4.10. A flat F of H can be represented as [Nul A(S|E(F)°)] x
(0}5®).

Proof. The lemma is follows by the definitions of U and E(F). O
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Theorem 4.11. Take a signed graph L. Letting S ranges over all subsets
of E, or merely over all for which M(Z)|S has no loops, then

2(S,—k) = Y _ |u(0, 5°)|72(IS, k + 1) (4.13)
S

and .
72(S, k) = ) u(0, 5)m(ZIS, k + 1), (4.14)
s

where p is the Mébius function of M(X) and 0 is the set of loops of M(Z).

Proof. The polytope and the arrangement are transversal because
(NH)NP® #0.

By Lemma 4.9 72(Z|S, k) = 0 if M(Z)|S has a loop, therefore the two
ranges of summation are equivalent. For FF € L(H), by Lemma 4.10 we
know that

PAF = [-1,1)F 0 ([Nul A(T|E(F)°)] x {0}EF).
Take S = E(F)¢, then
PNF=(-1,1°nZ") x {0}*",

where Z’ is the real bond space of X|S. Its Ehrhart polynomial equals
72(Z]S, k+1).

Now the result follows from Lemma 4.8, Theorem 2.2, Eq.(3.2), and
Theorem 3.1(iv). O

It may be helpful to list some characterization of the edge sets that
support nowhere-zero integral tensions.

Theorem 4.12. For S C E .= E(X), the following properties are equiva-
lent.

(i) M(X)|S has no loops;

(i) Z|S has an acyclic orientation;
(iii) Z|S has a nowhere-zero integral tension;
(iv) Z|S has a nowhere-zero real tension;

(v) 8¢ is closed in the bias matroid M(X);
(vi) § = E(F)¢ for some flat F € L((HEg)Y).

Proof. (i) « (ii): We could prove it for signed graphs via oriented matroids.
We know the number of acyclic reorientations of an orientation of a matroid
M is t(M;2,0) [22] and that this equals 0 if and only if M has aloop. Apply
that tn the natural orientation of M(Z).
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(i) « (iii) by Lemma 4.9.

(ili) & (iv) is trivial.

(iv) & (i) by the proof of [5, Lemmas 2.4 and 2.5], which amounts to
say that any tension on I with values in an abelian group where 2a = 0
implying @ = 0 must be zero on every loop. Here the group is the additive
group of R.

(v) & (i): By matroid duality the complements of the closed sets in
M (Z) are the edge sets that do not contain a loop of M(X).

(v) & (vi): This is Lemma 4.8. a
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