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Abstract

Let K, — H be the graph obtained from K, by removing the edges set
E(H) of the graph H (H is a subgraph of K,,). We use the symbol Z, to
denote K4 — P>. A sequence S is potentially K, — H-graphical if it has a
realization containing a K., — H as a subgraph. Let o(K,,—H,n) denote
the smallest degree sum such that every n-term graphical sequence S
with 0(S) > (K — H,n) is potentially K,, — H-graphical. In this
paper, we determine the values of o(Kr41 — Z,n) for n > 5r+19,r+1 >
k =5, j > 5 where Z is a graph on k vertices and j edges which contains
a graph Z; but not contains a cycle on 4 vertices. We also determine
the values of 0(Ky41 — Z4,n), 0(Krq1 — (K4 ~ €),n), 0(Krp1 — Ky4,n)
forn>5r+16,r > 4.

Key words: subgraph; degree sequence; potentially K., — Z-graphic;
potentially K., — Z,-graphic sequence
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1 Introduction

The set of all non-increasing nonnegative integers sequence m = (dy, d, ...,
dy) is denoted by N'S,,. A sequence 7 € NS, is said to be graphic if it is the
degree sequence of a simple graph G on n vertices, and such a graph G is
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called a realization of . The set of all graphic sequences in NS, is denoted
by GS,. A graphical sequence 7 is potentially H-graphical if there is a
realization of 7 containing H as a subgraph, while r is forcibly H-graphical
if every realization of 7 contains H as a subgraph. If = has a realization in
which the r + 1 vertices of largest degree induce a clique, then 7 is said to
be potentially A,)-graphic. Let o(7) =d;, +da + ... + dn, and [z] denote
the largest integer less than or equal to z. If G and G are graphs, then
G UG, is the disjoint union of G and G,. If G = G, we abbreviate GUG;
as 2G. We denote G + H as the graph with V(G+H) = V(G)|JV(H) and
E(G+ H)=EG)JEH) U{zy:z € V(G),y € V(H)}. Let Ki, Cx, Tk,
and P, denote a complete graph on k vertices, a cycle on k vertices, a tree
on k+ 1 vertices, and a path on k+ 1 vertices, respectively. Let K,, — H be
the graph obtained from K, by removing the edges set E(H) of the graph
H (H is a subgraph of K,,). We use the symbol Z; to denote Ky — Ps.
We use the symbol G{vy, va, ..., vx] to denote the subgraph of G induced by
vertex set {v1,vg, ..., vx}. We use the symbol ¢(G) to denote the number of
edges in graph G.

Given a graph H, what is the maximum number of edges of a graph
with n vertices not containing H as a subgraph? This number is denoted
ex(n, H), and is known as the Turdn number. This problem was proposed
for H = C4 by Erdés (2] in 1938 and in general by Turén [19]. In terms of
graphic sequences, the number 2ex(n, H) + 2 is the minimum even integer
{ such that every n-term graphical sequence 7 with o(7) > [ is forcibly H-
graphical. Here we consider the following variant: determine the minimum
even integer ! such that every n-term graphical sequence 7 with o(n) > 1
is potentially H-graphical. We denote this minimum ! by o(H,n). Erdés,
Jacobson and Lehel [4] showed that o(Kk,n) > (k—2)(2n -k +1) +2
and conjectured that the equality holds. They proved that if m# does not
contain zero terms, this conjecture is true for k = 3, n > 6. The conjecture
is confirmed in [5],{14],[15],(16] and [17].

Gould, Jacobson and Lehel ;5] also proved that o(pK2,n) = (p—1)(2n—
2) + 2 for p > 2; 6(Cy,n) = 2[251] for n > 4. They also pointed out that
it would be nice to see where in the range for 3n — 2 to 4n — 4, the value
o(K4—e,n) lies. Luo [18] characterized the potentially Cy graphic sequence
for k = 3,4,5. Lai (7] determined o (K4 —e,n) for n > 4. Yin,Li and Mao|[21]
determined o(Kr41 ~e,n) forr > 3,r+1 < n < 2r and o(K5 — e,n) for
n > 5, and Yin and Li [20] further determined o(K,+1 — e,n) for r > 2
and n > 3r% — r — 1. Moreover, Yin and Li in [20] also gave two sufficient
conditions for a sequence m € GS,, to be potentially A,,1-graphic and two
sufficient conditions for a sequence m € GS, to be potentially K, 4, — e-
graphic. Yin [22] determined o(K,4+; — K3,7n) for n > 3r + 5,7 > 3. Lai
[8] determined o(Ks — K3,n), for n > 5. Lai [9] gave a lower bound of
0(Ky4p — Kp,n). Lai [10,11] determined o(Ks — Cy,n),0(Ks — Ps,n) and
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o(Ks — Py,n), for n > 5. Lai and Hu[12] determined o(Kr41 — H,n) for
n>4r+10,r > 3,7+ 1 > k > 4 and H be a graph on k vertices which
containing a tree on 4 vertices but not containing a cycle on 3 vertices
and o(Kr41 — Pa,n) for n > 4r + 8,7 > 3. Lai and Sun[13] determined
0(Krp1 — (kP2 JtK2),n) forn > 4r+10,r +1 > 3k + 2t,k+t > 2,k >
1,¢ > 0. In this paper, we prove the following two theorems.

Theorem 1.1. If r > 4 and n > 5r + 16, then

o(Kry1 — K4yn) = 0(Kry1 — (K4 —€),n) =

(r-1)2n-7r)-3(n-r)+1,
o(Krp1 — Za,n) = ifn—risodd
rHL T AL TY (r-1)(2n-7) = 3(n—-T1) + 2,
ifn—riseven
Theorem 1.2. If n > 5r+19,7+ 1>k > 5, and j > 5, then

(r=1)2n-r)-3(n-71)—-1,
if n —r is odd

oErer=Zm) =\ 1)en-r)=3(n-1) -2,
if n —r is even

where Z is a graph on k vertices and j edges which contains a graph Z,
but not contains a cycle on 4 vertices.

There are a number of graphs on & vertices and j edges which contains
a graph Z4 but not contains a cycle on 4 vertices.

2 Preparations

In order to prove our main result,we need the following notations and re-

sults.
Let m=(d1, --,dn) € NS;,1 <k <n. Let

(dl - 17"'1dk—l - ladk-i-l - 1,"')ddk+l - 17ddk+2"")dn)1

T = if dk Z k,
k (dl - 17"'1ddk - l’ddk-f-ls"':dk—l)dk+l""sdn)1
ifdy <k.
Denote m;, = (d},dy,---,dl,_,),where d} > dj > --- > dl,_, is a rearrange-

ment of the n — 1 terms of n;/. Then ] is called the residual sequence
obtained by laying off dy. from =.

Theorem 2.1[20] Let n > r + 1 and 7 = (d1,d2,--+,d,) € GS, with
deyy 2 1. Ifd; > 2r—ifori=12-.-,7~1, then m is potentially
A, 41-graphic.
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Theorem 2.2[20] Let n > 2r + 2 and ® = (d;,dp, -+, dn) € GSy, with
dry1 2 7. If dopy2 2 7 — 1, then 7 is potentially A,4;-graphic.

Theorem 2.3[20] Let n > r+ 1 and ® = (d;,dp, - ,dn) € GS, with
dryy 2r-1 Ifd; >2r—ifori=1,2,---,r — 1, then 7 is potentially
K, — e-graphic.

Theorem 2.4[20] Let n > 2r + 2 and # = (d;,dp, - ,d,) € GS,, with
dr—y 2r. If dor42 > 7 — 1, then 7 is potentially K,4+; — e -graphic.

Theorem 2.5[6] Let 7 = (d;,---,d,) € NS, and 1 < k < n. Then
7 € GS, if and only if 7}, € GSp_;.

Theorem 2.6(3] Let 7 = (d;,++,dn) € NS, with even o(m). Then
m € GSy, if and only if forany ¢t,1 <t <n-1,

n

zt:d,-gt(t—l)+ > min{t,d;}.

i=1 j=t+1

Theorem 2.7[5] If 7 = (d1,ds,---,dn) is a graphic sequence with a
realization G containing H as a subgraph, then there exists a realization
G’ of 7 containing H as a subgraph so that the vertices of H have the
largest degrees of .

Theorem 2.8[9] If n > p+t, then o(Kpyt — Kp,n) = 2[((p+2t—3)n+
p+2t+1—pt—1t2)/2).

Lemma 2.1 [22] If 7 = (d;,d2,+*,dn) € NS, is potentially K, —e-
graphic, then there is a realization G of m containing K,,; — e with the
T+ 1 vertices v, - -+, ¥p41 such that dg(v;) =d; fori =1,2,---,7+1 and
€ = VUpVUpr+1-

Lemma 2.2 [12] Let n > 2r + 2 and 7 = (dy,d2,---,d,) € GS,, with
dr_g 2 7. If dary2 2 r — 1, then 7 is potentially K,,; — Pe-graphic.

Lemma 2.3 Let 7 = (d1,--,dn) € GSy, and G be a realization of . If
€(Glv1,v2, ..., vr4+1]) < €(Kr41) — 1, then there is a realization H of 7 such
that dgy(v;) = d; for i =1,2,---,7 + 1 and v,v,.4; € E(H).

The proof is similar to the proof of Lemma 2.1.

3 Proof of Main results.

Lemma 3.1. Let n > 2r and 7 = (d;,d2,--+,d,) € GS,, with d,_; > 7,
dry1 27—1. Ifd; > 2r -4 fori =1,2,---,r — 2, then 7 is potentially
K41 — e-graphic.

Proof. We consider the following two cases.

Case 1: dry1 2> 7.

Ifd_1>r+1.

Then 7 is potentially K, — e-graphic by Theorem 2.3.

Ifd._y=rthend,o1 =dr=dry1 =7



Suppose 7 is not potentially K, —e-graphic. Let H be a realization of
m, then e(H{vy,v2, ..., vr41]) < €(Kr41)— 2. Let S = (d1,d2,- -+, dr_2,dr_1,
dr + 1,dr41 + 1, ++-,dy), then by Theorem 2.1, S is potentially A,4-
graphic (Denote S’ = (d},d5, ---,d},),where dy > dy > --- > d, is a
rearrangement of the n terms of S. Therefore S’ € GS, by Lemma 2.3.
Then &' satisfies the conditions of Theorem 2.1). Therefore, there is a
realization G of S with vy,ve, -+, vrp1 (d(v;) = diyi = 1,2,---,7 — 1,
d(vy) = dr + 1,d(vr41) = dry1 + 1), the r + 1 vertices of highest degree
containing a K,,;. Hence, G — vr+1%, is a realization of m. Thus, = is
potentially K, — e-graphic, which is a contradiction.

Case 2: d,41 =7 — 1, then the residual sequence 7., = (d},---,d},_;)
obtained by laying off d,4+; = r — 1 from = satisfies: d} > 2(r — 1) - 1,--+,
&y 1)1 = drg 2 2(r=1)=(r—2),d(,_,),, = d; > r—1. By Theorem 2.1,
7, is potentially A(,_y)4;-graphic. Therefore, 7 is potentially K11 —e-
graphic by {d; — 1,--+,dr._y — 1} C {d},:--,d.} and Theorem 2.7.

Lemma 3.2. Let n > 2r and 7 = (dy,ds,---,d,) € GS,, with d_o >
r+1,depr27dr —12dg, 40 fdi >22r—ifori=1,2,---,7 -3, then
7 is potentially A,4;-graphic.

Proof. The residual sequence 7}, = (d},---,d},_,) obtained by laying
off dryy from = satisfies: dy > 2(r —1) =1+, di,_;)_, =d;_3 > 2(r -
1) - (r-13), dfr_l),l =d _,22(r-1)—(r-2), d(r-1)+1 =d. >r-1.
By Theorem 2.1, 7, ., is potentially A(,_i)4;-graphic. Therefore, 7 is
potentially A,y,-graphicby {d;-1,---,d,—1} = {d},---,d.} and Theorem
2.7.

Lemma 3.3 Letn > 2r+2,r > 4 and 7 = (d;,ds, -+ ,d,) € GS,, with
dr—o>r—landdry) >21r—2,

(r=1)2n—-r)-3n-r)-1,
(1) > if n —r is odd
M2 r-1)@n-r)-3n-r)-2
if n —r is even

Ifd; > 2r—ifori=1,2,...,r—3, then 7 is potentially K, — Z4-graphic.

Proof. We consider the following two cases.

Casel: djy; 27— 1.

Subcase 1.1: dpqy > 7+ 1.

If dy_2 2 r+2, then 7 is potentially K., — e-graphic by Theorem 2.3.
Hence,n is potentially K, — Z4-graphic.

If d.—2 =7+ 1, then dr_3 — 1 > dr_2. The residual sequence 7., =
(dy,+++,d;,_,) obtained by laying off d.y1 from = satisfies: d} > 2(r —
D=y, dy o =dig 22r—1)~(r=3),d_,_, =d_, 2
r—1,d,_y;y =d. 2 (r—1) - 1. By Lemma 3.1, 7, is potentially

69



K(;_1)41 — e-graphic. Therefore, w is potentially K,,; — Zs-graphic by
{d1-1,---,dro3 -1} C {d},---,d.} and Lemma 2.1.

Subcase 1.2: d,.~; < r. then d._3 — 1 > dr_;. The residual sequence
41 = (dy,--,dy,_,) obtained by laying off d.4; from 7 satisfies: dj >
2(r-1)-1,---, dzr—l)—2 =d._53>2(r—1)—(r-3), er-1)—1 =d._, >
r—1,d,_ 14 =dr 2 (r—1) -1 By Lemma 3.1, m, is potentially
K(r—1)+1 — e-graphic. Therefore, 7 is potentially K,.; — Z4-graphic by
{di-1,---,dr_3 -1} C {d},---,d.} and Lemma 2.1.

Case 2: dpy1 =7—2.

Subcase 2.1: dr_; < dy-2.

If d,_3 > r, then the residual sequence =, ., = (d},--,d},_,) obtained
by laying off dy4+1 = r—2 from = satisfies: (1)d =d;—1fori=1,2,-.-,7r—
22)dy =d1 -1 22r-1)—1,-dl,_yy ,=d_32d3-12
2(r-1)-[(r-1)-2], er-1)—1 =d,_,>2r—1,and d,('r-l)-i-l =d. =d, >
7 —2. By Lemma 3.1, 7, is potentially K(,_1)4; — e-graphic. Therefore,
m is potentially K41 — Z4-graphic by {d; — 1,---,dr—2 — 1,dr_1,d,} =
{d},---,d;} and Lemma 2.1.

Ifd._g=7r-1,thend,.; =d. =7 —2 and

(r-3)(n-1)+r-14+(r-2)(n-r+2)
r—-Dn-1)-2n-1)+(r-1)n-r+3)-{n—-r+2)
r-D2n-r)-3n-1r)-2

o(w)

/I I VAN

Hence, 7 = ((n — 1)"3,(r = 1), (r — 2)"~"*2) and n — r is even. Clearly,
7 is potentially K41 — Z4-graphic.

Subcase 2.2: dr_y = dr_2 and d,_3 > d,, then =, satisfles: df >
di=122(r—1)~1,-+,d}_y\_,=di g > dr_g—12>2(r—1)—[(r—1)~2],
di,_yy—y =dr_g2r—1landd,_;,,=d. 27—2 ByLemma3.l, m,,
is potentially K(,_1)+1 — e-graphic. Therefore, 7 is potentially K41 — Z4-
graphic by {d,-1,dr,dy —1:--,dr_o -1} = {d},-+,d.} and Lemma 2.1.

Subcase 2.3: d,_1 = dr—2 and dr_3 =d,, then d,_3 =dr_2 =d._; =
d. 2 r + 3. Let H be a realization of 7. Since dr.4+; = 7 — 2, then there
is 4,7 < r such that vy41v;,vr41v; € E(H). Let S = (dy,ds,---,di +
1,---,dj+1,---,dr,dr41+2, - - -, dy), then by Theorem 2.1, S is potentially
A, 41-graphic (Denote S’ = (d},d5, ---,d,,),whered] > dy >--- > d), isa
rearrangement of the n terms of S. Therefore S’ € GS,,. Then S’ satisfies
the conditions of Theorem 2.1). Therefore, there is a realization G of §
with vy,vg, ++,Upq1 (d(vy) = di,t # ¢,5,7+ 1, d(v;) = di + l,d(vj) =
d; + 1,d(vr4+1) = dry1 + 2), the 7 + 1 vertices of highest degree containing
a Kry1. Hence, G — {vr;19i,vr41v;} is a realization of . Thus, = is
potentially K, — Z4-graphic.

Lemma 3.4 Let n > 2r + 2 and 7 = (dy,dz,--,d,) € GS, with
dr—¢ 2 7. If d2ry2 > r — 1, then w is potentially K, — K ¢-graphic.
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Proof. We consider the following two cases.

Case 1: If d,_; > 7. Then 7 is potentially K}, —e-graphic by Theorem
2.4. Hence, 7 is potentially K41 — K),:-graphic.

Case 2: d,_; < r—1, that is, dp—y = r — 1, then d,—; = dr =
dry1 = -+ = dory2 = 7 — 1 and 7, satisfies: d’(,__l)_,_1 =d. >2r-1
and dy(,_j)19 = dy,. > (r — 1) — 1. By Theorem 2.2, m,, is poten-
tially A,-graphic. Therefore, 7 is potentially K., — K1 -graphic by {d1 -
1, -,dp—t — 1} C {d},---,d.} and Theorem 2.7.

Lemma 3.5 Let n > 2r+ 2 and 7 = (dy,d2,--,dn) € GS, with
dr—4 2 T,

» (r=1)2n-r)-3(n—-71) -1,
if n—risodd

oM 24 (r-1)@n-r)-3n-1) -2
if n — r is even

If dary2 > 7 — 1, then 7 is potentially K41 — (P, U K2)-graphic.

Proof. We consider the following two cases.

Case 1: If d._o > r. Then 7 is potentially K, — P,-graphic by Lemma
2.2. Hence, 7 is potentially K,4+1 — (P2 J K2)-graphic.

Case 2: dp—g =7~ 1.

Subcase 2.1: dr_3 > r, thendr_3 2 dr+1=dry+1 =7 >r—
1 = d,_p = dy—;. Suppose 7 is not potentially K41 — (P2|J K2)-graphic.
Let H be a realization of «, then e(H[v1,v2, ..., vr+1]) < €(Kry1) — 3. Let
S = (d1,d2," - ,dr-2,dr_1,dr + 1,dry1+ 1, «++,dy), then by Theorem 2.4,
S is potentially K+, — e-graphic (Denote S’ = (d}, dj, - -,d,),where dj >
dy > ... > d!, is a rearrangement of the n terms of S. Therefore S' € GS,
by Lemma 2.3. Then &’ satisfies the conditions of Theorem 2.4). Therefore,
there is a realization G of S with vy, v2,**,Vr41 (d(v;) = d;,i=1,2,-- -, 7=
1, d(v,) = dr + 1,d(vr41) = dry1 + 1), the 7 + 1 vertices of highest degree
containing a K41 —e and e = v,—1vr—2 by Lemma 2.1. Hence, G —vrp1vr
is a realization of . Thus, 7 is potentially K41 — (P2 |J K2)-graphic, which
is a contradiction. ‘

Subcase 2.2: d._3 =7 — 1, then

or) £ (r—4Hn-1)+(r—-1)(n—-r+4)
(r=1Dn-1)-3n-1)+@F-1)n—-r+1)+3(r—1)
(r—1)(2n-r1)-3(n-r)

Since,

(r-D@2n-7)=-3(n-r1)—-1,
if n—ris odd
(r=1)2n-r)-3(n-r) -2,
if n —r is even

o(m) >
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Hence, 7 is one of the following: ((n —1)"=5%, (n = 2)}, (r = 1)~ "), ((n -
)74, (r = 1)»="+3 (r — 2)!), for n — 7 is odd, 7 is one of the following:
((n=1)7=4, (r—1)"="+4), ((n=1)"8, (n=2)?, (r= )™+, (n—1)"~S, (n—
3)11 (,’._l)n—r+4)’ ((n_l)r—S, (n—2)1, (r_l)n—r+3’ (1._2)1), ((n—l)r_47 ('I‘—
D8 (r = 3)), (r = 1)74, (r — 1) 7F2 (r — 2)?), for n — 1 is even.
Clearly, 7 is potentially K,+1 — (P2 |J K2)-graphic.

Lemma 3.6. If r >4 and n > r +1, then

0(Kry1 — Z4,n) 2 0(Kry1 — Ky, 1),
and
(r=-1)2n-r)-3(n-—r)+1,
K > if n —ris odd
o(Krp1 —Kam) 290 (0 1yon—r) —3(n—r) +2,
if n—ris even

Proof. Obviously, forr > 4andn > r+1, 6(Kr41—Z4,n) > 0(Kpry1—
K4,n). By Theorem 2.8, for r > 4 and n 2 7 + 1, o(Kr41 — Ky,n) =
U(K4+(2r—3) —K4,n) > 2[(4+2(r—3)-3)n+4+2(r—-3)+1—-4(r-3) -
(r — 3)%)/2]. Hence,

(r=1)2n-r)-3(n-—r)+1,
if n—risodd

o(Kr41 = Kqym) 2 (r=1@2n-r)-3(n-1)+2,
if n —r is even

Lemma 8.7. lf n>r+1,7r+1> k >4, then

(r=1D2n~-71)-3(n—-r) -1,
if n —ris odd
o(Kr1 — Hym) 2 (17‘121)(2;:37')—3(71—1')—2,

if n —ris even

where H is a graph on k vertices which not contains a cycle on 4 vertices.

Proof. Let
K3+ (= + 1)K,

G= ifn—risodd
7] Ko+ (32K UK,
ifn—riseven

Then G is a unique realization of

((n=1)7=3,(r - 2)"~743),
_ ifn—ris odd
=Y (=13 (r - 2)m T, (r - 3)Y),
if n—r is even
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and G clearly does not contain K,4; — H, where the symbol z¥ means z
repeats y times in the sequence. Thus o(K,41—H,n) > o(7)+2. Therefore,

(r— 1)(2.n—r) -3(n-7) -1,
o(Kryr— Hyn) 2 (lrf-r-z I){ziffdi; ~3(n-r)-2,

if n —r is even

The Proof of Theorem 1.1 According to Lemma 3.6 and o(K,41 —
Ky4,n) < 0(Kr41 — (Kg — €),n) < 0(Kr41 — Z4,n), it is enough to verify
that for n > 5r + 16,

(r—-1)@2n-r)-3(n-r)+1,
if n —ris odd

o(Kr41 = Zayn) < (r=1)2n-7r)-3(n-r)+2,
if n —r is even

We now prove that if n > 5r + 16 and m = (dy,ds, - - ,dn) € GS, with

r-1)2n-r)-3(n-r)+1,
if n—risodd
(r=1)2n—-71)-3n-r)+2,
ifn—riseven

o(m) 2

then 7 is potentially K,4+; — Z;-graphic.
Ifd..3 <7—-1, then

o) £ (r=Y(n-1)+(r—-1){n—-7r+4)
= (r—-1)n-1)-3n-1)+(r-1n-r+4)
= (r-1)2n-7)-3(n-r)
r-1)2n-7r)-3(n-r)+1,

which is a contradiction. Thus, d,.3 > r.
Ifd,_o <7 -2, then

(r=3)(n-1+(r-2)(n—7+3)
(r=-1)n-1)=-2(n-1)+(r-1)(n—7r4+3)—(n—r+3)
(r-1)(2n-7r)-3(n-r)-3

< (r=-1)2n-7r)-3(n—-7r)+1,

which is a contradiction. Thus, d,_2 > r — 1.
Ifd-41 <7 -3, then

A

o(m)

[ | I AN

0(7") = Z::l di + Z?=r+1 d'
S (7" - 1)7‘ + Z‘?:r-f-l min{r, dl} + Z:lzr-i-l di
= (r—-r+2) 0. d
< (r=1yr+2(n-r)(r-3)
= (r=1)2n-r)—-4(n-r)
< (r=-1D)2n-r)-3(n—-r)+1,
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which is a contradiction. Thus, dp4; 2 7 — 2.

Ifd; > 2r—ifori=1,2,--+,7 =3 or dar42 > 7— 1, then 7 is potentially
K41 — Zs-graphic by Lemma 3.3 or Lemma 3.4. If dr42 < 7—2 and there
exists an integer ¢, 1 <1 < r — 3 such that d; < 2r —i—1, then

o(r) < (@E-Dn-1)+Q@r+1-i+1)(2r-i-1)
+(r-2)(n+1-2r-2)
= ?4in—4r—-2)—(n-1)
+(@2r—-1)(2r+2)+(r—2)(n—-2r—1).

Since n > 5r + 16, it is easy to see that i%2 + i(n — 4r — 2), consider as a
function of i, attains its maximum value when i = r — 3. Therefore,

o(r) < (r=-3)2+(n—-4r-2)(r-3)-(n-1)
+Q2r-1)(2r+2)+(r-2)(n-2r-1)
= (r-1)2n-r)-3(n—-r)-n+5r+16
< o(m),
which is a contradiction.
Thus,

(r=-1)2n-r)=8(n-r)+1,
if n —r is odd
(r-1)2n-r)=3(n—-7)+2,
if n—riseven

U(Kr+l - Z4:n) S

for n > 57 + 16.

The Proof of Theorem 1.2 According to Lemma 3.7, it is enough
to verify that for n > 5r + 19,
(r=-1)2n—-r)-3(n—r)-1,
if n —r is odd
(r-1)@2n-7)-3(n—-7)-2,
if n — r is even

U(Kr+l - Z; n) <

We now prove that if n > 5r + 19 and w = (d1,d2, -+, dn) € GS, with

(r-1)2n-r)-3(n-1)-1,
if n~risodd
(r-1D@2n-r)=-3(n-r1)-2,
if n —r is even

o(m) 2

then 7 is potentially K,4; — Z-graphic.
Ifd._4 <r—1, then

(r=5)(n-1)+(r-1)(n-r+5)
(r=D(n-1)=4n-1)+(r=-1)(n—7+5)
(r=-1)2n-r)-4(n—r)
(r=1)2n-r)-3(n—r)=-2,

o(m)
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which is a contradiction. Thus, d._4 > .
Ifd.—p <r—2, then

o(r) £ (r=3)(n-1)+(r~2)(n—r+3)
= (r-1)(n-1)-2rn-1)+(r-1)n—-r+3)-(n~7+3)
= (r-1)@2n-r)-3(n—-r)-3
< (r-1)2n-r)-3(n—-7)-2,

which is a contradiction. Thus, dy.2 > r — 1.
Ifdry1 <7 -3, then

o(m) = Yiidi+)Yi,ndi
< (7‘ - 1)7' + Z?=r+1 mm{r,d,} + 2?:7'-}-1 di
= (r—1)r+2 Z?=r+l d;
< (r-Dr+2(n-r)(r-3)
= (r—-1)2n-r)—4(n-r)
< (r=1)2n-7)-3(n-r)-2,

which is a contradiction. Thus, dr41 > 7 — 2.

Ifd; > 2r—ifori=1,2,---,r—3 or dp;1o > r—1, then 7 is potentially
K41 — Z-graphic by Lemma 3.3 or Lemma 3.5 . If d2,40 < r—2 and there
exists an integer ¢, 1 <i < r—3such that d; < 2r —i — 1, then

o(r) < (GE-1)n-)+2r+1-i+1)2r—i-1)
+r—-2)(n+1-2r-2)
= 2+4+in—-4r-2)—(n-1)
+(2r-1)(2r+2)+ (r-2)(n—-2r-1).

Since n > 57 + 19, it is easy to see that i2 + i(n — 47 — 2), consider as a
function of ¢, attains its maximum value when ¢ = r — 3. Therefore,

o(r) < (r=32+(n—-4r-2)(r-3)-(n-1)
+(2r-1)(2r+2)+(r-2)(n-2r-1)
= (r-1)2n-7)-3n—-r)—n+5+16

< a(m),

which is a contradiction.

Thus,

(r=1)2n-r)-3(n~r)-1,
if n —ris odd
(r-1)2n—-r)-3(n—-r1) -2,
if n —r is even

U(Kr+l - Za n) <

for n > 5r + 19.
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