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Abstract

In this paper, we give several identities of finite sums and some infi-
nite series involving powers and inverse of binomial coefficients.
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1. Introduction

In (1}, the author first used the identity
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to observe that

(',:)_1 —(n+1) /o L1 — k.

Starting with this observation, it was proved in [1} that
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In [2], Toutik Mansour presented a method for obtaining a wide class of
combinatorial identities, including some ones involving the inverse binomial
coefficients.

Sury, Wang and Zhao in [3] showed, among other results, that
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In this paper, we establish several finite sums and some infinite series
which involving powers and inverse of binomial coefficients. It can be found
that some of our results are related to the Stirling numbers of the second
kind. The identities of this type might not have been presented before.

2. Preliminaries

Lemma 1 [2]. Let s,n > k be any nonnegative integer number, let f(n, k)
be given by

sk = EEL [T phyg-tyar

where p(t) and g(t) are two functions defined on [u1, u2}. Let {an}a>0 and
{bn}n30 be any two sequences, and let A(z), B(z) be the corresponding
ordinary generating function. Then

hi d® uz
, k)axbn— "= g A(zp(t))B t))dt| .
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Lemma 2 [4]. For each r > 0, the power series with coefficients ‘r-th
powers’ equals:

A (z)
k _ =
3kt = Za 5(r, ) x)m =g k<L,

k>0 =0
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where S(r, j) and A, (z) are Stirling numbers of the second kind and Eule-
rian polynomials, respectively.

Lemma 3 [5].

s 8l ()

k=0 k=0

where Ax(z) are Eulerian polynomials.

Lemma 4 [4]. Let Bi(y) and By are Bernoulli polynomials and Bernoulli
numbers, respectively. Then

Lemma 5 [4].

>k = s 1(Br+1("l‘*' 1) = Bry1).
k=0

Lemma 6 [6]. Let r is any nonnegative integer, then

Ek’—Z(n+1)hS( ).

k=0 h=0

where S(r, j) are Stirling numbers of the second kind.

Lemma 7. Let m < n — 1 be nonnegative integer, then

£ ORE-E @5

k=m+1 i=1

Proof. Let f(2) = ¥ ., &2 = (~1)m+1zmIn(1 + 2).
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The proof is complete. O

By the same way, we can get the following lemma.

Lemma 8. Let m < n — 1 be nonnegative integer, then

AT ol (g St 1 (A TR

k=m+1

3. Main results

Theorem 1. Let 7 be any nonnegative integer, then

n -1 T -1
3 (Z) (=1 = Z——E ’gh!S(r, h)(=1)* (" + : + 2) +

k=0
r h : v
e ()1 6

h=0 j=0

where S(r, h) are Stirling numbers of the second kind.

Proof. Let ~ = a
S, )= -1 kkr n ) n,
@ =20 ¥ ;) e

and let ax = (—1)*k", b =1 in Lemma 1, so the corresponding generating
functions



Alz) = ZhS(r,h)(l( 2 Bla)=

A+l .
= + ) 1-z

Then, by Lemma 1

Sr(z) = —(xgh S, h)/ (1(+ ::;:H 1- x1+ Pl
‘—(“”’;h's("' / ( )(1+t:c (a+}g:-—jx+zt)dt)
= hz—(:)h‘S(r h)Z ( )( 1)"—9 ,+1 ——(In(1+z) +In(1 — z)
£ z()———

i+1
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= Zh's(r,h)Z( )( 1)h—J( J+2 1n(1 +Z G+2-d)z

h=0 j=0

gJ+l+z(@+i+1) 2
- o Z( )(‘ B T o e s 1

comparing the coefficients of z™ in the first and the last member of the
equalities we complete the proof of theorem. ]

Theorem 2. Let r be any nonnegative integer, then

i(:)_l(—l)k i n+IZhS( R)(— l)h(n+h+2) +

k=0
03 ()i s

h=0 j=0

where S(r, h) are the Stirling numbers of the second kind.
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Proof.

n n 1
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k=0

(n+1)/ (l—t)"Zkr( )"dt

k=0
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h=0
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h=0 3=0
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g (s S
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The proof is complete. O

By Theorems 1 and 2, we get the following corollary.

Corollary 1. Let r is any nonnegative integer, then

Z( )(n+1)""ZJ'Sh a)n(;;)iz

h=0 J"‘O

From Theorem 1, we can also obtain the following results.

Corollary 2.

n

-1
> (7)) o=Tmase,

k=0

= (m) 7 n+1

,go(k) (1) = CET) T AN ((n+1)% +n)),
LA n(n+1) .
kgo(k) (—1)*k2 = (n+2)(n+3)(n+4)( —14 (=1)*(7(n + 1)2 + n®)).



Theorem 3. Let r be any nonnegative integer, then

> (n ' k)—lkr - f (n h 1)-1’1!((71 +1)S(r, k) + S(r +1,h))—

k=0 h=0

2n+lz()( YT r?lhl )st(k’”( +1+1)-1

Jj=0

1 41 -1
- |
2n+12h5(r+1h)( +1+h) '

where S(r, h) are the Stirling numbers of the second kind.

Proof. We have

E(n:k) k"= Zk'(n+k+1)/ t5(1 - t)"dt

k=0 k=0

=(n+1) / (1-t)" Zk’t"dt-i— / a-ymy k"“t"dt
k=0 k=0
r+1
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- T (;)(n+1)f+1-h(1+ s, )

j=0
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|
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which completes the proof. a

From Theorem 3, the next corollary holds.

Corollary 3. We have

> (1) - () ez
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, n2>24.
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Analogous to Theorem 3, we can get the theorem below.

Theorem 4. Let r be any positive integer , then

k-1

() #-Temx ()5
S(0) G- AT (5

k=1 j=0

-

Corollary 4.

1 k=1
B() SR ()
k=1 k k? k=1 k =\ J j-n

Corollary 5.

() S - e oy,
O F-Linl=

Theorem 5. Let 7 be any nonnegative integer , then

n+1

Zk'z('f) 1(—1)f—"”+1(1+( 1)")Z(h )h'S(r,h)

k=0 j=0 h=0

— SRS,k z (; N (2w

h=0

where S(r, k) are the Stirling numbers of the second kind.



Proof. By Lemma 6 and Corollary 2,

n

B ) o5

k=0

0) gy

Z:() (1)’(2( L)) - Z( )#ste )
(1+( 1)")Z< )hS(r k)
S () ()

h=0

which completes the proof. O

Theorem 6. Let r be any nonnegative integer, then

n . k -1 ) +1 .
ng ,Zo (7;) (-1 = m’m((u(-l) )Brs1(n+1)

r+l k

Ty (’” + 1) (" +h- ) (~1)*hIS(k, k) Brs1s)

k=0 h=0

+1) (-1t B E rra
+ gn—)-(}-—],)— Z Z (7‘ k )h!S(k, h)Brt1-k
r k=0 h=0

O

j=0

where S(r, h) are Stirling numbers of the second kind, and Bx(y) and By
are Bernoulli polynomials and Bernoulli numbers, respectively.

By Theorem 1 and Lemma 5, we immediately complete the proof of
theorem.
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Corollary 6.

k=0 j=0

n k -
S5 () B
J

3

k=0 j=0

Theorem 7. Let r be any nonnegative integer , then

n+k\"! n oo (n-2\""
7‘=—“ '
Z( k ) k n—lhz=o( h ) hS(r, k),

k=0

where S(r, h) are the Stirling numbers of the second kind.

Proof. We have

i (n:k)_lk' = /01(1 - t)"f:kr(n-f- k + 1)tk

k=0 k=0

=(n+1) zr:h!S(r, h) /1(1 — )k lghgt

+Eh!$(r,h) f (1= £ =h=2¢h(t + h)dt

h=0

pr n-—1

- > (" N 2)- hIS(r, h).

h=0

The proof is complete.
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Corollary 7.

() = 2o

n+k -1 n(n + 1)
( ) k2=(n_1)(n_2)(n_3)’ n24

Analogous to the proof of Theorem 7, we obtain the following identity,
by which a infinite series can be reduced to a finite sum.

Theorem 8. Let 7 be any nonnegative integer, then

£ v

k=0

r 1o < (B /n+ h+1
= n-—1 1 _\h J _ntT2
2 nln2§:h.S(r,h)( 5) 2:(3,)( ; )2 .7+1

=0
D1 1
2" ) " hIS(r,h 1)h-7 = -
+n }g ('I’ )Z( )( ) k_gk;gj( )k J 2i 2k) |
n-1 R _pp-i 5o (P (CDF 11
+2 ’;h!s(r,h)jg(j)( 1) Jk=o§,-+1<’°)k‘j'l(2j k)

where S(r, h) are the Stirling numbers of the second kind.

Corollary 8.

-] -1 n-1

> " ;: k) (-1)* = 2" 'n(In2 - Z ﬁ),

0
0 -1
Z(":k) (-1)kk = 2"2(n+1)(ln2+zk2k)+ -1



0 n+k -1 o n .
,;, ( k ) (—l)kk2 =9 3n2(n +3)(In2 — ,;l W)
n(n + 1)

+n2""4(n + 16) — 3

Where H,, := Y 1, %-

Remark. The first identity of Corollary 8 is a result in the paper [3]. Here
it has been further simplified.

In addition, the next two theorems can be verified.

Theorem 9.
= n+k)"1 (1) = 1
> ="} =z —In2),
k=1( k k & k2
= n+k)"(—1)k o+l I\ 1
> === r ~1n2)
k:l( k k2 n+1 k=1 k2
n+l k
n+1\1(-1) =?
+Z=;< k )Ic;:: J 12
Theorem 10.
>°:°: (n+k)" 1_1
k=1 k k n
> n+k:) 1 "f(nﬂ)(-l)k 1 2
> == Hi+ s+ —
k=1( k k2 = k k (n+1) 6
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