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1. Introduction and Motivations

Let PG(r, §) denote the projective space of dimension 7 and order ¢, where ¢ is
a prime power. Let Zbe a line in PG(3, §) and X=(X,X,%,%) and J=(Jo,)1,)5.55)
two points on £ The Plicker coordinates of the line Z are the determinants

X Xj
Yi Yi

I= , with / f€{0,1,2,3} and /<j. They are not all zero and in number

4
(2) =6. It is easy to verify that the Plicker coordinates /j satisfy the equation
oy ha—loahs+la1=0. Therefore the lines in PG(3,§) are represented by a

hyperbolic quadric #s in PG(5,q), see [7]. So, a point LeH;s represents in
PG(5,0) a line £ of PG(3,4). Moreover a pencil of lines in PG(3,9), i.e. all the
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lines through a point contained in the same plane, is represented in PG(5,q) by
a line contained in #s. Thus, two lines in PG(3,4) meeting in a point are
represented by two collinéar points Hs, i.e. two points such that the line
through them is completely contained in Hs. In PG(3,4) a maximal set of lines
which pairwise meet in a point is either a star of lines i.e. all the lines through a
point, or a ruled plane, i.e. a plane considered as the set of its lines. Therefore,
the Klein quadric /s has two systems of generating planes, called greek and
latin planes for convenience, see [7], which are maximal subspaces on Hs. A
latin plane represents a star of lines and a greek plane represents a ruled plane
in PG(3,9). One of the most interesting problem in finite geometry is the
combinatorial characterization of a remarkable set of lines as point-set of Hs
having suitable incidence properties with respect to the subspaces of H;. Let A
denote a A-set of Hs, ie. a set of k points of Hs. We recall that the
d-charactars of K, with respect to d-subspaces of /s, are the numbers
17=t/(K) of d-subspaces of Hs meeting K in exactly / points, 0</<6,, where

1

O q‘: ; is the number of points in a d~subspace, de{1,2}. A set Kis said
to be of class [m,m,...,mgs with respect to d-subspaces of Hs, if any
* d-subspace of Hs contains either /m, or M, ..., or M; points of K, where the m;
are non-negative  integers  with  0SmM<my<..<m<O,; e if
t1¢0=>le{m,,m,, .mgs}, see [11]. Moreover a set K of class [m,,m,,...,mgq is
said to be of fype (M, My ...,mgy with respect to d-subspaces of Hs, if any
d-subspace of H; contains either m, or M, ..., or M points of K, and every
values occur, ie. Je{m,m,..m}c>t’20, see [11]. A set of type
(m,my, ...,ms)q is also called s characler sel. Point k-sets on Hs can be
investigated in terms of their numbers of non zero characters, see [9]. Since in
Hs one character A—set with respect to lines is either the empty set or H;, see
(10}, in this paper we consider A-set having at least two character with respect
to lines different from zero. In order to give a better picture of the current
interest in this type of problem the reader is referred to [1], [2], [3], [4], [5] and
[6].

The following results enter into this scheme of things.

Result 1 ([3] R. Di Gennaro, N. Durante and D. Olanda, 2004).- If the order §

is odd and K'is a #-set in Hs of type (O,qT_l ,qT'H )1 and of type (0, qzz' q )

then, /{=((f+(fi-1-m)qz_2"‘1 with me { ¢+1,3+2,2¢+1}, necessarily. Moreover if

m=2g+1 then K represents the family of external lines to a hyperbolic quadric
of PG(3,0).



Result 2 ([3] R. Di Gennaro, N Durante and D. Olanda, 2004).- If the order

>2 is even and Kis a A—set in H; of type (0, _),, then, A=(F+g+1-m) 022 q

with me {g+1,q+2,2¢+1}, necessarily. Moreover if m=2¢+1 then K represents
the family of external lines to a hyperbolic quadric of PG(3,4).

In this paper we give a characterization of the set of points of Hs which
represents the set of lines external to a hyperbolic quadric of PG(3,4) as a set
of Hs of class [0,a,0], and of type (/m,f), with respect to subspaces of Hs. In
particular we prove the following

Theorem.- /n Hs a (qz_;qf__m having exactly (g-1 ‘73(‘73 8‘3"2 +‘7+3)

pairs of non-collinear points and (g+1)*R+1) external lines, of class [0,a,0],
and of type (m,n), represents the set of lines external to a hyperbolic quadric
inPG(3,9).

2. The proof of the Theorem

Suppose that K is a #-set of type (m,7); in Hs. Let a denote a latin (greek)
plane. By counting in double way the total number of latin (greek) planes, of
incident point—planes pairs (P,@) with PeKna, and triples (P,@,0) with
P,Qe Kna, we have what are referred to as the slandard equations on the
integers f;=1,7(K) and =t (K), see [9],

by+l,=@ + @ +q+1
@.1) mt, + nt, = K(g+1) ,

m{m—)t, + n-1)t, = k(k—1)-27
where 7 denotes the number of pairs of non collinear points. Thus, a two

character set with respect to latin (greek) planes depends by four parameters £,
7, mand 77 and a complete classification seems to be extremely difficult, see

[11, [6], [8], [10] and [12].
For /(=§q—2§‘ZZ (q l)zqs(qs 3¢+ 0+3) the system of equations

(2.1) becomes
b+ 1, =(q+1X@ +1)
(2.2) mt, + nt, = ¢ (g-1)>(g+1)/2
mm="1t, + mn-nt, = ¢@-1*(q+1*(g- 2)/4



From the first two equations of (2.2), we get
tn =12 +1) - F(q-1)*Yg+1)/(2n-2m)
(2.3) . )
t,=[g*(g-1)* -2mg* + D) g+1) /(2n-2m)
Since #;>0, by the second equation of (2.3) we have that
0sm<(q-1) QG + 2)=(@ - 2q)2+g/(¢ + 1).
Since gi(G + 1)<1/2 we get
" losms<(g#-2g)/2 ifqiseven
(24) .
0<sms<(g*-2¢-1)/2 ifqisodd
Firstly, we observe that if g=2, then, by (2.4), m=0.

Let us suppose that ¢=3.
From equations (2.2), we get

(2.5) 2AF +)mn= g (q-1*[m+n- q(g-1)/2].
Since GCD(¢, ¢>+1)=1 we have that 2m=0 (mod ¢?).

We claim that m=0 and, by (2.5), 7=q(q- 1)/2.
Indeed, if m>0, we have the following three possible cases:

1) m=0 (mod ¢?) and m>0.

In this case we have that /)7202 which leads, taking into account (2.4), a
contradiction.

2) n=0 (mod ).

Since 0<nsq2+q+l we have that n=l72, necessarily. By (2.5) we obtain that

X _ag-3) ,_ 2
2(g+1) 2

3)2mn=0 (mod ¢7), m=0 (mod ¢%) and 70 (mod ).

Firstly let us consider the case q=p” with p an odd prime.

Thus mr=0 (mod ¢?).

We have that m=ap®, n=bp’, 220 (mod p), 620 (mod p), 1<82/-1, 1<E2h-1.

Let rdenote the minimum between Sand /.

If r<h, then from (2.5) we obtain

26) A +Dabp™ = M (g-1[ap™ "+ bp" - P (g-1)/2).

So SH2M+r. If r=s then B2/, a contradiction. If r=f then 2/, a

contradiction, too.

If r2/#1, then from (2.5) we obtain

@7 2 +Dabp™' = p(g-1)[ap"" + bp"" - (g-1)/2).

Since r—fz1 we  have  that s-fz1 and 1. So
[ap°" + bp™" —(g-1)/2]#0 (mod p). Since (& +1)ab=0 (mod p), by (2.7)
we get $+£3/4. So mn=ab@ and (2.7) becomes

7 which is not an integer, a contradiction.



(2.8) A +Dab=(g-1*[ap*" + bp™" - (g-1)/2).
Equation (2.8) implies that 2(¢? + 1)ab=0 (mod (¢~ 1)2).
Since GCD(p*"+1, p"~1)=2 we have that ab=0 (mod ((¢-1) 2/4). Hence

(2.9) mn=ab@Pz(g-1) /4.
By ﬂsqz-l-q-l-l and (2.4) in the case § odd we obtain
(2.10) ms(@ + g+ 1)(@ - 29 - 1)2.

From (2.9) and (2.10) we get q3(q— 1Xg- 3)+4(]2+60+2S0. Since =3, we
have a contradiction.

Now let us consider the case q=2” with /2.

Thus mr=0 (mod 22/1).

We have that m=a2°, n=12', 2 odd, b odd, 0<8<2/1, 0<t<2/-1.

Equation (2.5) becomes

@.11) (" +Dae®! =221 "~ 1 [2° + 2! -2 (2" -1)].

Let 7 denote the minimum between Sand /.

If r<f-1, then from (2.11) we obtain

(2.12) (2211 + ])aﬁZ"” = 22/1—!+ r(2h _ 1)2[32’" + bzt—r _ zlr-l-r(zh -1)].

So S+L22/-1+r.

If r=t then £2h1 and so $2h~1. Thus we have that
m=a2°=a22"=a12> 12—, a contradiction.

If /=8 then £2A-1 and so £2/-1. Thus we have that n=t2=02H1=pg/2.
Since n<@?+¢+1, 24 and b is an odd integer it is easy to see that b=1,
necessarily. So n=2. By (2.5) we get 4m=(g-1) 2 which implies g odd, a
confradiction.

If r2h, then from (2.11) we obtain

(2.13) 2 +Dapst =232 — 1P (@25 + M -20 4 ).

Since /121 we have that s-/+121 and E/H121. So
25 Lt _28 11 s an odd integer. Since (22"+1)abis an odd
integer too, then from (2.13) we get s+£3/-2.

So mn=at23M2=abe/4 and

(.14) @ +Dab="-pX( @2 + R -2 +1).

Equation (2.14) implies that (22%+1)ab=0 (mod ((2"-1)?).

Since GCD(22/+1, 2/-1)=1 we have that ab=0 (mod ((2”-1)2). Hence

(2.15) mn=ab@1a>@R"-1) 4= (g-1)%4.
By nsqz+q+l and (2.4), in the case § even, we obtain
(2.16) mn<(P+q1)(GP-20)/2.

From (2.15) and (2.16) we have that P(g-4)}+3¢°+2¢+2<0. Since §>4 we
have a contradiction.



Therefore m=0 and 7= g—1)/2. Thus, K is a M-—set of type

(0,32—2-'—‘1» in Hs.

Now suppose that K is a #-set of class [0, 4, 8], in Hs. Let # denote a line of
Hs. By counting in double way the total number of lines, of incident
point—planes pairs (P, & with Pe KN/, and triples (P, Q, 4 with P,Qe K/,
we have what are referred to as the sfandard equations on the integers
b=b'(K), t=1'(K) and t=ly'(K), see [9],

Lh+1 +It,-((]3+qz+q+qu2 +q+1)
2.17) at, + bty = k(g +17 ,

a(a-1)t, + Hb-1)t, = k(k-1)-27

where 7 denotes the number of pairs of non collinear points. For Ir=£{’2—;qZ

i (g-1P @@ -3¢ +q+3)

8

(to +l+1 =(¢7+le7z +1X02 + q+1)
(2.18) Jat,+ bty = "2;" (g+1¢

a1+ K-, = ¢ ~4 81 (p_g_o)

the system of equations (2.17) becomes

e ﬁqz—ng-set K has at least two character, with respect to lines of Hs,

different from zero because in H; one character #-set with respect to lines is
either the empty set or /4, see [10]. We claim

If the set K is a two character set with respect to lines of the Klein quadric Hs,
then the order q is even. In this case K represents the set of lines external to a
hyperbolic quadric in PG(3,0). :



Indeed, if K is a two character set with respect to lines of Hs, then K'is of type

(0, ), because it is of type (0, qzz— q )2 in Hs. The system of equations (2.18)
becomes

.

f+ 1= (g+ @ +1[ + g+1)
2.19) lat,= "2“’ (g+1) .

a1, —f"z—z"f 412 _q2)
From the last two equatlons of (2.19), we get

a__l=l qz_q 2=q =E—1,
2 g+l 2 2

which implies that the order ¢ is even and az—g. Therefore K is a

Igzéflz—set is of type (0,-;2), in Hs and the assertion follows taking into
account the Result 2.

Now suppose that the order ¢ is odd, then A is a three character set with

respect to lines of Hs.
Since 4=(¢+1)*2¢+1), equations (2.18) become

li+l=g(g-1(g+1)
(2.20) at, + bty = 2 (g-1)*(q+1)* /2
a(a-Dty+Kb-Dt, = (-1 (g+1)(q- 2)/4

From equations (2.20) we obtain

(221 4abg=(g-1)(g+1)(2a+26-9),
and also
2.22) (2b-q-1)(qz—1—2aq)+(q+1)(q-1—2a)=0.

Since a<(g-1)/2 implies (¢?~1-2ag)2(g+1)>0, we have that equality (2.22)
holds if and only if

26~-¢-1=0 and ¢-1-22=0.
Hence we get 5=(¢+1)/2 and a=(q—l)/2 necessarily.

l q+1 ——), and of type (0,

So, /(1sa£l]2—qz setoftype(O qzz_q)zin
Hs.
Then, by the Result 1, K represents the family of external lines to a hyperbolic

quadric of PG(3,9).



Thus, the Theorem is completely proved.
3. Conclusion

In this paper we give a characterization of the point-subset of the Klein quadric
Hs which represents the set of lines external to a hyperbolic quadric in PG(3,4)
by incidence properties with respect to the subspaces of Hs. The arguments
leading to these results are combinatorial arguments based largely on the
integrality of the parameters at stake.
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