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Abstract

Let G be a simple connected graph with n vertices. Denoted by
L(G) the Laplacian matrix of G. In this paper, we present a sequence
of graphs {Gn} with nliqn;o p3(Grn) = 1.5550 by investigating the
eigenvalues of the line graphs of {Gr}. Moreover, we prove that the
limit is the minimal limit point of the third largest Laplacian eigen-
values of graphs.
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1. Introduction

In this paper, all graphs are undirected connected graphs without loops
or multiple edges.

Let G = (V, E) denote a simple graph with n vertices and d,, denote the
degree of the vertex u. The matrix A = A(G) is the adjacent matrix of G. Its
eigenvalues will be called the eigenvalues of graph G. They will be denoted
by Ai(G) = A2(G) = .-+ > An(G),always enumerated in nonincreasing
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order. We shall use Ax(G) to denote the kth largest eigenvalue of graph
G,and use P(G; ) to denote the characteristic polynomial of A(G).

Let D = D(G) denote the diagonal matrix of vertex degrees.Then
L(G) = D(G) — A(G) is called the Laplacian matrix of G (for example, see
[8]). Obviously, L(G) is a positive semidefinite matrix. Its eigenvalues will be
called the Laplacian eigenvalues of graph G. Similarly, they will be denoted
by 41(G) = pa(G) 2 - - - 2 pa(G) = 0, always enumerated in nonincreasing
order. We shall use px(G) to denote the kth largest Laplacian eigenvalue of
graph G, and use (G} 1) to denote the Laplacian characteristic polynomial
of L(G).

The study of the limit points of the eigenvalues of a sequence of graphs
was initiated by Alan Hoffman in [6]. Many important results about the
limit points of the adjacency matrix A(G) of graphs can be found in
([6],[31,(12]). Since the algebraic properties of the Laplacian matrix are use-
ful in researching the structural properties of a graph G, the properties of
the corresponding Laplacian matrix are very important (see (8],[9]). Thereby,
people began to consider the limit points of the Laplacian eigenvalues ([5]
etc.) and study their minimal or second minimal limit points. Particularly,
Petrovié et al. [10] characterized all connected bipartite graphs with 43(G) <
2 and mentioned the result can be of interest in the investigation on the
photoelectron spectroscopy of organic compounds. So, we study the minimal
limit points of the third Laplacian eigenvalues of graphs in this paper. We
present a sequence of graphs {G,} with nll'ngo u3(Gr) = 1.5550 by investi-
gating the eigenvalues of the line graphs of {G,} in Section 2. Moreover, we
prove that the limit is the minimal limit point of the third largest Lapla-
cian eigenvalues of graphs in Section 3. Now,we present the definition of
the limit point as follows.

A real number r is said to be a limit point of the kth largest Laplacian
eigenvalues of graphs if there exists a sequence of graphs {G,} such that
pe(Gi) # px(Gy) (i # 7) and him py(Gn) =1

Throughout this paper, We use I(A,Gy) to denote the limit point of
the kth largest eigenvalues A\x(G,) of graphs {G.},and use lx(u,Gyp) to
denote the limit point of the kth largest Laplacian eigenvalues pr(Gr) of
graphs {G,.}.

The terminology and notations not defined are standard and can be
found in [2].

2. The Limit Points of {G,}

In this section, we focus on the limit point of {G,}. We firstly present
some well known results which will be used often in our proof.
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Lemma 2.1 [11] Let G be a simple graph,v € V(G), C(v) be the set of
all circuits including v. Then

P(G;A)=AP(G-v;\) =) P(G-=u—-vA)=2 >  P(G-V(2);}),
u~Y 2€C(v)

Where P(G; A) is the characteristic polynomial of the adjacent matriz of G
in A

The line graph I(G) of a graph G is the graph whose vertices correspond
to the edges of G with two vertices being adjacent if and only if the cor-
responding edges in G have a vertex in common. Obviously, if a tree has n
vertices and n — 1 edges, its line graph has n — 1 vertices.

Lemma 2.2 [8] Let G be a bipartite graph. Then L(G) = D(G) — A(G)
and 2I + A(l(G)) have the same non-zero eigenvalues.

Lemma 2.3 [13] Let F(z;n) be a polynomial with variable x and pa-
rameter n and let x1(n) be the root of F(z;n) = 0. If F(z;n) = g1(z;n) +
ng2(z;n) and nll’ngo z1(n) = z1, then ga(z1;n) = 0.

Lemma 2.4 [4] Let G be a simple graph with order n. If H is a subgraph
(not necessarily an induced subgraph) of G with order m < n , then for
i=1,2,--- ,m, we have p;(G) > u;(H).

Lemma 2.5 [7] Let A(G) denote the mazimum degree of graph G,
then A1(G) 2 VA(G).

Let {G,} be a sequence of graphs with n vertices in Fig.1.It is easy
to get that, for different number n,each graph G, of {G,} is a different
tree with n vertices. Let K2_, denote the graphs which can be obtained
by joining one vertex of the complete graph K,,_» to another vertex of the
path P; with a new edge. Obviously, the line graph of G, is K2_; with
order n — 1.

2
Kn—2

Fig.1.

By Lemma 2.2, the Laplacian eigenvalues u;(Gy) (¢ = 1,2,--- ,n) are
Ai(l(Gr)) +2 (i =1,2,--- ,n—1) and 0.So, we can investigate u;(Gn) of
G, by investigating X;({(G,)) + 2, that is A;(K2_3) + 2.

Theorem 2.1 Let {K2_,} be the sequence of graphs in Fig.1. Then
(i) lo(\, K2_,) =1.2470, (ii) la(A, K2_,) = —0.4450, (iii) I,(\, K2_,) =
—1.8019, which are the Toots of the equation —A3 — X2 42X+ 1= 0.
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Proof. By Lemma 2.1, we can get that
P(K2_,;)) = (A+1)"-4(,\4+5A3+2,\2—1o,\—4+n(-,\3-,\2+2A+1)) (1)

As A(K?%_,) =n—2,by Lemma 2.5, we have \; (K2_,) > v/n — 2)
Let f(A\) = A4+ 5A% +2)% — 10\ — 4 +n(=A3 =22 +2) +1). Then
f(1)>o0 , f2)<o
F(=0.4) >0 , F(~0.5) < 0 (3)
f(=2)>0 , f(-15)<0

The above (3) implies that there are three real roots of f(A) = 0 in the
intervals (1,2), (—0.5,—-0.4) and (-2, -1.5). From (1)(2)(3),we can get the
distribution of the n spectra A; (Kn—2) (i=1,2,.

MER 2)2Vn =2 1<X(KZ ;) <2 —05< (K2 ;) <04
MKZ ) == (K2 )=-1; —2<A(K2_,)<-15.

If i < j, K2, is a subgraph of K 2. We can get that A(K?2 ,) <
A2(K _,?_2). Namely, A\o(K2_,) is a strictly increasing function with regard
to n and )\2(K _2) < 2. So,there must be a real number l3()\) satisfying

Jim Az( 2_5) = l2()). By Lemma 2.3, l3(]) is the largest root of —A% —

3 + 2X+1=0. A more accurate calculation yields I5(\) = 1.2470.

By a similar argument, if i < j,both A3(K2_,) and A,(K2_,) are
strictly increasmg functions with regard to n, too. They are satisfying
—0.5 < A3(K? ;) < A3(K7_5) < —0.4 and —2 < An( ,_2) < M(K2 ) <
—1.5. Suppose JLIEOA:’(K _g) = l3(2) and nlLIIgo)\n( 2, = n(/\). By
Lemma 2.3, we have that l3(A) and [,()) are the second largest and the
minimal roots of —A3—A242X+1 = 0, respectively. An accurate calculation
yields l3(A) = —0.4450 and I,(\) = —1.8019.

That completes the proof.

Theorem 2.2 Let {G,} be the sequence of graphs in Fig.1. Then

(i) la(p, Gn) = 3.2470, (ii) la(u, Gn) = 1.5550, (iii) ln—1(p, Gn) = 0.1981,
which are the roots of the equation —p3 +5u% —6u+1=0.

Proof. It is easy to see that, for different n,G, is a different tree with n
vertices and its corresponding line graph is K2_; with n — 1 vertices. By
Lemma 2.2, the Laplacian eigenvalues p;(Gp) of G, (i = 1,2,-- ,n) are
Mi(l(Gn)) +2=XN(K2_3)+2(i=1,2,--+ ,n—1) and 0. By Theorem 2.1,
we can get the distribution of the n spectra u;(G,) (:=1,2,--- ,n):

u1(Gr) > vn—=3+2; 3 < u2(Gn) < 4 1.5 < p3(Gr) < 1.6;
”‘4(Gn) == #n—Z(Gn) =1 0< F‘n—l(Gn) < 0.5; #’n(Gn) =0
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If i < j,G; is a subgraph of G;. We can get that us(G;) < pa(Gj).
Namely, p2(Gr) is a strictly increasing function with regard to n» and
p2(Gr) < 4. So, there must be a real number (1) satisfying nlinéo u2(Gn) =
la(p). Aslp()) is the largest root of —A3 — A2 +2X 41 =0, l(u) is a root
of the —u3 + 542 — 61 + 1 = 0. We can get that us(G,) = 3.2470

Similarly, we have that 1.5 < u3(G;) < #3(G;) < 1.6 and 0 < pp_1(G;) <
pn-1(G;) < 0.5, (¢ < 7). Suppose lim p3(Gn) = l3(u) and im pp—1(Ga) =

lﬂ—l(ﬂ)-
Then l3(4) and l,_1(u) are the second largest and the minimal roots

of —u® +5u? — 6u + 1 = 0,respectively. An accurate calculation yields
l3(pe) = 1.5550 and {,,_;(p) = 0.1981.
That completes the proof. [

3. The Minimal Limit Point of u3(G)

Now, we will prove that I3(u) = nlmgo #3(Gp) = 1.5550 ({G,} in Fig.1)
is the minimal limit point of the third Laplacian spectra by finding the

forbidden subgraphs.
Suppose there exists a sequence of graphs {G/,} with the property:
#3(G) # #3(G;) (i#35) eand  lim pg(Gr) < la(u) =1.5550 (4)

If the graph G!, of {G],} has some subgraph H with us(H) > l3(p),
by Lemma 2.4, we have that p3(G,) > pa(H) > l3(x). It implies that
nlingo 13(GY) > l3(u). We can say that such subgraph H violate the prop-

erty (4) and call H the forbidden subgraph in G}, or {G,,}.
By a direct calculation, we have the following results.
Lemma 3.1 The following graphs in Fig.2 are forbidden subgraphs in

{Gn})-

[l !

Py T /b
#a(FPs) = 2 p3(T1) = 1.5858  p3(T) =2

Sl Sy Sa A
u3(S1) =3 pa(S2) =2 pa(S3) =3 ka(Sy) =2
Fig.2.

Let T'(a,b) denote the tree having exactly two non-pendant vertices
which are adjacent, with one of these two vertices connected to a pendants
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(vertices with degree 1) and the other one to b pendants. In particular, the
order of T'(a,b) is n = a + b+ 2.Let K ,—; denote a star graph with n
vertices. Let S3 denote the graph which is obtained by joining one vertex
of the cycle C3 to other (n — 3) isolated vertices. T(a,b) and S3 are showed
in Fig.3. Then we will prove that {T'(a,b)}, {K1,n-1} and {S3} are three
sequences of graphs with u3(G;) = p3(G;) = 1, (i # 7).

£

T(a, b) s3
Fig.3.

Lemma 3.2  p3(T(a,b)) = p3(Kin-1) = pa(S3) = 1.

Proof. (1) The Laplacian characteristic polynomial of T'(a, b) is

9(T(a,b); ) =| uI - L(T(a,b)) |= p(p—1)""*(p* — (n+2)p2 + (2n+ ab+

1)p —n) Let f(u) = p® — (n +2)u? + (2n + ab + 1)i — n, we have
f0)=-n<0 , f)=ab>0

fla+2)=-b<0 , f2)=a(b-1)+be—1)>0

Without loss of generality, we suppose that b > a. As n is sufficiently
large, it is easy to get that b = n — a'— 2 is sufficiently large too. Namely,
#1(T(a,b)) > Ay +1 > b+ 2 (see in [1]). So the distribution of the n
Laplacian eigenvalues of T'(a,b) are: py > b+2, 2 € (2,a+2), ya =+ =
Hn—2 = 11 Bn-1 € (Os 1)1 Hn = 0.

(2) The Laplacian characteristic polynomial of K ,_; is ®(K Ln—1; 1) =

| uI = L(K1n-1) |= p(pe = 1)*%(p — n). Obviously, pa(K1 1) = 1.

(3) The Laplacian characteristic polynomial of S3 is

O(S3; 1) =| pI — L(S3) |= p(u — 1)"~3(1 — 3)( — n). Then py = n, pp =
33 ="+++=pp—1=1and p, =0.

That completes the proof.

Let d(u,v) denote the distance of the two vertices © and v of graph G
and let diam(G) = maz{d(u,v)|u,v € V(G)} denote the diameter of G.
Theorem 3.1 Let {Gn} be a sequence of graphs with n vertices in Fig.1.
Then l3(u) = nli»nolo 13(Gr) = 1.5550 is the minimal limit point of the third

Laplacian spectra.

Proof. Suppose there exists a sequence of graphs {G%,} such that u3(G%) #
#3(G3) (i # j) and lim p3(Gy) = ls(p, Gy) < l3(p, Gn) = 1.5550. We de-
note the diameter of the graph G, of {G.,} by d(G.). By Lemma 3.1, P;
is a forbidden graph in {G/}. We can get that d(G’) < 4. Otherwise, P;
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is a subgraph of G%,. So, we can only consider the following four cases with
d(Gh) < 4.

Case 1. d(G))=4.

By deleting some edges of the graphs G/, of {G.}, G has at least
one spanning tree T}, as its subgraph. Obviously, d(T)) > d(G%,).If d(T%) >
4, there is a forbidden graph Ps in T.. So, in this case, we only need to prove
that nll»ngo 13(Gr) = 1.5550 is the minimal limit point of the third Laplacian
spectra of all the sequences of trees {T},} with d(T},) = 4.

We first construct a sequence of graphs denoted by {T'(a1,a2, - ,ac)}
(showed in Fig.4). {T(a1,a2, --,a.)} can be obtained by joining all the
non-pendant vertex v; of the star graph K ,, (i =1,2,---,¢) to another
common isolated vertex vg with ¢ new edges v;vp (1 = 1,2,--- ,¢), and a; =
0,1,---;¢=0,1,---. Theorder of {T(ay, a2, ,ac)}isn =3 ;_; aj+c+l.

as Gc

al
Fig.4: T(a1,a2,--- ,ac)

Obviously, all the trees T}, with d(T},) = 4, must be one of the subgraphs
of T(ay,as, - ,a;) with some certain different value a; and c. Now,we

prove that there does not exist {7}, } with d(T’;) = 4 satisfying: nlingo us(Th) <
l3(1, Gn) = 1.5550 by discussing the parameters a; and cof {T'(a1, a2, -- ,ac)}.

Firstly, we can get that ¢ < 2.If ¢ > 3, then each graph of {T'(a;, a2, - - ,ac)}
contains the forbidden subgraph T3 which is showed in Fig.2.It is contra-
dictory to lin;o p3(Tn) < l3(p) = 1.5550.

Secondly, there is at most one a; > 2.If there are two a; > 2, then the
trees {T'(ay, az, - - ,a.)} have forbidden subgraph 7} in Fig.2.1t is a contra-
diction to lingo u3(Th) < l3(p) = 1.5550, too. Without loss of generality, we
suppose that a; > 2.

By the two discussions above, we can conclude that 7;, with d(T}) =
4 must be the subgraphs of T'(ay,aq, - ,a;) wWith ¢ = 2 and a; > 2,
az = 1.Namely, {T},} is {Gn} (in Fig.1).So, nlingo p3(Gr) = 1.5550 is the
minimal limit point of the third Laplacian spectra of all the sequences of
graphs {G.} with d(G) = 4.

Case 2. d(G.) =3.
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If {G,.} is a sequence of trees with d(G,) = 3,by Lemma 3.2, u3(G%) =
1. It is contradictory to the definition of the limit point.If {G} with
d(G}) = 3 is not a sequence of trees. Since P; is a forbidden graph in
{G.}, the length of the cycle in G/, must be less than 6. So, there is at least
one of the forbidden subgraphs {S), Sz, S4} (showed in in Fig.2) in G/, or
G}, have subgraphs G,,.By Lemma 2.4 and 3.1, there does not exist {G/,}
with d(G},) = 3 satisfying nlgxgo #3(Gh) < la(p, Grn) = 1.5550.

Case 3. d(G,)=2.

By a similar argument as the one in Case 2, the length of the cycle in
G, must less than 6.If G}, & S3 or K} ,_1,by Lemma 3.2, u3(G.) = 1.1t
is contradictory to the definition of the limit point. If G/ % S2 and
G}, % K1,n—1,then there must be at least one of the forbidden graphs {S5,
S3} (showed in Fig.2) in G,. By Lemma 2.4, there does not exist {G/,} with
d(G},) = 2 satisfying nlglgo #3(Gr) < la(p) = 1.5550.

Case 4. d(G,)=1. :

In this case, as d(G},) = 1,we have G, & K,,.It is easy to see that G/,
contains the forbidden graph P for n > 6. By Lemma 3.1, there does not
exist {G,,} with d(G.,) = 1 satisfying nll'ngo u3(Gy) < la(p) = 1.5550.

From the dicussion of Cases 1-4, we can conclude that nlingo 13(Gp) =

I3(p) = 1.5550 is the minimal limit point of the third Laplacian eigenvalues
({Gn} in Fig.1).
That completes the proof.
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