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ABSTRACT. Define the conditional recurrence sequence gn = agn—1+
gn—2 if nis even, gn = bgn—1+gn—2 if nis odd, wherego =0, q1 = 1.
Then gn satisfies a fourth order recurrence while both g2, and g2n41
satisfy a second order recurrence.

Analogously to a Lucas pseudoprime, we define a composite num-
ber n to be a conditional Lucas pseudoprime (clpsp) if n divides
T—(2) where A = a2b2 +4ab and (%) denotes the Jacobi symbol.
We prove that if (n, 2abA) = 1, then there are infinitely many condi-
tional Lucas pseudoprimes. We also address the question, given an
odd composite integer n, for how many pairs (a, b) is n a conditional
Lucas pseudoprime.

1. INTRODUCTION

A pseudoprime is probable prime which is not actually prime. Pseudo-
primes can be classified according to which property they satisfy. Some
of the classes are Fermat pseudoprimes, Euler pseudoprimes, Fibonacci
pseudoprimes, Lucas pseudoprimes, Perrin pseudoprimes, strong pseudo-
primes etc. In this study, after a brief recall about some classes of the
pseudoprimes, we introduce a new class of pseudoprimes which are called
conditional Lucas pseudoprimes.

The first pseudoprimes studied [1] were based on Fermat’s little theorem
which says

a?~1 = 1(mod p) (1.1)

for p an odd prime. We say that a composite number 7 is a Fermat pseudo-
prime (or psp(a)) if (1.1) holds. Fermat pseudoprimes have been studied
intensively. For a fixed base a > 2, pseudoprimes are sparsely distributed,
but there are infinitely many. In addition to this, unfortunately, there are
infinitely many Carmichael numbers which are psp(a) for every integer
a. The existence of such numbers provides encouragement to create other
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pseudoprimes. Two of these are Euler and strong pseudoprimes (see[5] for
detailed information).

Let D, P and Q be integers such that D = P2 —4Q # 0 and P > 0. Let
Uo =0, Uy = 1. The Lucas sequence {U,} is defined recursively for n > 2
by

Un=PUp-1 — QUr_2.
For n > 0, we also have

o* — gF
Uk = (&1%3 (1.2)

where a and S are distinct roots of 22 — Pz + Q = 0.
If n is prime and ged (n,2QD) = 1, then

Un-(-ﬁ’-) = 0(mod n) (1.3)

where (2) denotes the Jacobi symbol. If n is composite, ged (n,2QD) = 1
and (1.3) still holds, then we call n a Lucas pseudoprime with parameters
P and Q (or lpsp(P,Q)). (See [6] for detailed information about pseudo-
primes based on Fibonacci and Lucas sequences.)

Marcia Edson and Omer Yayenie [3] presented following generalized Fi-
bonacci sequence

aQn-1 + Qn—2, if n is even

90=0 qg=1¢gn= { bgn—1+gn—2, ifnisodd

where a and b are nonzero fixed integers. They found the generating func-
tion and Binet like formula for the conditional Fibonacci sequence. This
new generalization produces a distinct sequence for each new choice of a
and b. In fact, one can get many famous sequence, such as Fibonacci se-
quence, Pell numbers, k-Fibonacci numbers, etc., by altering the values of
a and b in the sequence. For this sequence, we have the following.
The generating function f(z) of the sequence {g,} is
f(z) = - :z:((ll-:-a:x: 2:1:2) -

—(ab+2)z2 +
Also, the Binet formula of the sequence g, is given by

al=#m) on _ gn

" @)z a-8

where o and f are roots of the polynomial p(z) = 22 — abz — ab and

(1.4)

Gn

(m) = 0, ifmiseven
KMI=11, ifmisodd.

In this paper, we define pseudoprimes, which are called conditional Lucas
pseudoprimes, based on this sequence. We prove that there are infinitely
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many composite numbers n which are conditional Lucas pseudoprimes for
given pair (a,b). Also, we solve the problem, given a composite number 7,
for how many pairs (a,b) is n a conditional Lucas pseudoprime. Finally,
we address the question of whether a pseudoprime test which depends on
this sequence can be implemented efficiently or not.

2. CONDITIONAL LUCAS PSEUDOPRIMES

In this section, we define the conditional Lucas pseudoprime based on
the following theorem.

Theorem 2.1. Let the sequence (g,,) be as above and define A = a2b®+4ab
which is not square. If p is prime with ged (p,2abA) =1 then

gp—a = 0(mod p).
F
Proof. Define following sequence
al’""(j) xj — (ab - .'L')J
(ab)I-%J z — (ab—z)

where notations means that we take remainder in Z[z] upon division by
p(z). Then the sequence satisfies the following recurrence

K; = Kj(a,b) = (mod p(z)) (1)

K. = aKj_1+ Kj—2, ifjiseven
’ bKj1 + K, if 7 is odd
and has initial values Ko = 0 and K; = 1. That is, this sequence corre-
sponds to generalized Lucas sequence (gn). So, in this theorem we deal
with objects in the ring R = Z,[z]/(2? — abz — ab). That is, we deal with
the set of coset representatives :
{¢ + jz : i and j are integers with 0 < ¢,j < n}.
We add coset representatives as vectors (mod n), and we multiply them via
22 = abz + ab. Suppose p is prime with (%) = —1. Then the polynomial
p(z) is irreducible over Z,. Thus R is isomorphic to the finite field Fp.

Let o be the Frobenius automorphism in Fp2, which maps an element to
its p-th power. Then

o(u) +0(v),

o(u)o(v)

and o(u) = u if and only if u € Z,. The roots of p(z) in the coset
representatives are z and ab — z. Since z and ab — z are not in Z, and o
permutes the roots of p(z), we have

A\ _ | f o =ab—z (mod (p(a),p)),
For the case (;) =-1: { :(Eab _a;;)? ;g(;n(l;od (;:(zf,p))

o(u+v)
o(uv)
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Then, zP*! — (ab— z)P*! = 0 (mod (p(z),p)) so (1) implies that g4 =0
(mod p).
Now, suppose that (%) = 1. So, the roots of the polynomial p(z) are

in Zp. In this case, R is not a finite field. It is isomorphic to Z, x Z,, and
every element maps to the p-th power of itself. Thus,

A P = mod ) )
For the case (;) =-1: { Tab _wg;)(l’ = alEp—(z.’z (le)l)Od (p(z),p))-

Since ged(p,ab) = 1 implies that x and ab — z are invertible in R, since
z(ab— z) = ab (mod p(z)). Hence zP~! = (ab—z)P~! =1 in R. Thus (1)
implies that go_; =0 (mod p). O

Note that we say that a composite number n with ged(n,2abA) =1 is
a conditional Lucas pseudoprime with parameters a and b (or clpsp(a, b))
if g,_(a) =0 (mod n).
Example 2.1. For given a = 11 and b = 8, we get the following sequence
{g=} = {0,1,11, 89,990, 8009, ...} .

For this sequence,

A = a%p +4ab
= 11%8% +4.11.8
= 8096.
Since
ged(9, 2abA) = ged(9, 1424896) = 1
and

99—(£) = g8 = 8017020 = 0 (mod 9),

the composite number 9 is the first clpsp (11, 8).

Now, we handle the following questions
Question 1: Are there infinitely many odd composite numbers n which
are clpsp (e, b) for given a and b?
Question 2: Given an odd composite number n, for how many pairs (a, b)
is n is a clpsp (a, b)?

In order to solve these problems, we need some Lemmas which show the
relevance of conditional Lucas pseudoprimes.

Lemma 2.2. n is a clpsp(a, b) if and only if n is a lpsp(P, Q) where P = ab,
Q = —ab.

Proof. Assume that n is clpsp (e, b) then we have
9,-(2) = 0 (mod n)
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where A = a?b? + 4ab and ged(n,2abA) = 1. By the Binet formula (1.4)
of the sequence {gn}, we obtain
aim(n=(2)) go-(8) _ gr=(8)

%J oy =0 (mod n).

(2) = [,.-
(ab)
Since ged(2abA,n) = 1, we get
o= (%2) - gr—(3)
a-p

where « and 8 are the roots of the polynomial p(z) = z% — abz — ab.
For parameters P = ab and Q = —ab of the Lucas sequence, we have

D = P? — 4Q = (ab)? — 4(—ab) = a®b® + dab= A.

=0 (mod n) (2.1)

if we use the Binet formula ( 1.2) of the sequence {U,} and D = A, we get
the following

oan=(8) — gn=(8)
Vn(2)=Un_(2)= ( (= B) |

where o and 8 are the roots of the polynomial z2 — Pz + @ which is equal
to p(z). So ,we get the following

Un__( )= 0 (mod n) (2.2)

by using (2.1). Since n is composite, gcd(2Q D, n) = ged(2abA,n) =1 and
(2.2) is satisfied, n is also lpsp (P,Q) where P = ab, Q = —ab. O

The converse of this theorem can be proved similarly.

Lemma 2.3. n is a clpsp (a,b) if and only if n is a lpsp (P,Q) where
P=ab+2,Q=1.

Proof. Similar to Lemma (2.2) O
Now, we can solve the Questions 1 and 2 by the following theorems.

Theorem 2.4. Given pair (a,b), there are infinitely many odd composite
numbers n which are clpsp(a, b).

Proof. Given pair (P, Q) with ged(P, Q) = 1, we know that there are infin-
itely many odd composite numbers n which are Ipsp(P, Q) (See Theorem
7 of [6]). So, there are infinitely many odd composite numbers n for which
n is Ipsp(P, Q) where P = ab+ 2,Q =1 for given a and b. By the Lemma
(2.3), we get the desired result. a
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Theorem 2.5. Given an odd composite number n which has v differ-
ent prime factors, the number of pairs (a,b) modulo n, for which n is a
clpsp(a,b) and ab > 0 is at most

T
> d(ab)2"
k=0
where d (z) is the number of positive divisors of z.

Proof. Let p prime divisors of n. For fixed integer D, the number of distinct
values of P modulo p, for which P24+4P = D (mod p) and n is a lpsp(P, —P)
is 0,1 or 2 which depends on the number of the solutions of the quadratic
equation P? + 4P = D(mod p) (See Theorem 2 of [6]). So, the number of
distinct values of P modulo n, for which P? + 4P = D(mod n) and n is
a lpsp(P,—P) is at most 2". According to Lemma 2.2, for each integer P
modulo n, the number of pairs (a, b) which hold P = ab and ab > 0 is d(P).
So, Given an odd composite number n which has r different prime factors,
the number of pairs (a, b) modulo n, for which n is a clpsp(a,b) and ab > 0

is at most .
> d(ab)2".
k=0

3. CALCULATION OF THE CONDITIONAL LUCAS SEQUENCE

We have an easy way to prove that many numbers are composite by using
the ordinary pseudoprime test, since a?~! (mod p) can be rapidly computed
by the technique of repeated squaring. Also, Lucas tests which determine
whether the given integer is a Lucas pseudoprime can be implemented
effectively in about twice the time of a (Fermat) pseudoprime test by Lucas
chains. (See for detailed information (2] and [4]).

Now, we try to answer the question of whether a pseudoprime test which
depends on the sequence {g,} can be implemented efficiently or not. the
authors presented many properties of the sequence {g,} in [3].

The following properties

(al_“ (n+k) b“(""'k)) Gotksr + (al_"(n_k)b“ ("-k)) @2 _) = GQ2n41G2k+1
for any nonnegative integers n and k with n > k and
Giyp — a2 =o' HMp Mg, (3.1)

for any nonnegative integer n are hold for the sequence {gn} (See [3]). The
first property above is also holds for ¥ = 0, so we can say that

(al_,‘(,.)b,‘(n)) oy + (al—#(ﬂ)b#(ﬂ)) @ = agent11- (3.2)
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Now the question is can g, (mod n) be calculated effectively. If so we can
effectively determine whether a given integer is a conditional pseudoprime
or not.

If we have the residues g (mod n) and gx4+1(mod n) for nonnegative in-
teger k, we can compute either the pair gax41(mod n), gag+2(mod n) or
the pair gaxqo(mod n), gory3(mod n) by using the properties (3.2), (3.1)
and the definition of the sequence {g,} with each choice taking four mul-
tiplications modulo n and two addition modulo n. So, starting from the
pair go, g1 we can recursively using (3.2), ( 3.1) and the definition of the
sequence {gn} to arrive any pair gm,gm+1. For example, if m = 17 then
we can arrive 17 as follows:

0,1-1,2—23—-4,5—8,9—-17,18.

There are two types of moves. One way to determine which move to choose
in each step is starting from the target pair m,m + 1 and work backwards.

4. CONCLUSION

In this paper, we define the conditional Lucas pseudoprimes which are
the generalization of the Lucas pseudoprime. Then, we prove that there are
infinitely many composite numbers n which are conditional Lucas pseudo-
primes for given pair (a, b). Also, we solve the problem, given an composite
numbers n, for how many pairs (a, b) is n a conditional Lucas pseudoprimes.
Finally, we show that we can determine effectively given integer whether
conditional Lucas pseudoprime or not.

Conditional recurrences can be defined in many different ways (for dif-
ferent {g,}), having a more complex definition, would have a different set
of liars yet. Ideally, the number of liars would be even less than for the
other tests.
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