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Abstract

For a graph H and an integer k > 2, let ox(H) denote the mini-
mum degree sum of k independent vertices of H. We prove that if a
connected claw-free graph G satisfies 0441(G) > |G| — k, then G has
a spanning tree with at most k leaves. We also show that the bound
|G| — k is sharp and discuss the maximum degree of the required
spanning trees.
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1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). In this paper, we
consider only simple graphs, which have neither loops nor multiple edges.
We write |G| for the order of G, that is, |G| = |V(G)|. For a vertex v of
G, we denote by degg(v) the degree of v in G. A vertex of degree one is
called an end-vertez, and an end-vertex of a tree is usually called a leaf A
vertex set S of G is called independent if no two vertices of S are adjacent
in G. The minimum degree sum of k independent vertices of G is denoted
by ox(G), that is, if G has k independent vertices, let

ok(G) = msi_n{ E degg(z) : S is an independent set of G with k vertices}.
€S

If G does not have k independent vertices, we define ox(G) = +oo. The
connectivity, the independence number and the minimum degree of G are
denoted by x(G), a(G) and §(G), respectively. The complete graph of
order n is denoted by K,,. The complete bipartite graph with bipartition
(X,Y), where | X| = m and |Y| = n, is denote by K n. A graph G is said
to be claw-free if it contains no K 3 as an induced subgraph.

By Dirac’s Theorem, every graph G of order at least three with 6(G) >
%|G| has a hamiltonian cycle. As an immediate corollary, we can prove
that every graph G with 6(G) > (|G| — 1) has a hamiltonian path. For
general graphs, the bound (|G| — 1) is sharp. For example, for a positive
integer m, the complete bipartite graph G = Kp mio satisfies 6(G) =
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m = 3(|G| — 2), but G has no hamiltonian path. However, Matthews and
Sumner [5] proved that if we restrict ourselves to the class of claw-free
graphs, a considerably smaller bound on minimum degree guarantees the

existence of a hamiltonian path.

Theorem 1 (Matthews and Sumner [5]) Let G be a connected claw-
free graph. If 5(G) > (|G| — 2)/3, then G has a hamiltonian path.

Ore’s Theorem states that every graph of order at least three with
02(G) > |G| has a hamiltonian cycle. It extends Dirac’s Theorem, and
implies as a corollary that every graph G with 02(G) > |G| — 1 has a
hamiltonian path.

A path of order at least two can be interpreted as a tree having exactly
two leaves. From this point of view, a hamiltonian path of a graph of order
at least two is a spanning tree with exactly two leaves. This interpreta-
tion may lead us to consider a spanning tree with a bounded number of
leaves. Actually, Broersma and Tuinstra [1] gave a sufficient condition for

a connected graph to have such a spanning tree.

Theorem 2 (Broersma and Tuinstra [1]) Let k > 2 be an integer and
let G be a connected graph of order at least two. If 62(G) 2 |G| -k + 1,
then G has a spanning tree with at most k leaves.

The previous corollary of Ore’s Theorem corresponds to the case k = 2

of the above theorem.

Broersma and Tuinstra also proved that the bound |G|—k+1 of 02(G) is
sharp. However, in view of Theorem 1, for claw-free graphs, a much weaker
condition may yield the same conclusion as in Theorem 2. Motivated by
this observation, we study a degree sum condition for a claw-free graph
to have a spanning tree with a bounded number of leaves, and give the

following theorem.

Theorem 3 Let k > 2 be an integer and let G be a connected claw-free
graph. If 0x11(G) > |G| — k, then G has a spanning tree with at most k

leaves.
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Note that Theorem 1 is a corollary of the case k = 2 of the above
theorem.

In the next section, we prove the above theorem. In Section 3, we
investigate the maximum degree of a spanning tree and prove that under
the same assumption as in Theorem 3, G has a spanning tree of maximum
degree at most three with at most & leaves. In Section 4, we give concluding
remarks.

Before proving Theorem 3, we first show that the bound |G| — k of
0x+1(G) is sharp. Consider a graph G constructed from one complete
graph Ki+1 and k + 1 complete graphs K,,, m > 2, by identifying one
vertex of each K,, with one distinct vertex of K1 (see Figure 1). Then
G is claw-free and satisfies 0%4+1(G) = |G| — k — 1, but G has no spanning

tree with at most k leaves.

Figure 1: A connected claw-free graph G that has no spanning tree with
at most k leaves and satisfies 0441(G) = |G| -k — 1.

Some other results on spanning trees having at most k leaves can be
found in [2] and [8].

2 Proof of Theorem 3

We begin with some additional notation. For a vertex v of a graph G, the
neighborhood of v in G is denoted by Ng(v). For a vertex set X of G,
we write Ng(X) = {J,cx No(z), and the subgraph of G induced by X is
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denoted by (X)g. We write G — X for (V(G) — X)g, and for a vertex v,
G — {v} is briefly denoted by G —v.

The graph constructed from two complete graphs K, and K, by iden-
tifying one vertex of K,,, with one vertex of K, is called a double complete
graph and denoted by DC(m,n), where m,n > 2. The common vertex of
K, and K, is called the center, and the other vertices are called non-central
vertices (See Figure 2). Note that the order of DC(m,n) is m+n—1, and
the path of order three is a double complete graph DC(2,2). Let D denote
the set of all double complete graphs.

When we consider a path or a cycle, we always assign an orientation.
Let W be a path or a cycle, and let v € V(W). Then we denote by (W)
and v+ (W) the predecessor and the successor of W, respectively. We write
v~~ W) instead of ('v"(W))_(W). For ACV(W),let A~W) = [o=M): y €
A}. If W is clear from the context, we often omit “(W)” and write v~, vt,
v=— and A~ instead of v=W), v+(W) y==(W) and A~(W) respectively. A
path which starts at a vertex u and ends at a vertex v is called a uv-path.
For a path P and vertices u,v € V(P), a subpath of P with ends « and v
is denoted by P(u,v). For subgraphs H; and H of a graph G, we define
Hy+H, by Hy+H, = (V(H)UV(Hy), E(H,)UE(H,)). When we consider
this operation, an edge is often considered as a subgraph isomorphic to Kj.
For example, for uwv € E(G), Hy +w = (V(H1) U {u,v}, E(H;) U {uv}).
For further explanation of terminologies and notation, we refer the reader
to [9).

Center

K, =K; K,=K,

Figure 2: The double complete graph DC(m, n), whose order is m +n— 1.

Enomoto [3], Jung [4] and Nara [6] implicitly characterized the con-
nected graphs G such that G satisfies degg(z)+degg(y) = |G| —1 for every
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pair of vertices z and y of G which are end-vertices of some hamiltonian
path of G, but G has no hamiltonian cycle. The next lemma is a corollary
of this characterization. We give its proof for the self-containedness of the

paper.

Lemma 4 Let G be a claw-free graph having a hamiltonian path. Suppose
that degg(z)+degge(y) = |G|—1 for every pair of vertices ¢ and y which are
end-vertices of some hamiltonian path. Then G has a hamiltonian cycle,

or G is a double complete graph.

Proof. Assume G has no hamiltonian cycle. Let P be a hamiltonian
path and let £ and y be the first and the last vertices of P, respectively.
By the assumption, zy ¢ E(G). If Ng(z)~ N Ng(y) # @, then P(z,v) +
vy + P(y,vt) + vz, where v € Ng(z)~ N Ne(y), is a hamiltonian cycle,
a contradiction. Thus, Ng(z)~ N Ng(y) = 0. Since Ng(z)~ U Ng(y) C
V(G) - {y} and [Ng(z)~ U Ng(y)| = [Na(z)™| + [Ne(y)| = |Na(=)| +
[Na(y)| = degg(z) + degg(y) = |Gl — 1, we have Ng(z)~ U Ng(y) =
V(G) — {y} and deggs(z) + dege(y) = |G| — 1. On the other hand, since
Ng(z)UNe(y) € V(G) - {z,y} and degg(z) +degg(y) = |G| -1, we have
Ng(z) N Ng(y) # 0. We consider two cases.

Case 1. |Ng(z) N Ne(y)| =1.

In this case, Ng(z) U No(y) = V(G) — {z,y}. Let Ng(z) N Ng(y) =
{z}. Since Ng(z)~ N Ng(y) = @ and Ng(z) U Ng(y) = V(G) — {=,y},
v € Ng(z) — {z*} implies v~ € Ng(z). This implies P(zt,z) C Ng(z).
Similarly, P(z,y~) C Ng(y). Since Ng(z) N Ng(y) = {2}, we have
Ng(z) = P(zt,z2) and Ng(y) = P(z,y7).

Let z; € P(zt,z~). Then zf € Ng(z) and P(z,,z) + z2F + P(z7,y)
is a hamiltonian path of G. If Ng(z,) N P(z%,y) # 0, then P(z,z;) +
11 + P(y1,y) +yy1 + P(yr,zT) + 2z, where yy € Ng(z1)NP(z%,y), is
a hamiltonian cycle of G, a contradiction. Therefore, Ng(z1) C P(z,2) —
{z1}. Since degg(z1) + degg(y) > |G| — 1 by the assumption, we have
Ng(z1) N Ng(y) = {z}. The we can apply the same argument as in the
previous paragraph to z; and y, and obtain Ng(z;) = P(z, z) — {z1}. This
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implies that z is a cutvertex of G and P(z,z) induces a complete graph.
By symmetry, P(z,y) also induces a complete graph. Therefore, G is a
double complete graph.

Case 2. [Ng(z) N Ng(y)| > 2.

In this case, there exist o € Ng(z) and yo € Ng(y) such that o €
P(y{," ,4). Choose such g and yo so that P(yo, Zo) is as short as possible.
Since Ng(z)~ N Ng(y) =0, yg # Zo-

Since zy ¢ E(G) and Ng(z)~™ U Ne(y) = V(G) — {y}, 25~ exists and
x5~ € Ng(z)~ U Ng(y). Since 5 ¢ Ng(z) by the choice of (20,%0),
T5~ € Ng(y). Again by the choice of (2o,%0), we have yo = z5~. Since
P(yt, z)+zzo+ P(T0,y) and P(yg,y)+yyo+P(yo, z) are both hamiltonian
paths, we can apply the same argument as that for P to these paths, and
obtain degg(yd) +dega(y) = degg(yg ) +degg(z) = dega(y) +degg(x) =
|G| — 1, which yields degg(z) = dega(y) = dega(yg) = 3(IG| — 1)

Let C = P(z,0) + yoy + P(y,20) + Toz. Then V(C) = V(G) — {yg }-
Let C = vov1...vg]-2v0. If yg' is adjacent to a consecutive vertices of
C, then we can insert y('," to this cycle to obtain a hamiltonian cycle of G,
contradicting the assumption. Since degg(yd) = (|G| —1), yg is adjacent
to every other vertex of C. Let v; € Na(¥g)- Then vi_g € Ng(yg). Since
{vi-1,vi4+1,95 } C Ng(v;) and G is claw-free, we have v;_1v;41 € E(G).
Then by replacing v;_gv;-.1v;v;41 in C with v,-_zy('," ViV;—1Vi+1, We have a
hamiltonian cycle of G. This is a contradiction, and the lemma follows. O

Win [10] introduced a k-ended system to prove the existence of a span-
ning tree with at most k leaves. In this paper, we modify the definition of
a k-ended system and define a k-eztended system. It plays an important
role in the proof of our main theorem.

Let G be a connected claw-free graph, and F be a subgraph of G. The
set of components of F is denoted by C(F'). We call F an eztended system if
each component of F is a path, a cycle or a double complete graph. For an
extended system F, we define a mapping f from C(F') to {1,2} as follows.
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For every C € C(F),

£(C) = {1 if C is K, Ko, a cycle or a double complete graph,

2 otherwise (i.e., a path of order at least four),

and define
fF)= > F©).

Cee(F)
Let C;(F) = {C € €(F) : f(C) =i} for i = 1,2. An extended system F is
called a k-extended system if f(F) < k.
The following lemma is an easy but important observation.

Lemma 5 Let G be a claw-free graph and D be an induced double complete
subgraph of G. If a vertex v € V(G) — V(D) is adjacent to the center of
D, then v is also adjacent to a non-central vertez of D.

Proof. Let Dy and D, be the two blocks of D. Then both D; and D,
are complete graphs. Let = be the center of D and let z; € D; — {z}
(i =1, 2). Since D is an induced subgraph of G, z,z2 ¢ E(G). Since
{z1,z2,v} C Ng(z) and G is claw-free, {z1v,220} NE(G) #0. O

The next lemma shows a relationship between a k-extended system and
a spanning tree with at most k leaves in a claw-free graph.

Lemma 6 Let k£ > 2 be an integer and G be a connected claw-free graph.
If G has a spanning extended system Fo, then G has a spanning tree with
at most f(Fp) leaves. In particular, if G has a spanning k-eztended system,
then G has a spanning tree with at most k leaves.

Proof. Take a spanning extended system F with f(F) < f(Fp) so that
the number of double complete graphs is as small as possible. Then every
double complete graph of F' is an induced subgraph of G since if two non-
central vertices of a double complete graph D of F' are joined by an edge e
of G, then D + e has a hamiltonian cycle, and so D should be replaced by
this hamiltonian cycle.
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Since G is connected, there exists a minimal set X of edges such that
F together with X forms a connected spanning subgraph of G. We shall
construct a spanning tree with at most & leaves consisting of F and X. By
Lemma 5, we may assume that no edge in X is incident with the center
of a double complete graph. For any double complete graph D of F', there
exists an edge ep € X incident with a vertex vp of D, where vp is not
the center of D. Then D has a hamiltonian path starting at vp, and we
replace D with this hamiltonian path.

For any cycle C of F, there exists an edge ec € X incident with a vertex
ve of C. Delete an edge of C incident with vc. By repeating the above
procedure for every double complete graph and every cycle of F', we obtain
a spanning tree T'. By the construction, for each C € C(F'), the number of
leaves of T contained in C is at most f(C).

Hence T has at most f(F) < f(Fo) leaves. [

We call a k-extended system F of G a mazimal k-extended system if G
has no k-extended system F’ such that V(F) is a proper subset of V(F”).
In order to prove our theorem, we need the following lemma.

Lemma 7 Suppose that a graph G does not have a spanning k-extended
system. Let F be a mazimal (k + 1)-eztended system of G. Then G does
not have a k-extended system F' with V(F') = V(F). In particular, F is
not a k-extended system, and so f(F)=k+1.

Proof. Let F be a maximal (k + 1)-extended system of G. Assume that
G has a k-extended system F' with V(F') = V(F'). Since G does not have
a spanning k-extended system, there exists a vertex v € V(G) — V(F'),
and thus G has a (k + 1)-extended system F' U {v}, which contradicts the
maximality of F'. O

By Lemma 6, in order to prove our Theorem 3, it suffices to prove the

following theorem.

Theorem 8 Let k > 2 be an integer and G be a claw-free graph. If
ok+1(G) = |G| — k, then G has a spanning k-eztended system.
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Proof. Suppose that G has no spanning k-extended system. Take a max-
imal (k 4 1)-extended system F so that

(F1) Y pee,(r) | Pl is as large as possible,

(F2) The number of cycles in € (F') is as large as possible subject to (F1),
and

(F3) Xpeear) (deg(v(py)o (zP) + deg(v(p)), (yP)) is as small as possible,
subject to (F'1) and (F2), where zp and yp are the end-vertices of P.

By Lemma 7, f(F) = k+ 1. We begin with a simple but important
observation.

Claim 1 For each D € C,(F') and for each v € V(D) that is not the center
of D if D is a double complete graph, D has a hamiltonian path containing
v as one of its end-vertices.

The next claim follows from the condition (F2) and the same argument

as in the first paragraph of the proof of Lemma 6.

Claim 2 FEvery double complete graph D of F is an induced subgraph of
G.

Next, we investigate the adjacency between the components of F'.

Claim 3 The following three statements hold.

(i) No two components of €1(F) are connected by an edge of G.

(ii) No end-vertez of a path in Co(F') is connected to a component of C,(F)
by an edge of G.

(iii) No two end-vertices of two distinct paths or of the same path in Co(F)
are joined by an edge of G

Proof. (i) Assume that two components @; and Q> of C;(F') are joined by
an edge e of G. By Lemma 5, we may assume that no end-vertex of e is the
center of a double complete graph. So Q1 + e + Q2 contains a hamiltonian
path Pp. By replacing @, and @2 of F' by Py, we obtain another maximal
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(k + 1)-extended system F’ on V(F). If |Py| > 4 this contradicts the
condition (F1). If |Py| < 3, then f(Po) =1 and hence F' is a k-extended
system, which contradicts Lemma 7. -

(ii) If an end-vertex of a path P € C3(F) is joined to a component Q €
C1(F) by an edge e of G, then by an argument similar to the one in (i),
we see that P + e + @ has a hamiltonian path. Thus, we can derive a
contradiction by Lemma. 7.

(iii) If two end-vertices of two paths or of the same path in C2(F'") are joined
by an edge of G, then we can obtain a k-extended system with vertex set
V(F), which contradicts Lemma 7. O

For every component @ € €;(F), we take one vertex zg from @ so
that z¢g is a non-central vertex of Q if @ is a double complete graph. For
every path P € Co(F'), let zp and yp be the two end-vertices of P. Define
End(F) by

End(F)= |J {zo}u | {=r.vr}
QeC1(F) Pe@y(F)

Then |[End(F)| = f(F) =k + 1 by Lemma 7. Claim 3 and Lemma 5 yield

the next two claims.
Claim 4 End(F) is an independent set of G.

Claim 5 For every component Q € Ci(F) of F and the vertex {zq} =
End(F)nV(Q), i follows that

Y. [Ne@)nV(Q)] = |Ne(ze) nV(Q)| <10 - 1= Q| - £(Q).

z€End(F)
Now we measure the neighborhood of End(F) in a path of Ca(F').

Claim 6 Let P be a path in Co(F). Then for each distinct pair of vertices
2z, w in End(F) — {zp,yp}, the following statements hold.

(i) Ne(z) N Ng(w) NV (P) =0.

(ii) Ng(zp)~ N Ng(yp)NV(P) = 0.

(iii) Ng(2)~ N Ng(yp) NV(P) =0 and Ng(2)* N Ng(zp) NV (P) =90.
(iv) Ng(2) N Ng(zp)NV(P) =0.
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Proof. Let @ and R be the components of F' containing z and w, respec-
tively.

(i) Suppose Ng(z) N Ng(w) N V(P) # @ and take a vertex v € Ng(z) N
Ng(w) N V(P). Then v # zp,yp by Claim 4. Since {z,w,v~"} C Ng(v)
and G is claw-free, zv~ € E(G) or wv~ € E(G). By symmetry, we may
assume that zv~ € F(G). If Q # R, then replace P, @, R of F by two
hamiltonian paths @’ and R’ in P(zp,v~)+v~2+Q and P(yp,v)+vw+R,
respectively. Then we obtain a new (k + 1)-extended system F’ on V(F).
If f(Q)+ f(R) < f(P)+ f(Q) + f(R), then F' is a k-extended system,
which contradicts Lemma. 7. Thus, f(Q') + f(R') = f(P) + f(Q) + f(R).
This is possible only if {Q’, R'} C C2(F') and {Q, R} C €;(F). However,
this contradicts the condition (F1). If @ = R, then Q is a path whose
end-vertices are z and w and P(zp,v™) + v~z + Q + wv + P(v,yp) is a
hamiltonian path of (V(P)UV(Q))¢, and by replacing P and Q with this
path, we have a k-extended system on V(F'), contradicting Lemma. 7.

(ii) If Ne(zp)~ N Ng(yp) N V(P) # 0, then (V(P))c has a hamiltonian
cycle, and so G has a k-extended system with vertex set V(F'), which
contradicts Lemma 7.

(iii) By symmetry, it suffices to show that Ng(z)~ N Ng(yp) N V(P) = 0.
Assume that there exists a vertex v € Ng(z)~ N Ng(yp) N V(P). Then
P(zp,v) +vyp + P(yp,vt) + vtz + Q has a hamiltonian path of (V(P)uU
V(Q))e, and so by replacing P and Q of F with this path, we have a
k-extended system on V' (F). This contradicts Lemma 7.

(iv) Suppose that there exists a vertex v in Ng(z) N Ng(zp)NV(P). Then
v # yp by Claim 4. Since {v*,z,, 2} C Ng(v) and G is claw-free, we have
vtz € E(G) by (iii) and Claim 4. Suppose that Q is a path of order at
least four. If v # z}, then replace P and @ by the cycle P(zp,v) + vzp
and a hamiltonian path of P(yp,vt)+ vtz + Q. If v = 2}, replace P and
Q with £pv and a hamiltonian path of P(yp,vt)+vtz+Q. In either case,
G has a k-extended system on V(F), which contradicts Lemma 7.

Next suppose that @ is a cycle. Let us denote the two vertices of
Q adjacent to z by 2~ and z*. Then since {v,z7,2*} C Ng(z) and
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G is claw-free, we may assume that z=v € E(G) or z~z+ € E(G) by
symmetry. If z~v € E(G), then P(zp,v)+ vz~ +Q+zvt + P(vt,yp) has
a hamiltonian path, and by replacing P and @ with this path, we again have
a k-extended system on V(F), a contradiction. Therefore we may assume
that 2~ 2% € E(G). If the order of Q is at least four, replace P and Q with
the path P’ = P(zp,v)+vz+zvt + P(vt,yp) and the cycle Q —z+27z+.
If the order of Q is three, replace P and Q with the path P’ and 2z~ 2%.
Then in either case, we obtain a maximal (k + 1)-extended system with
Y peey7) [Pl > Xpee,(r) [Pl This contradicts the condition (F1).

‘We finally consider the case that @ is K;, K2 or a double complete
graph. In this case, consider Q — z and the path P’ = P(zp,v) + vz +
zvt + P(vt,yp). Note that Q — z is empty, K;, K2, a double complete
graph or a complete graph of order at least three. In the last case, Q — 2z
has a hamiltonian cycle. Therefore, by replacing P and Q with P’ and a
certain subgraph of Q — z, we obtain a maximal (k + 1)-extended system
F’ with Y pee,(ry [Pl > L peey(r) |P)- This contradicts the choice (F1)
of F. 0O

Claim 7 For each P € Co(F),

> |Ne(=)nV(P)| < |P|- f(P).
z€End(F)
Proof. First assume that Ng(z) N V('P) = P for every z € End(F) —
{zp,yp}. Let H = (V(P))¢. By the condition (F3), for each hamiltonian
path P* of H,

> (degv(opo(Ta)+degvioys (¥Q)) +degy (zp-)+degy (yp-)
Qe (F)-{P}

2 Y. (degig)q(e) +deg(g), (¥a)),
Qe (F)
which implies degg(zp-) + degg(yp-) > degy(zp) + degy(yp). Thus,
if degy(zp) + degg(yp) = |H| — 1, then by Lemma 4, either H has a
hamiltonian cycle or H is a double complete graph. Then whichever occurs,
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we can replace P with an appropriate subgraph of H to obtain a k-extended
system on V(F'), which contradicts Lemma 7. Therefore,

> |Na@) V()| = |Na(ar) nV(P)| + [Nalys) N V(P)|
z€End(F)

= degy(zp) +degy(yp) < |H| -2 =|P| - f(P).

Next we assume that Ng(z1) NV (P) # @ for some vertex z; € End(F)—
{zp,yp}. Let v € Ng(z1) NV (P), P, = P(zp,v~) and P, = P(vT,yp).
Then |P| = |Pi| + |P2| + 1. By Claim 6 (i)—(iv), (Na(zp) N V(P)),
Ne(yp) NV(P,) and

(e nv(P))7)

z2€End(Fy—{zp,yp}

are well-defined and these k 4+ 1 sets are pairwise disjoint. Moreover, they
do not contain v~ by Claim 6 (iii). Thus

> |Ne(z)nV(R)| < |PA|-1.
z€End(F)
By symmetry of P; and P,, we obtain EzeEnd( F) ING (z)ﬂV(P2)| < |Py|-1.
By Claim 6 (i) and (iv), v is not adjacent to any vertex in End(F) — {21},
and 50 3, cpnq(r) [ING(2) N {v}| = 1. By summing these three inequalities,

we have
Y Ne@nvP)|= T [Ne@nVE)|+ Y |No(2)nV(F
z€End(F) z€End(F) z€End(F)
+ Y. |Ne(z)n{v}
z€End(F).

<|Pl-1+[P]-1+1
=|P| -2 =|P| - f(P). a
We now prove Theorem 8. Assume that Ng(z) N Ng(w) — V(F) # 0
for some 2z, w € End(F) with z # w. Let P and Q be the components of
F that contain z and w, respectively (possibly P=Q). Let a € Ng(2) N

Ng(w) — V(F). If P # Q, then since P and @Q have hamiltonian paths
which contain z and w as an end-vertex, respectively, P + za + aw + Q
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contains a hamiltonian path. By replacing P and @ with this path, we
obtain a new (k 4 1)-extended system F’ with V(F') = V(F) U {a}. This
contradicts the maximality of F. If P = @, then we may assume z = zp,
and w = yp, for some Py. Then by replacing P with a cycle P + az + zw,
we again obtain a (k + 1)-extended system F with V(F') = V(F) U {a},
a contradiction. Therefore, we have Ng(z) N Ng(w) — V(F) = @ for each
distinct pair of vertices z and w in End(F’). Hence

> INe()n(V(G)- V()| < [V(6) - V(F)| =G| - |F|.
z€End(F)

Then by Claims 5 and 7, we obtain

Y dego(d) = Y Y INe@nv(C)

2€End(F) CeC(F) zEEnd(F)
+ Y |Ne(x)n(V(G) - V(F))|
z€End(F)
< X (- f©) +I6lI - |F|
CeC(F)
= |F|-f(F)+|G| - |F|
= |G|-k-1.

This contradicts the condition o441(G) > |G| — &, and Theorem 8 follows.
a

3 Maximum Degree

A tree of maximum degree at most k is called a k-free. Under the same
assumption as that of Theorem 3, we can actually guarantee the existence

of a 3-tree with at most k leaves.

Theorem 9 Let k > 2 be an integer and let G be a connected claw-free
graph. If ok+1(G) = |G| — k, then G has a spanning 3-tree with at most k

leaves.
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In order to prove the above theorem, it suffices to prove the following
lemma.

Lemma 10 Let k > 2 be an integer. If a connected claw-free graph G has
a spanning tree with at most k leaves, then G has a spanning 3-tree with at
most k leaves.

Proof. Let u be an arbitrary vertex in G, and consider every spanning
tree as a rooted tree with root u. Choose a spanning tree T with at most k
leaves so that v (r) distr(u, z) is as large as possible, where distr(z,y)
is the distence in T between two vertices 2 and y. Assume T has a vertex
w of degree at least four. Then w has at least three children, and since G is
claw-free, w has a pair of children v; and ve which are adjacent with each
other in G. Let TV = T —wv; +v1v2. Then 7" is a spanning tree of G, and
degrs (w) = degr(w)—1, degr« (vz) = degr(v2)+1 and degr (z) = degy(z)
for each z € V(G)—{w, v2}. Since degp(w) > 4, T" does not have the larger
number of leaves than T'.

Let z € V(G). Then T has a unique uz-path P. If P still exists in
T', we have disty(u,z) = disty(u,z). If P does not exist in 7", then
wvy € E(P) and P’ = P(u,w) + wvs + vav; + P(v1,z) is a unique uz-path
in T". This implies dist7- (u, z) = distp(u, z) + 1. Therefore, disty(u,z) >
disty(u,z) for each =z € V(G) and dist(u,v) > distp(u,v). These imply
ZmGV(G) distre(u,x) > 3, cv(q) distr(u,z). This contradicts the choice
of T, and hence we have A(T) <3 O

4 Concluding Remarks

Matthews and Sumner [5] proved that a 2-connected claw-free graph of
minimum degree at least 3(|G| — 2) has a hamiltonian cycle. This result
was later extended by Zhang [11].

Theorem 11 (Zhang [11]) A k-connected claw-free graph G with 644.1(G) >
|G| — k has a hamiltonian cycle.
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Interpreting a hamiltonian cycle as a “spanning tree with one leaf” and
comparing Theorems 3 and 11, we may make the following conjecture.

Conjecture 12 For integers k and m with k > 2 and m < min{6,k — 1},
every m-connected claw-free graph G with oi41(G) > |G|—k has a spanning
tree with at most k — m + 1 leaves.

The assumption m < 6 in the above conjecture looks strange, but it

comes from the following theorem by Ryjééek [7].

Theorem 13 (Ryjééek [7]) Every 7-connected clow-free graph is hamil-

tonian.

By the above theorem, a 7-connected claw-free graph has a spanning

tree with two leaves without any degree sum condition.
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