SOME RESULTS ON STRONG GENERALIZED NEIGHBORHOOD SYSTEMS

O. B. ÖZBAKIR and E. D. YILDIRIM

ABSTRACT. The aim of our paper is to introduce generalized neighborhood bases and $gn-T_2$ -spaces. (ψ,ψ') -continuity, sequentially (ψ,ψ') -continuity and ψ -convergency are investigated on strong generalized first countable spaces, and also two results about ψ -convergency on $gn-T_2$ -spaces are given.

1. Introduction

Császár introduced the concepts of generalized topological spaces and generalized neighborhood systems in [2]. He also introduced continuous functions on both systems, and studied characterizations of such functions in [2]. Furthermore, he presented separation axioms T_0, T_1, T_2, S_1, S_2 by replacing open sets with more general ones in [3]. In [4], Min obtained some properties of generalized topological spaces and (g, g')-continuity by means of strong generalized interior operators. He also introduced the concept of (ψ, ψ') - open map, gncontinuity and gn-open map. He established strong generalized neighborhood systems, and obtained sg_{ψ} -open and sg_{ψ} -closed sets in [5]. Sequentially (ψ, ψ') continuity and ψ -convergency are introduced in [1]. In this paper, we introduce the notions of generalized neighborhood bases and define strong generalized first countable spaces by means of generalized neighborhood bases. Also, we give the definition of $gn-T_2$ -spaces by using generalized neighborhood systems. Then, we investigate ψ -convergency, (ψ, ψ') -continuity and sequentially (ψ, ψ') -continuity on strong generalized first countable spaces. Finally, we give two results about ψ -convergency on $gn-T_2$ -spaces.

2. Preliminaries

We now recall some concepts and notations defined by Császár in [2].

Key words and phrases, generalized topologies, generalized neighborhood bases, strong generalized first countable spaces, $gn-T_2$ -spaces 2000 Mathematics Subject Classification.54A20, 54A05.

Let X be a nonempty set and g be a collection of subsets of X. Then g is called a generalized topology (briefly GT) on X if and only if $\emptyset \in g$ and $G_i \in g$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in g$. The elements of g are called g-open sets and their complements are called g-closed sets.

Let X be a nonempty set and $\psi: X \to \wp(\wp(X))$ satisfy $x \in V$ for $V \in \psi(x)$. Then $V \in \psi(x)$ is called a generalized neighborhood (briefly GN) of $x \in X$ and ψ is called a generalized neighborhood system (briefly GNS) on X. The collection of all GNS's on X is denoted by $\Psi(X)$. If ψ is generalized neighborhood system on X and $A \subset X$, then

$$i_{\psi}(A) = \{x \in A : \text{ there exists } V \in \psi(x) \text{ such that } V \subset A\}$$

and

$$\gamma_{\psi}(A) = \{x \in X : V \cap A \neq \emptyset \text{ for all } V \in \psi(x)\}$$

Let ψ be a GNS on X and $G \in g$ iff $G \subset X$ satisfies: if $x \in G$ then there is $V \in \psi(x)$ such that $V \subset G$. This GT g is shown as $g = g_{\psi}$. If g is a GT on X, then there is a $\psi \in \Psi(X)$ satisfying $g = g_{\psi}$ and $V \in g$ for $V \in \psi(x), x \in X$. This GNS ψ is shown as $\psi = \psi_g$. If g is a GT on X and $A \subset X$, then $i_g A$ is the largest subset of A belonging to g and $c_g A$ is the smallest g-closed set containing A.

Let g and g' be generalized topologies on X and Y, respectively. Then a function $f: X \to Y$ is (g, g')-continuous iff $G' \in g'$ implies that $f^{-1}(G') \in g$. Let ψ and ψ' be generalized neighborhood systems on X and Y, respectively. Then a function $f: X \to Y$ is (ψ, ψ') -continuous iff given $x \in X$ and $V' \in \psi'(f(x))$, there is $V \in \psi(x)$ such that $f(V) \subset V'$.

Let X be a non-empty set and $\psi \in \Psi(X)$. A sequence (x_n) is said to be ψ -converge to a point x in X [1] if (x_n) is eventually in every set V in $\psi(x)$ and denoted by $(x_n) \to^{\psi} x$. Let ψ and ψ' be generalized neighborhood systems on X and Y, respectively. Then a function $f: X \to Y$ is said to be sequentially (ψ, ψ') -continuous [1] if for each sequence (x_n) in X ψ -converging to x, then $(f(x_n))$ in Y ψ' -converges to f(x). Also f is said to be gn-continuous [4] if $f^{-1}(A)$ is in $\psi(x)$ for every $A \in \psi'(f(x))$.

3. Some Results on (ψ, ψ') -continuity, Sequentially (ψ, ψ') - continuity and ψ -convergency

THEOREM 3.1. Let ψ and ψ' be generalized neighborhood systems on X and Y, respectively. If a function $f: X \to Y$ is (ψ, ψ') -continuous, then it is also sequentially (ψ, ψ') - continuous.

PROOF. Assume that f is (ψ, ψ') -continuous and $(x_n) \to^{\psi} x$ such that (x_n) is a sequence in X and $x \in X$. Given a generalized neighborhood V' of f(x), then there exist $V \in \psi(x)$ such that $f(V) \subset V'$ by the hypothesis. Since (x_n) ψ -converges to x, there exist $n_0 \in \mathbb{N}$ such that each $n \geq n_0$ implies $(x_n) \in V$. Hence, $f(x_n)$ is eventually in V'.

REMARK 3.1. Since every gn-continuous function is (ψ, ψ') -continuous [4], every gn-continuous function is sequentially (ψ, ψ') - continuous.

DEFINITION 3.1. Let $\varepsilon: X \to \wp(\wp(X))$ satisfy $x \in E$ for $E \in \varepsilon(x)$ and $\varepsilon(x) \subset \psi(x)$ where ψ is generalized neighborhood system on X. Then $\varepsilon(x)$ is called a generalized neighborhood base (briefly GNB) of $x \in X$ if for every $V \in \psi(x)$ there exists $E \in \varepsilon(x)$ such that $E \subset V$.

REMARK 3.2. Let g be GT on X and $\psi_g(x)$ be a GNS of $x \in X$ which is generated by g. Then, there exists $\varepsilon(x)$ such that $\psi_g(x) = \varepsilon(x)$.

DEFINITION 3.2. [5] Let $\psi: X \to \wp(\wp(X))$. Then ψ is called a strong generalized neighborhood system on X if it satisfies the following:

- (1) $x \in V$ for $V \in \psi(x)$;
- (2) for $U, V \in \psi(x), V \cap U \in \psi(x)$.

Then the pair (X, ψ) is called a strong generalized neighborhood space (briefly SGNS) on X. Then $V \in \psi(x)$ is called a strong generalized neighborhood of $x \in X$.

 $A \subset X$ is called an sg_{ψ} -open set if for each $x \in A$, there is $V \in \psi(x)$ such that $V \subset A$. The complements of sg_{ψ} -open sets are called sg_{ψ} -closed sets. Also, A is sg_{ψ} -open iff $\iota_{\psi}(A) = A$.

DEFINITION 3.3. Let ψ be a strong generalized neighborhood system on X. If for each point in X has countable GNB, then (X, ψ) is said to be strong generalized first countable space.

EXAMPLE 3.1. Let $X = \mathbb{R}$ and $\psi(x) = \{(a_i, \infty) | a_i \in \mathbb{R}\}$ for $x \in \mathbb{R}$ such that $a_i < x - \frac{1}{n}, n \in \mathbb{N}$. (X, ψ) is strong generalized first countable space since $\varepsilon(x) = \{(x - \frac{1}{n}, \infty) | n \in \mathbb{N}\}$ is countable generalized neighborhood base of $x \in \mathbb{R}$.

THEOREM 3.2. If (X, ψ) be a strong generalized first countable space, then for each point in X has countable GNB as $\{V_n\}_{n\in\mathbb{N}}$ such that $V_1\supset V_2\supset ...\supset V_n\supset$

PROOF. Suppose that (X,ψ) is strong generalized first countable space. There is a countable GNB as $\varepsilon(x)=\{E_n\}_{n\in\mathbb{N}}$ for each $x\in X$. If we take $V_1=E_1,V_2=E_1\cap E_2,...,V_n=E_1\cap E_2\cap...\cap E_n$, then $V_1\supset V_2\supset...\supset V_n\supset...$ Hence, we have $\{V_n\}_{n\in\mathbb{N}}$ is a countable GNB of $x\in X$.

The following example shows that if (X, ψ) is not a strong generalized first countable space, then Theorem 3.2 is not always true.

EXAMPLE 3.2. Let $X = \{a, b, c\}$, $\psi(a) = \{X, \{a, b\}, \{a, c\}\}$, $\psi(b) = \{X, \{a, b\}, \{b, c\}\}$ and $\psi(c) = \{X, \{a, c\}, \{b, c\}\}$. (X, ψ) is not a strong generalized first countable space since ψ is not strong generalized neighborhood system on X. Then, we have $\varepsilon(a) = \{\{a, b\}, \{a, c\}\}$ and $\varepsilon(a) = \{X, \{a, b\}, \{a, c\}\}$. Hence, X does not have countable GNB as $\{E_n\}_{n\in\mathbb{N}}$ such that $E_1 \supset E_2 \supset ... \supset E_n \supset ...$ for a.

COROLLARY 3.1. Let $f: X \to Y$ be a function between strong generalized first countable space (X, ψ) and (Y, ψ') where ψ' is generalized neighborhood system on Y. Then f is (ψ, ψ') -continuous function if and only if it is sequentially (ψ, ψ') - continuous.

PROOF. Necessity. This is an immediate consequence of the Theorem 3.1.

Sufficiency. Assume that f is sequentially (ψ, ψ') -continuous but not (ψ, ψ') -continuous. We have for each $V \in \psi(x)$ and $x \in X$ there exist $V' \in \psi'(f(x))$ such that $V \not\subseteq f^{-1}(V')$. By the hypothesis, there exist $\varepsilon(x) = \{V_n\}_{n \in \mathbb{N}}$ countable GNB for $x \in X$ such that $V_1 \supset V_2 \supset ... \supset V_n \supset ...$ So, we can take $V = V_n$ and we obtain $V_n \not\subseteq f^{-1}(V')$. Hence, for every $n \in \mathbb{N}$, there exist $(x_n) \in V_n$ such that $(x_n) \notin f^{-1}(V')$ which implies $f(x_n) \notin V'$. Thus, $(x_n) \psi$ -converges to x but $f(x_n)$ does not ψ' -converge to f(x). This is a contradiction.

The following example shows that if (X, ψ) is not a strong generalized first countable space, then the converse of Corollary 3.1 is not always true.

EXAMPLE 3.3. Let $X = \{a, b, c\}$. Consider to GNS's ψ and ϕ on X defined as $\psi(a) = \{\{a, b\}, \{a, c\}\}, \ \psi(b) = \{\{a, b\}, \{b, c\}\}, \ \psi(c) = \{\{a, c\}, \{b, c\}\}, \ \phi(a) = \{\{a\}\}, \ \phi(b) = \{\{b\}\}, \ \phi(c) = \{\{c\}\}.$ Let $f: (X, \psi) \to (X, \phi)$ be a function defined by f(x) = x, for $x \in X$. Hence f is sequentially (ψ, ϕ) -continuous but not (ψ, ϕ) -continuous.

THEOREM 3.3. Let ψ be a generalized neighborhood system on X, $A \subset X$ and $x \in X$. If the sequence (x_n) contained in A ψ -converges to x, then $x \in \gamma_{\psi}A$.

PROOF. It is obvious.

LEMMA 3.1. [2] If $\psi \in \Psi_g(X)$ for $GT g = g_{\psi}$ on X, then $\gamma_{\psi} = c_{\psi}$.

The following Corollary 3.2 follows from Theorem 3.3 and Lemma 3.1.

COROLLARY 3.2. Let $\psi \in \Psi_g(X)$ for $GT g = g_{\psi}$ on X. If $(x_n) \to^{\psi} x$ and $(x_n) \subset A$, then $x \in c_{\psi}A$.

COROLLARY 3.3. Let (X, ψ) is a strong generalized first countable space, $A \subset X$ and $x \in X$. Then, the sequence (x_n) contained in A ψ -converges to x if and only if $x \in \gamma_{\psi} A$.

PROOF. Necessity. This is an immediate consequence of the Theorem 3.3. Sufficiency. Let $x \in \gamma_{\psi}A$, $A \subset X$ and $x \in X$. We have $V \cap A \neq \emptyset$ for all $V \in \psi(x)$. Since (X, ψ) is a strong generalized first countable space, there exist $\varepsilon(x) = \{E_n\}_{n \in \mathbb{N}}$ countable GNB for $x \in X$ such that $E_1 \supset E_2 \supset ... \supset E_n \supset ...$ We have $E_n \cap A \neq \emptyset$ for each $n \in \mathbb{N}$, so we can pick $(x_n) \in E_n \cap A$. Hence, $(x_n) \in E_n \subset V$ and $(x_n) \in A$ for every $n \in \mathbb{N}$. Finally, $(x_n) \to^{\psi} x$.

THEOREM 3.4. Let (X, ψ) be a strong generalized first countable space. $A \subset X$ is sg_{ψ} -closed if and only if whenever there exists a sequence consisting of elements of A ψ -converging to x, then $x \in A$.

PROOF. Necessity. Let $(x_n) \subset A$ and (x_n) ψ -converges to x for $x \in X$. By Theorem 3.3, we have $x \in \gamma_{\psi}A$. Since $A \subset X$ is sg_{ψ} -closed, we obtain $x \in \gamma_{\psi}A = A$.

Sufficiency. Suppose that $x \in \gamma_{\psi}A$. We have $(x_n) \subset A$ and (x_n) ψ -converges to x from Corollary 3.3. By the hypothesis, we obtain $x \in A$. Thus, we have $\gamma_{\psi}A \subset A$. Since $A \subset \gamma_{\psi}A$, A is sg_{ψ} -closed.

THEOREM 3.5. Let (X, ψ) be a strong generalized first countable space. $A \subset X$ is sg_{ψ} -open if and only if each sequence which ψ -converges to x in A is eventually in A.

PROOF. Necessity. It is obvious from the definition of sg_{ψ} -open sets and ψ -convergency.

Sufficiency. Assume that $(x_n) \to^{\psi} x$, $x \in A$ and (x_n) is eventually in A but A is not sg_{ψ} -open. We have X-A is not sg_{ψ} -closed. Hence, there exist a point x such that $x \in \gamma_{\psi}(X-A)$ but $x \notin X-A$. Thus, we obtain $V \cap (X-A) \neq \emptyset$ for all $V \in \psi(x)$. Since (X, ψ) is strong generalized first countable space, we have $V_n \cap (X-A) \neq \emptyset$ for countable GNB $\varepsilon(x) = \{V_n\}_{n \in \mathbb{N}}$ such that $V_1 \supset V_2 \supset ... \supset V_n \supset ...$ We can construct the sequence (x_n) in $V_n \cap (X-A) \neq \emptyset$ for each $n \in \mathbb{N}$, then we have $(x_n) \in (X-A)$. This is a contradiction.

DEFINITION 3.4. [3] Assume $\mu \subset \wp(X)$. (T_2) $x,y \in X, x \neq y$ imply the existence of $K, K' \in \mu$ such that $x \in K, y \in K'$ and $K \cap K' = \emptyset$. Then we will call (X, μ) is T_2 - space.

DEFINITION 3.5. Let ψ be a GNS on X. Then (X, ψ) is said to be gn- T_2 -space if each $x, y \in X$, $x \neq y$ imply the existence of $V \in \psi(x)$ and $V' \in \psi(y)$ such that $V \cap V' = \emptyset$.

REMARK 3.3. Let ψ be a GNS on X and $\bigcup_{x \in X} \psi(x) \subset \mu \subset \wp(X)$. If (X, ψ) is gn- T_2 -space, then (X, μ) is T_2 -space.

If we don't take $\bigcup_{x\in X}\psi(x)\subset\mu\subset\wp(X)$, then Remark 3.3 is not true, in general. We can easily see that the following example.

EXAMPLE 3.4.

- a) Let $X = \{a, b, c, d\}$, $\psi(a) = \{\{a, b\}, \{a, c\}\}$, $\psi(b) = \{\{b, d\}, \{b, c\}\}$, $\psi(c) = \{\{c\}\}$, $\psi(d) = \{\{d\}\}$ and $\mu = \{\{a\}, \{a, c\}, \{a, d\}\}$. For $x, y \in X, x \neq y$ imply the existence of $V \in \psi(x)$ and $V' \in \psi(y)$ such that $V \cap V' = \emptyset$. Thus, (X, ψ) is gn- T_2 -space but (X, μ) is not T_2 -space.
- b) Let $X=\mathbb{R}$ and for $x\in\mathbb{R}$, $V_x=(x-\varepsilon,x+\varepsilon)$ where $\psi(x)$ is composed of all sets V_x such that $x\in V_x$ for $x\in\mathbb{R}$. Consider the $\mu=\{(n,+\infty)|n\in\mathbb{N}\}$. We have $\bigcup_{x\in X}\psi(x)\nsubseteq\mu$. Also there exist $V\in\psi(x)$ and $V'\in\psi(y)$ for $x,y\in X$, $x\neq y$ such that $V\cap V'=\emptyset$. Thus, (X,ψ) is gn- T_2 -space but (X,μ) is not T_2 -space.

THEOREM 3.6. Let ψ be a GNS on X and $(x_n) \subset X$. If (X, ψ) be a gn- T_2 -space, then (x_n) ψ -converges to one point in X.

PROOF. Assume that (X, ψ) is a a gn- T_2 -space and (x_n) ψ -converges to both x and y. Since (x_n) ψ -converges to x, it is eventually in every set U in $\psi(x)$ and since (x_n) ψ -converges to y, it is eventually in every set V in $\psi(y)$. This implies (x_n) is eventually in $U \cap V$. Hence, we have $U \cap V \neq \emptyset$. This is a contradiction. \square

COROLLARY 3.4. Let (X, ψ) be a strong generalized first countable space and $(x_n) \subset X$. (X, ψ) is gn- T_2 -space if and only if (x_n) ψ -converges to one point in X.

PROOF. Necessity. This is immediate consequence of Theorem 3.6.

Sufficiency. Assume that (x_n) ψ -converges to one point in X and (X,ψ) is not a gn- T_2 -space. Then, there exist $x,y\in X, \ x\neq y$ for every $V\in \psi(x)$ and $V'\in \psi(y)$ such that $V\cap V'\neq\emptyset$. Since (X,ψ) is a strong generalized first countable space, there are two countable generalized neighborhood bases $\varepsilon(x)=\{E_n\}_{n\in\mathbb{N}}$ and $\varepsilon(y)=\{E_n'\}_{n\in\mathbb{N}}$ such that $E_1\supset E_2\supset\ldots\supset E_n\supset\ldots$ and $E_1'\supset E_2'\supset\ldots\supset E_n'\supset\ldots$ for x and y, respectively. Hence, we can pick $(x_n)\in E_n\cap E_n'$. Consequently, (x_n) ψ -converges to both x and y. This is a contradiction.

References

- O. Bedre Özbakır and A. Borat, On γ-convergency and ψ-convergency in generalized topological spaces, Int. J. Pure and Appl. Math., 48 (2008),91-96.
- [2] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.
- [3] Á. Császár, Separation axioms for generalized topologies, Acta Math. Hungar., 104 (2004),63-69.
- [4] W.K.Min, Some results on generalized topological spaces and generalized systems, Acta Math. Hungar., 108 (2005), 171-181.
- [5] W.K.Min, On strong generalized neighborhood systems and sg-open sets, Commun. Korean Math. Soc., 23 (2008), 125-131.

EGE UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, 35100-IZMIR, TURKEY

E-mail address: oya.ozbakir@ege.edu.tr

YAŞAR UNIVERSITY, FACULTY OF SCIENCE AND LETTER, DEPARTMENT OF MATHEMATICS, 35100- IZMIR, TURKEY

E-mail address: esra.dalan@yasar.edu.tr