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Abstract: This paper addresses the problem of capturing nondominated
points on non-convex Pareto frontiers, which are encountered in E-convex multi-
objective optimization problems. We define nondecreasing map T which trans-
fer non-convex Pareto frontier to convex Pareto frontier. An algorithm to find a
piecewise linear approximation of the nondominated set of convex Pareto fron-
tier are applied. Finally, the inverse map of T is used to get non-convex Pareto
frontier.
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1 Introduction

In multi-objective programming, several conflicting and non-commensurate ob-
jective functions have to be optimized over a feasible set determined by con-
straint functions. Due to the conflicting nature of the objectives, a unique
feasible solution optimizing all the objectives does not exist. Based on the com-
monly used Pareto concept of optimality, one has to deal with a rather large or
infinite number of efficient solutions.

Since there are infinitely many efficient solutions, an approximated descrip-
tion of the solution set becomes an appealing alternative. The approximation
algorithms proposed in this paper follow earlier researches initiated by Schandl
[3] and continued by Schandl et al. [4]. The approximation comes in the form
of a polyhedral distance measure that is being constructed successively during
the execution of the algorithm. The measure is being utilized both to evaluate
the quality of the approximation and to generate additionally nondominated
solutions. For convex problems, the approximation measure is defined as a
polyhedral gauge. The concept of a gauge cannot be carried over to the non-
convex case due to the lack of convexity, so that Schandl [4] use the Tchebycheff
method to search for a candidate in the interior of the approximation which is
unnecessary in the Rg -convex case because there cannot be a nondominated
point in the interior of the approximation. But this method has disadvantage of
performing some additional calculations, hence, we shall present an alternative
method to the Tchebycheff method by defining a nondecreasing map T which
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transfer non-convex Pareto frontier to convex Pareto frontier and then applying
the gauge method of R -convex case.

The outline of the paper is as follows: In the next section, we mention some
mathematical preliminaries that have an important role not only in traditional
programming but also in multi-objective optimization. In section 3, we state
the E-convex multi-objective programming problem and extend E-convex func-
tions to the so called cone E-convex functions and derive some results about
it. The oblique norms are defined and a theoretical basis for the approximation
algorithm is discussed in section 4. Approximation approach for RY -convex
set of feasible criterion vectors are presented in section 5. Finally, approxima-
tion approach developed in section 5 is applied to an E-convex multi-objective
optimization problem [8] in section 6.

2 Mathematical Preliminaries

To facilitate further discussions, the following notation is used throughout thesis.
Letu,v € R™ be two vectors.

1. We denote components of vectors by subscripts and enumerate vectors by
superscripts.

2. u < v denotes u; < v; for all i = 1,2,...,n. © < v denotes u; < v; for all
i=1,2,..,n, but u #v. u £ v allows equality. The symbols <, <, < are
used accordingly.

3. Let R ={z € R":z 20}. f SC R", then S = S RY. The sets
R> ) R>, S> and S are defined accordingly.

In the following, we recall some general definitions and notations.

Definition 1 (Cone and convez cone) [2] A subset M of R™ is called a cone
if \e € M whenever £ € M and A > 0 . Moreover, a cone M is said to be a
convex cone when it is also convez.

Definition 2 (Cone Converity) [2] Given a set M and a convez cone D in R",
M is said to be D-convex if M+D is a convex set.

Definition 3 (Cone convex function) [2] Let M be a convez set in R®, f be
a function from M into R*, and a convez cone in R*, Then f is said to be
D-convez if for any z*,z® € M and for any X € [0,1],

A @)+ 1 - Nf@?) - f(hzr + (1 - Nz?) € D.
Definition 4 (E-convez Set) [7] A setM C R™ is said to be an E-conver set

with respect to an operatorE : R* — R™ if AE(z) + (1 — \)E(y) € M for
eachz,y € M, and 0 A=< 1.
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Definition 5 (E-convex Function) [7] A real valued function f : M CR* — R
is said to be an E-convex function, with to an operatorE : R — R™ on M if M
is an E-convez set and, for eachz,y € M, and 0 S A £ 1,

fOE() + (1-A)E®W)) £ Af(Ez)+ (1-A)f(Ey).

Definition 6 (Domination structure) [2] For each z € Z C R*, we define the
set of domination factors

D(z) = {d € R% z > z+d}|_J{0}.

This means that deviation d € D(2) from z is less preferred to the original 2.
Then the point to set map D from Z to R¥ clearly represent the given preference
order. We call D the domination structure.

Definition 7 (Nondominated set) (2] Given a set Z inR* and a and a domina-
tion structure D (.), the set of nondominated elements is defined by N(Z,D) =
{Z€Z:therisnoz#z€ Z st. €2+ D(z)}, and is called the nondominated
set.

3 Problem Formulation

Let E : R —» R™ be a mapping, f : R — RF and g : R® — R™ are E-
convex functions on R". A multi-objective E-convex programming problem is
formulated as follows:
Min f(z),
(P) subiect to
zeM={zeR": g(x) £ 0}.
In the objective space R¥, for problem (P), the set of all feasible criterion
vectors is as follows: Z = f(M) = {z:z = f(x),z € M}.
The most fundamental kind of efficient solution is obtained when D = R'g
and is usually called a Pareto solution or Noninferior solution.

Definition 8 (efficient solution) [2] A point x* € M for (P) is be an efficient
solution to the problem (P) if there is nox € M such that such that f(x) < f(x*).
define the set of all nondominated points N and the set of all efficient points F
of (P) as follows:

N={z€Z: A7 st.2' <z},

and
F={xeM:f(x) e N}.

Definition 9 (Geoffrion’s proper efficiency)[2] A point Z € N is called properly
nondominated, if there ezists a scalar ¢ > 0 such that for each i, i=1, 2',...,k{
and each z € Z satisfying z* > Z*, there etists at least one j # ¢ with 27 > &

and 5==; < q. Otherwise Z € N is called improperly nondominated. The set of
all properly points is denoted byNp.
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Now, we extend the concept of E-convezity to the cone E-convezity which
enables us to deal with £-convex multi-objective optimization problems.

Definition 10 (Cone E-convexr Function) Let E : R® — R"™ be a M be an E-
convez set in B", f be a function from M intoR*, and D be a convex cone inR¥,
Then f is said to be D-E-convez with respect to E if for any x',2% € M and for
anyA € [0, 1], '

Af(Bz') + (1 = A\ f(Ex?) — f(OEz' + (1 - \)Ez?) € D.

Remark 1 Let E : R — R"™ be a mapping. A function f is E-conver with
respect to E if and only if f is RS -E-convez with respect to E.

Proposition 1 Let E : R* — R" be a mapping, M C R*, E(M) C M be
a convex set, and D be a conver cone inR¥. If a function f : R® — R* is
D-E-convex with respect to E, then the set (f o E)M is D-convez set.

Proof. Let z, y be any two points in the set(f o E)M + D, then there
existz!, 22 € M, andd?,d? € D such that

z=(foE)z' +d',y=(f o E)z*> +d°
For A € [0,1}, we have from, D-E-convexity of f and convexity of E(M),

dz+(1=Ay = M(foE)e! +d'+ (1 -N[(f o E)2? +d%
Ad' + (1 - A)d? + A(f 0 E)2' + (1 = M)(f 0 B)2?
+ fAB2' +(1=MN)Ez?) — f(AE2' + (1 — M\)E2?)

FOAEZ' + (1 = NE22 + A(f o E)2') + {Ad + (1 - \)d?
+ (1=X)(foE)2® - f(AEz' + (1 — A)Ez?)}
€ f(EM)+D.

Therefore (f o E)M + D is convex set and hence (f o E)M is D-convex set.

= Az +(1- Ay

Proposition 2 Let E: R* — R" be a mapping, M CR*, E(M)C M bea
convez set, and f = (f1, f2,--» f) be & vector function from M into R*. The
function f is RS -E-convez with respect to E, if and only if each f; is E-conver,

and in this case the set (f o E)M is RS -conver set.

Proof. Follows from Proposition 1.
We assume that the set Z is RY -closed and that we can find u € R so

that u + Z C R%. The point 2 € R* with 3 = min{fi(z) : z € M} —¢;,
1 =1,2,...,k is called the ideal (utopia) criterion vector, where the components

of ¢ = (€1,€2,..-,€x) € R* are small positive numbers. The point 2% € R? with

2 =min{z : Z; = {réiélz,-,j # i}, i = 1,2 is called the nadir point. This

definition definition cannot be easily generalized to more than two dimensions.
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Define the set Z* = {#,¢ = 1,2,..,k}. Then the ith component, i =
1,2,...,k of the default reference point is defined asz = max{z; : z € Z*},
i=1,2,..k

This is a possible generalization of the nadir point concept, can be calculated
relatively easily and also provides the utopia point

4 Oblique Norms in Multi-objective Program-
ming

The concept of oblique norms was introduced in Schandl et al. {5] and Schandl
[3]. Since oblique norms can be viewed as a special class of block norms, we first
review some basic definitions about block norms and more general, polyhedral
gauges. Then oblique norms are discussed in the context of multi-objective
programming.

Definition 11 /4] Let B be a convez and compact set in R containing the
origin in its interior and let x € R*. The gauge v of = with respect to B is then

defined as
¥(z) =min{) > 0:x € AB}.

Given a gaugey, the setB = {z € R¥ : y(z) < 1} is called called unit ball or
sublevel set of level 1.

Definition 12 [{] If the set B is a convex polytope, then vy is called a poly-
hedral gauge and is sometimes referred to as ;. Let ext(B) = {v*,1?,...,v*}
be the set of extreme points of B; v',v?,...,v* are called fundamental vectors.
The half-linesd!, d?, ...,d* starting at the origin and passing through the extreme
pointsvl, 12, ...,v* are called are called fundamental directions.

If B is symmetric with respect to the origin, then it is called a block norm.

Definition 13 The fundamental vectors defined by the extreme points of a facet
of B span a fundamental cone. The cone spanned by the fundamental vectors vi
and vj are referred to as C (vi, vj ).

If z is in a fundamental cone C of polyhedral gauge v then one needs to
consider only the fundamental vectors generating this cone to calculate the
gauge of z. This result was proven in Schand! [4] for the multi-objective case.

Theorem 1 [4] Let v be a polyhedral gauge with unit ball B C RE. Letz e C
where C is the fundamental cone generated by v, 02,0 L > k. Let 2
Z:-=1 Mv' be a representation of Z in terms of v',v?,..,v'. Then (%)

Zi:l Ai ‘

Not that all representationsz = Z:=1 Aiv* can be used to calculatey(Z), even
combinations where one or more);s are negative which is only possible ifl > k.
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If C is generated by k fundamental vectors though, the representation ofz in
term v',v?,...,v* is unique and all corresponding)s all corresponding s are
nonnegative.

For the definition of oblique norm we additionally need the concept of sets.
Letu € R*. The reflection set of u is defined as

R(u)={w e RF: |wi| = |w;| Vi=1,2,...,k}.

Definition 14 A block norm v with a unit ball B is called oblique if
(#)y(w) =~v(u) Vw€ R(u), u€ RF, and
(#)(z - R’é)ﬂR’;,qq 0B ={z} Vze(dB);.

Observe that an oblique norm is a block norm where no facet of the unit
ball is parallel to any coordinate axis. Moreover, the structure of the norm’s
unit ball is the same in each orthant of the coordinate system.This property is
convenient for the generation of nondominated solutions of (P) since they may
only occur in £ + R’; An example of an oblique norm in R is given in Figure
1.

) z (x—@)ﬁ@
N
Figure 1:

Schandl et al. [4] show that oblique norms are effective tools to generate
nondominated solutions of general multi-objective programs. In particular, he
examines the relationship between properly nondominated solutions of problems
with an R% -convex feasible set Z, and optimal solutions of their scalarization by

means of an oblique norm. The following two theorems justify the application
of oblique norm for the generation of nondominated solutions.

Theorem 2 [{] Assume without loss of generality that 0 € Z + RY. Let v be
an oblique norm with the unit ball B. If Z € R* is a solution of

maz y(z) st z€ —Rg nZ. (Py)
Then Z is nondominated.

Unfortunately, we cannot guarantee to find all nondominated points using
an oblique norm with its unit ball’s center in Z + RE in the general setting of
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Theorem 2. Therefore the next Theorem applies only to problems with an R’Z‘
-convex feasible set Z. B

Theorem 3 [4] Let Z C R* be R’é -convez and assume without loss of gener-
ality that 0 € Z + Rg. Let z be properly nondominated with 2 € —R’g N Np.
Then there ezists an oblique norm v so that Z solves the problem ( P, )

maz y(z) st Z€ —Rg nZ.

5 Approximation Approach for Rg -Convex

For multi-objective programs with an R’g -convex feasible set Z, an approx-
imation algorithm based on Theorem 2 and 3 can be designed that utilizes
oblique norms for the generation of nondominated solutions. To keep explana-
tions straight-forward, the general idea of this approach will be outlined using a
bicriteria example problem. The approximation process is started by choosing
a reference point 2° € Z + R and defining 20 — R% as the region in which
the nondominated set N is approximated. This might be a currently imple-
mented (not nondominated) solution or just a (not necessarily feasible) guess.
A first approximation is obtained by exploring the feasible set along ! > k search
directions d',d?,...,d' € —R%, specified by the decision maker. To obtain non-

dominated points along these search directions, an adaptation of the direction
method introduced in Pascoletti and serafini [1] is modified in Schandl [3]. In the
example given in Figure (2-a), the search directions are chosen as the negative
unit vectors in R?, d! = (~1,0) and d? = (0, —1) yielding the points z! and 2%
These two points together with the reference point 2° are used to define a cone
and a first approximation, see Figure (2-b). Interpreting this approximation
as the lower left part of the unit ball of an oblique norm v (or, more general,
of a polyhedral gauge) with 20 as its center, this norm is then maximized in
Z[\(z° + R%). Consequently the next point 2* in the problem) is found as

a solution of problem (P,), where v is an v is an oblique norm (gauge), see
Figure(2-c).

The point 2% is added to the approximation by building the convex hull
of the points generated so far and thus updating the approximation and the
underlying norm (gauge) simultaneously as shown in Figure (2-d). Continuing
this process, we get a finer approximation of nondominated set while generating
of nondominated points and updating the unit ball of the oblique norm (gauge),
see Figures (2-e) and (2-f). In each iteration, the point of maximal norm (gauge)
is added. Since this point is "farthest away" from the approximation with
respect to the current oblique norm (gauge), we always add the point of worst
approximation with respect to this norm (gauge).

There are two possible stopping criteria; usually, at least one of them must
given. The first one is an upper bounde > 0 on the maximal deviation such
thatdev(z) = |y(Z) — 1|. As soon as we get dev(Z) < ¢ for a point that should
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Figure 2:

be added next, the algorithm stops. The other possibility is to give an integer
maxConeNo > 1, which specified the maximum number of cones to be gener-
ated. The main loop of the algorithm continues until one of possible stopping
criteria is satisfied. At the end of the loop the sorted list of » nondominated
points is printed and can be used to visualize the approximated set.

Observe that in each iteration the maximization problem (P, ) has to be has
to be solved only in those cones whose facets were newly generated due to the
addition of the last point. This includes new and modified cones. By updating
the convex hull, the resulting approximation is always R; -convex.

Schandl et al. [4] present the following Theorem which shows that the quality
of the approximation improves with each new point if we assume that Z is R’g
-convex. :

Theorem 4 [{] Let Z C R* be RE -convex and 47 be an approzimating oblique
norm (oblique gauge) constructed from q nondominated points, or points on the

boundary of Z. Letz be the solution of
maz y9(z) s.t. z€ Z[ )" — RY).

Let 49+ be the updated norm (gauge) including the new point z*. Then

SR ez R
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6 Oblique Norms in E-convex Multi-objective
Programming

In E-convex multi-objective optimization problems, Pareto frontier may be non-
convex so that we shall handle this case by transferring its non-convex Pareto
frontier to convex Pareto frontier, and then applying above algorithm.

Schandl generalized the approximation algorithm described above to R’g

-nonconvex problem by combining the maximization problem ( P, ) with meth-
ods particularly designed to handle nonconvexity variables which need a more
details analysis. He used the Tchebycheff method for the R’g -nonconvex case
to search for a candidate in the interior of the approximation which has disad-
vantage of performing some additional calculations, so that we shall present an
alternative to using the Tchebycheff method for the nonconvex areas by defin-
ing a nondecreasing map T which transfer non-convex Pareto frontier to convex
Pareto frontier and then applying the gauge method described above and use
inverse map of T to get non-convex Pareto frontier.

Now, we review Schandl’s work and its disadvantage and then explain our
work. Schandl show that in the case of an R; -nonconvex problem the approx-
imation algorithm given above generates an approximation of the convex hull
of the nondominated set, see Figure 3 for an example. Note that the nondom-
inated point # in Figure 3 cannot be found using the gauge method described
above.

Figure 3:

To overcome this difficulty in the R¥ -nonconvex case, Schandl switch to a.

different method, namely to the Tchebycheff method (see Steuer [6]) in those
cones where no significant improvement can be made with the gauge method.
To use the lexicographic Tchebycheff method, a local utopia point 2 and a
nadir point z* defining the weights of the norm are needed, see Figure 4 for an
example.
The weights of the Tchebycheff norm are calculated as follows:
1

w; = ,i=1,2,..,k
z" — 23

169



Figure 4:

and the lexicographic Tchebycheff method solved in the current cone is given
by
lez min (||z — 2l 12 — 2Il,)

k
At g=3 N2y M0 d=12%.mk 2EZ (Pl)
i=1

The norm (and therefore the deviation) of the candidate Z is implicitly calculated
because v(Z) = ZLI A; where z = Zi;l Xiz* and and (%)) is an optimal
solution of (PI).

The approximation is not necessarily convex anymore but calculating some-
thing “similar to a norm” still yields the necessary information to evaluate the
quality of the approximation in the considered cone. After identifying a candi-
date in the cone by the norm method or the Tchebycheff method, we only know
that the point is locally nondominated in the current cone, but there might be
a dominating point outside of this cone. Moreover, the candidate found using
this two-stage procedure is not necessarily the already been found using pro-
gram (P ), it is the point of worst found using program ( P, ), it is the point
of worst approximation among all points “outside” the current approximation
in this cone. Finding a point with the lexicographic Tchebycheff method (that
is, in the second stage) does not imply anything about how well this point is
currently approximated in comparison with other points. We can even have a
case such as in Figure 5 where the method finds the point Z with a very small
deviation while the point Z with a deviation is missed. But unless the deviation
of Z is so small that the cone is not further considered, there is a good chance
that Z will be found in a later iteration when the cone generated by Z and z+!
is by 2 and z**! is examined.

Now, we shall present an alternative to using the Tchebycheff method for the
nonconvex areas. Define a nondecreasing map T : Z — Z such that (T'o f)z =
(fof)x = (foE)x, Vo € M. So that the image of objective space Z, for
problem (P), can be defined as follows:

TEZ)={y:y=T(z),z€ Z}.
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Figure 5:

We define the set of all nondominated criterion vectors Ny and the efficient
points Fp of T(Z) as follows:

Np={y" € T(Z):Fy e T(Z)s.t.y <y},

Fr={xeM:(To f)(x) € Np}.
Our goal, now, is to find the nondominated solutions for T'(Z) and conclude the

nondominated solutions for Z, by applying inverse map of 7.

Proposition 3 If y* € Nr, then there is at least one element z* € Z, y* =
T(z*) and z* € N.

Proof. Let y* € Ny, then, there is 2* € Z, such that y* = T(2*). Let
z* ¢ N, then there is z € Z such that z < z*. Since T is a nondecreasing map
then T'(y) < T'(y*) i.e. y <y* which contradicts y* € Ny. Hence z* € N.

Proposition 4 T(z*) € Np for each z* € N.

Proof. Let 2* € N and T'(z*) ¢ Np, then there is 2 € Z such that
T(z) < T(z*). Since T is a nondecreasing map then z < z* which contradicts
z* € N. Hence T'(z*) € Np. :

Remark 2 From Propositions & and 4 we obtain that T'(N) = Nrp.

Corollary 1 Let E : R* — R™ be a mapping, E(M) C M be a convez set in
R™ and D be a convez cone in R*. If the function f : R™ — R* is said to be
D-E-convez with respect to E, then the set T(Z) is D-convez set.

Proof. Follows from Proposition 1.

Corollary 2 Let E : R™ — R™ be a mapping, E(M) C M be a convezs set in
R™ and f = (f1, f2,..., fx) be a function from M into R*. The function f is R
-E-convex with respect to E, if and only if each f; is E-convez, and in this case
the set T(Z) is RE -convew set.
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Proof. Follows from Proposition 2.

Example 1 Let E : R? — R? be defined as E(z,y) = (3,v) and let M be M be
given by

M={(zy)€R*: z+y-3<0,3>y>1, z>0}.
Consider the bicriteria E-convex programming problem

5, min fa(z,y) = (y —z)°,

subject to (z,y) € M. (P)

min fi(z,y) =z

2y 22

Figure 6:

Where M, fi and fz are E-convex with respect to E. It is clear that f(M)

is Ri -nonconvex set. Let Z = f(M) = {z:z = f(x),z € M} be the objective
spac;, for problems (P) which is R§ -nonconvex (see Figure 6-a).

In this case of this RZ -nonconves problem the approzimation algorithm
given above generates an approzimation of the convez hull of the nondominated
set, see Figure (6-b). Note that the nondominated point z* = (4, 3L) in Figure
(6-b) cannot be found using the gauge method deseribed above. To overcome this
difficulty we define the nondecreasing map

1
T(21,22) = g(Z]_,SZg + 2 +12¢/2221 + 65/ 2223), Vz1,22€ Z.

such that (T'o f)z = (f o E)z, Vz € M. So that the image of objective space
Z, for problem (P), can be defined as follows: T(Z) ={y :y =T(z),z € Z} (see
Figure 6-c).
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It is clear that T(Z) is Rg -convez set, according to Corollary 2. Since T(Z)
is RE -conver set then if we use the gauge method on T(Z) we get the approzi-
mation of the nondominated set for T(Z), namely

Nr={(y},y3) € T(Z) : Ty; = 48(y})* - 55yi +7; 0 S yi =1
and y;=0; 1<y;<27},
and hence the efficient set for it is
Fr= {(Xl,l) :0 é X1 § 1, and (O)XZ) :1 é X2 é 3})
and by using the inverse map we get the efficient set for problem (P), namely

F={(x,,1):0 £x £ 2, and (0,x,):1 Sx2 £ 3}.
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