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Abstract

In this paper, we calculate the number of fuzzy subgroups of a
special class of non-abelian groups of order »°.
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1. INTRODUCTION AND PRELIMINARIES

In [1), Murali and Makamba studied equivalence classes of fuzzy sub-
groups of a given group under a suitable equivalence relation. They charac-
terize the number of fuzzy subgroups of finite abelian groups; in particular
the fuzzy subgroups of p—groups. One of the most important problems of
fuzzy group theory is concerned with classifying the fuzzy subgroups of a
finite group. In [2] the number of distinct fuzzy subgroups of a finite cyclic
group of square-free order is determined. Also, recall here the paper (3],
where a recurrence relation is indicated which can successfully be used to
count the number of distinct fuzzy subgroups for two classes of finite abelian
groups: finite cyclic groups and finite elementary abelian p—groups.

Starting point for our discussion is given by the paper [4], where a
recurrence relation is indicated which can successfully be used to count
the number of distinct fuzzy subgroups for dihedral groups. In the present
paper we extend the above study to a special class of non-abelian groups of
order p®. Without any equivalence on fuzzy subsets of a set, the number of
fuzzy subgroups of even the trivial group is infinite. So, we shall define an
equivalence relation on the set of fuzzy subsets of a given set. We use the
natural equivalence relation introduced in [3, 4] and we shall determine the
number of fuzzy subgroups of G with respect to this equivalence. In our
case the corresponding equivalence classes of fuzzy subgroups are closely
connected to the chains of subgroups in G. Note that an essential role
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in solving our counting problem will be played by the Inclusion-Exclusion
Principle. In many situations this leads us to some recurrence relations,
whose solutions can be easily found. We shall exemplify our method for a
special class of finite non-abelian groups of order p°.

Let G be a group and u be a fuzzy subset of G. Then p is called a fuzzy
subgroup of G [6] if it satisfies the following conditions:

(1) min{u(z), u(y)} < p(zy), for all 7,y € G;

(2) p(x) < p(z71),forallz e G

For each t € [0,1], we define the level subset U(p,t) = {z € G | p(z) 2
t}. Let G be a group and p be a fuzzy subset of G. Then u is a fuzzy
subgroup of G if and only if its non-empty level subsets are subgroups of G
[6]. Fuzzy subgroups of G can be classified up to some natural equivalence
relations on the set consisting of all fuzzy subsets of G. Let 1 and 7 be two
fuzzy subsets of G. Then we define 1 ~ 7 if and only if [u(z) > u(y) <=
n(z) > n(y), for all z,y € G], and two fuzzy subgroups p and 7 of G is
called distinct if p o 7.

Let G be a finite group and p be a fuzzy subgroup of G. Suppose that
Imp = {t;,%2,- - ,t,} such that t; >t > -.+ > t,. Then u determines the
following chain of subgroups of G which ends in G:

U(p,t1) CU(p,t2) C--- C U(p,tr) =G.
Moreover, for any z € Gand i = 1,-.- ,7 we have
ulz) =t <= i=max{j | z € Up,t;)} <= =z € U(p, t:)\U(p, ti-1),

where by convention, we set U(x, to) = 0.

THEOREM 1. [5]. Let G be a group and u,  be two fuzzy subgroups of
G. Then a necessary and sufficient condition for fuzzy subgroups u, n of
G to be equivalent with respect to ~ is they determine the same chain of
subgroups of G which end in G.

There exists a bijection between the equivalence classes of fuzzy sub-
groups of G and the set of chains of subgroups of G which ends in G. The
largest class of groups for which it was completely solved is constituted by
finite cyclic groups (Corollary 4 in [3]). A special class of abelian p—groups
is constituted by elementary abelian p—groups. Such a group G has a direct
decomposition of type Z’; =2Zp X +++ X Ly, where p is a prime and &k € N*.
The number of fuzzy subgroups of G is equal to the number ay, of all
chains of subgroups of G terminated in G. For r € {1,2,-.- ,ng 1}, let A,
be the set consisting of all matrices in M,xk(Z,) satisfying the property:
forany 1 <u,v <r and any 4 = (a;;), A’ = (a};) € Ay, thereisnoa € Z,
such that a}; = aa,;, (V)1 < j < k. Also, for each 1 < s < min{r, k}, let
us denote by z,. s the number of matrices contained in A, whose rank is s.

176



THEOREM 2. [3] The number a p of all distinct fuzzy subgroups of the fi-
nite elementary abelian p—group G & Z,'; satisfies the following recurrence

relation, where ny,; denotes the number of minimal subgroups in Z,*:
K1 min{r,k}

akp =22 (1)1 Y Trak-sp

r=1 s=1

THEOREM 3. (4] Let Gbea group and My, My, -+, M}, be maximal sub-
groups of G. We denote by h(G) the number of chains of subgroups of G
ended in G. Then h(G) is equal to:

k k
2 (Y nMy- Y h(M, nM,-,)+---+(-1)'=-1h(ﬂM,-)
t=1 i=1

1<i1<iz<k

If the maximal subgroup structure of G is known, in some cases, The-
orem 3 will lead to recurrence relations that permit us to determine A(G).
This fact holds for some groups. A class of these is introduced in the next

section.
There are two non-abelian groups of order p%, where p is an odd prime
number. The representation of one of them is as follows:

M(p°) = (m,y | ¥ =yP =157 'ay = rc”“) -
THEOREM 4. The number of distinct fuzzy subgroups of the group M(p?)
is h(M(p%)) = 8(p + 1).
2. Proor oF THEOREM 4

With respect to the representation of M (p®), we have:

ziy = yzPti forall 0 <i < p? — 1 and
zyl =yizPT)’ forall0<j<p-1.

Therefore,
:riyj = iji(l"l'l)j, for all 0 < i Sp2 -1,0<j<p— 1.

According to the above equalities, the order of (p — 1) +p(p — 1) = (p —
1)(p + 1) elements of M (p?) is equal to p. They are as follows:

2p .3 -1
zP, 2P, 23 ... (P~ 1P

y, aPy, 2Py, 2Py, .., 2P DRy,
y2) xpyzi x2py2, 373p'yz, R} x(p—l)pyz’

-1 -1 ,2p,p~1 ,3p,p-1 —1)p,p—1
yP=l, gPyP=l g2yl g3ryp—l L p(P—lpyp-1
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The order of other elements is equal to p2. Obviously, the order of every
maximal subgroups is p?. So, the maximal subgroups of M(p®) are: M; =
(!B), M2 = (:z:y), M; = (xy2>» T Mp = (Z‘yp"l), Mp+1 = (xP,y),
Therefore, according to Theorem 3, h(M(p?)) is equal to:

p+1 p+1
2 (Z h(M;) — > h(M;, "N M;,)+---+ (—l)Ph( N M.-)
i=1 1<i1 <ia<p+1 i=1
(*)

For every 1 < i < p, the maximal subgroup M; is isomorphic to Z,2 and the
maximal subgroup Mp, is isomorphic to Z, x Z,. Clearly, the intersection
of every number of maximal subgroups of M(p3) is isomorphic to < zP >&
Zp. Hence, the relation (*) can be rewritten as following:

MM(E%) =2(ph(Zg) + h(Zp X Zp) = (PE)R(Zp) + (P5) h(Zp)~
o (P EEDRE,).-
Consequently,
WME®) = 2(ph(Ep) + H(Zp x Z,)
+(- ) + 03 - - D) )hizn)
= 2(ph(Zpa) + h(Zp x Z;) + (787 = (*1))h(Zp)).  (+)

Now, we have:

p+l min{r,2}
h(ZP X ZP) =a2p = 2 21(_1)r—1 21 Ty 502—3,p
r= 8=

= 2(3?1,101,;: + I:é;(—l)r_1 (xr,lal,p + xr,zao,p))

pt1
= 2((p+ X2+ 5 (—1)'-1x,,2)
r=2
=2(2p+2- (3 + (P5) -+ (-1)7 (1))
Also, h(Z,) = 2 and h(Zy2) = 4. So, the equality (++) becomes:

MM@E*) =2(4p+2p+4+2(1-p—1)) =8(p+1).
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