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Abstract Let ASG(2v,F,) be the 2v-dimensional affine-symplectic space
over the finite field F; and let ASp,, (IF,) be the affine-symplectic group of
degree 2v over IF,. For any two orbits M’ and M" of flats under ASp,, (IF,),
let £'(resp. L") be the set of all flats which are joins ( resp. intersections)
of flats in M’ (resp. M") such that M" C L' (resp. M’ C L") and assume
the join (resp. intersection) of the empty set of flats in ASG(2v,F,) is @
(resp. IF'((,Z")). Let £ = £'n L". By ordering £',£L" ,L by ordinary or re-
verse inclusion, six lattices are obtained. This article discusses the relations
between different lattices, and computes their characteristic polynomial.
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1. Introduction

We first recall some terminologies and definitions about finite posets
lattices[1,2].

Let P be a poset. For a,b € P, we say a covers b, denoted by b < -a, if
b < a and there exists no ¢ € P such that b < ¢ < a. If P has the minimum
(resp.maximum) element, then we denote it by 0 (rep.1) and say that P
is a finite poset with O(resp.1). Let P be a finite poset with 0. By a rank
function on P, we mean a function r from P to the set of all the integers
such that r(0) = 0 and r(a) = r(b) + 1 whenever b < - a.

A poset P is said to be a lattice if both a vV b := sup{a,b} and a A b :=
inf{a,b} exist for any two elements a,b € P. Let P be a finite lattice with
0. By an atom in P, we mean an element in P covering 0. We say P is
atomic if any element in P\ {0} is a union of atoms. A finite atomic lattice
P is said to be a geometric lattice if P admits a rank function r satisfying

r(aAb)+r(aVvbd) <r(a)+r(b), Va,be P.
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Let P be a finite poset with 0 and 1. The polynomial

X(Pt) =) p(0,a)t)=r(e)
a€P '

is called the characteristic polynomial of P, u is the Mébius function, r is
the function on P.

Let £ and £’ be two lattices. If there exists a bijection o from £ to £’
such that

glavb)=c(a) Vo), o(and)=oac(a)Aa(), Va,be L,

then ¢ is said to be an isomorphism from £ to £'. In this case we call £ is
isomorphic to L', denoted by £ ~ L. It is well know that two isomorphic
lattices have the same characteristic polynomial.

In the following we introduce the concepts of affine-symplectic spaces.
Notation and terminology will be adopted from Wan'’s book|3].

Suppose F, is a finite field with g elements, where ¢ is a prime power.

Let F‘(,z") be the 2v-dimensional row vector space over F, and let

0 I®)
Ku = ( —I(V) O ) .

The symplectic group of degree 2v over Fy, denoted by Spa,(Fg), con-
sists of all 2v x 2v matrices T over F, satisfying TK,T* = K,. The
vector space IF,(,Z") together with the right multiplication action of Spa, (F,)
is called the 2v-dimensional symplectic space over F,. Let P be an m-
dimensional subspace of ng"), denote also by P an m x 2v matrix of rank
m whose rows span the subspace P and call the matrix P a matrix repre-
sentation of the subspace P. An m- dimensional subspace P is said to be
of type (m,s) if PK, P! is of rank 2s. It is known that subspaces of type
(m, s) exist if and only if 2s <m < v +s.

A coset of IFS2") relative to a subspace P of type (m,s) is called a
(m, s)-flat. The dimension of a flat U + z is defined to be the dimension
of the subspace U, denoted by dim(U + z). In particular, (0,0)-flats are
points, (1,0)-flats are lines. A flat F) is said to be incident with a flat
F,, if F} contains or is contained in F;. The point set IFSQ") with all the
flats and the incidence relation among them defined above is said to be the
2v-dimensional affine-symplectic space, which is denoted by ASG(2v,F,).

Let £ denote the set of all flats in affine space AG(k,Fg) including the
empty set. If we partially order £, by reverse inclusion, then Ly is a lattice
(seef4]).

Let Fy, F; be two flats in ASG(2v,F,). The set of points belonging to
both F; and F is called the intersection of F; and F5, which is denoted
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by Fy N Fy. It follows that the intersection of all flats containing two given
flats F) and F5 is the minimum flat containing both F; and Fy, which is
called the join of F} and F; and is denoted by F} U Fs.

The set of matrices of the form ( Z (1) ) ,where T € Sp,, (Fy) and v €

IF.(Iz"), forms a group under matrix multiplication, which is denoted by
ASpy,(Fg) and called the affine-symplectic group of degree 2v over F,.

Define the action of ASp,, (F,) on ASG(2v,F,) as follows:

ASG(2v,F,) x ASp,, (F,) — ASG(2v,F,)

(w,(T 0))»——» T +v.
v 1

The above action induces an action on the set of flats in ASG(2v,F,); i.e.,
a flat P + z is carried by

1

into the flat PT + (zT + v). It is known that (m, s)-flats exist if and only
if 2s < m < v + s, and that the set of flats of the same type form an orbit
under ASp,, (F,). Denote the orbit of (m, s)-flats by M(m, s;2v).

For any two orbits M(m, s1; 2v) and M (may, s9; 2v) of flats under ASp,,(F,),
let £'(my, s1;2v) (resp.L”(mg, s2;2v)) and M(my, s1;2v) C L'(my, 51;2v)
(resp.M(mag, s2;2v) C L"(mng, s2; 2v)) and assume the join (resp.intersection)
of the empty set of flats in ASG(2v,Fy) is @ (resp. IF'(Z")) Let L£(my,
sl,mg, 89; 20) = L'(m, 81;2v)NL" (my, s2; 2v). By ordering L (my, 81;2v),

L’ (my, s9;2v), C(ml,sl,m2,32,2u) by ordmary or reverse 1nclu31on six
posets are obtained, denoted by Co(ml ,81;20), L R(ml, s1;20), EO (ma, s2; 2v),
CR(m2,32,21/) Lo(my, 81; Mg, S2; 2v), Lr(m1, $1;ma, 52; 2V), respectively.

In this article, we discusses the inclusion relations between different lattices,
and compute the characteristic polynomial of these lattices.

The results on the lattices generated by orbits of subspaces under fi-
nite classical groups can be found in Wang and Feng[4], Gao and You[5],
Huo Liu and Wan[6-8}, Huo and Wan[9], Orlik and Solomon(10], Wang and
Guo[11],Guo and Nan[12].

( o ) € ASG(F,)

2. Preliminaries
We begin with six useful propositions.

Proposition 2.1 [3,13]. For any two flats £} = Vi 4z, and Fy = Va4
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in ASG(2v,F,), where V; and V; are subspaces of IF‘(,Z"), Ty,Tg € IF((,z"). The
following (i) and (ii) hold :

(i) iNF, # 0 if and only if z, —x, € V] + V3, and if Fy N Fy # 0, then
FnF=ViNnVa+z, wherez € F} N Fs.

(i) LUF; = M+Vot+<z9—1 >) +z;, and

. . _ dim(F; U Fy) +dim(Fy N E), ifF”NEF; #0,
dimF; + dimFp = { dim(F, UFR,) +dim(F, N Fy) -1, if F,NF = 0.

Proposition 2.2[12]. Let 2s < m < v + s, and m > 1. Then for any sub-
space P of type (m + 1, s), there exist two subspaces Py, P, of type(m, s)
such that P = P, + P,.

Proposition 2.3[12]. Let 2s < m < v + 5,251 < my < v + s1. Then
for any (m, s)-flat F, there exist (m;, s;)-flats F}, Fs,..., F; such that F =
FUFRU...UF ifandonly if 0 < s — 51 <m —m;.

Proposition 2.4[12]. For 0 < m; < 2v -1, £’(m1,31;2u) consists of
0,F3) and all (m, s)-flats in ASG(2v, F,) satisfying 2s < m < v + s and
0<s—s5 <m—m.

Proposition 2.5[12]. For 0 < my < 2v — 1,£" (ma, s2;2V) consists of
0,F) and all (m,s)-flats in ASG(2v,F,) satisfying 2s < m < v +

sand0< sg —s<mg—m.

Proposition 2.6[12]. Let 1 < m; < mg < 2v—1. Then £L(m,, 81;m2, 52,;2V)
consists of @, ]F,(,z") and all (m, s)-flats in ASG(2v,F,) satisfying

2s<m<v+s50<s—51<m—my, 0<s3—s<mg—m.

Proposition 2.7[14].The number of (m, s)-flats in ASG(2v,F,) is equal

to N(m,s;2v)q?*~™, where N(m, s;2v) is the number of type (m, s) sub-
: (2v)

spaces in Fy~ * (see(3]).

3. The inclusion relations between different lattices
Theorem 3.1. Let 2s < m < v+s, 259 < m; < v+ 8. Then

C’R(m, 8;2v) C [I’R(ml,sl;2u) ifand only if m —m; > s—s5,>0.

Proof. Suppose that m—m; > s—s; > 0.In order to prove L;z(m, s;2v) C
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E'R(ml, s1;2v) it is sufficient to testify that M(m,s;2v) C C;?(ml, 81;2v).
For any (m, s)-flat F, by Proposition 2.3, there exist (m,, s))-flats Fy, F», ..., Fi,
such that F = FfUF U...UF,. Clea.rly, M(m,s;2v) C .CR(ml,sl,2V)
Therefore, Lg(m, s;2v) C ER(ml,sl,Zu)

Conversely, since Lp(m,s;2v) C Lg(mi,s1;2v) and M(m,s;2v) C
L'R(m, 8;2v), we get M(m, s;2v) C E;;(ml, s51;2v). It follows that Q+z €
[,'R(ml,sl; 2v), for any flat @ + z € M(m, s;2v). In addition, there exists
a flat P+y € M(my,s1;2v), such that P+y C Q+z. Sincey € Q+z, we
have £ =y — g, where ¢ € Q. Hence, Q+z=Q +y — ¢ = Q + y is valid.
From P4y C Q +y, we obtain P C Q. @ +y is (m,s)-flat and P+ y is
(my, s1)-flat.

Ifm=m;, P+y=Q+y, then s=s;, m—m; > s—s; 20 is true.

If m > m,, let m —m,; =t, P of type (m,s), we know s; > s —t and
s—s1<t,thenm—m;=t>s—s;. Weobtainm—m; >s—s; 20.

Hence the desired result follows. O

Theorem 3.2. Let 2s < m < v+s, 282 < mg < v+52, then E','i(m, 8;2v) C
L‘.};(mg, $2;2v) if and only if mg — m > 52 — 5 > 0 (see[15)).

Theorem 3.3. Let 25; < m; < v+ 8;, 25, < m2 < u+sz, 2s; <
m; < v+s and 253 < mg < v+ 2. Then [.R(ml,sl,mz,s,,2u) C
Lgr(my, s1;ms, s2;2v) if and only if my —s3 < ml—s1 < m2—32 < mg—ss.

Proof Suppose Cg(ml,sl,mz,sz,m/) C ER(ml,sl,mz,sg,2u) For any
(m, s)-flat P+z € Lp(m), sy; My, S5; 2v), where m, —s; < m—s < my—$,.
Clearly, P+z € LR(ml,sl, ™M, S2; 21/) where m; —s; < m—s < mg — sa.
Hence my — sy <m; — 8y < mgp — sy < g — 59 as desired.

Conversely, for any (m, s) flat Q +y € CR(ml,sl,m2,32,2u), then
my—s <m-—s < mg — s;. Because m; — s; < my — 8 < my —
s; < mg — s2, S0 Q +y € Lg(m,s1;m2,s2;2r), we can conclude that
£R(m1,sl,m2,s2,2u) C Lg(my,s1;mg, s2;20).0

4. Characteristic polynomial

Firstly, let F' € C}t(ml, s1; 2v), and the rank function of ,CIR(ml, s1;2v)
is

’I’, (F) = w-my+1, fF=0,
RV ™\ 2y ~dimF,, otherwise.

(see[12]).

Theorem 4.1. Let 2s; < m; < v+ s). Then
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s —1v
X(Lp(my, s1;20),t)= 2 Z g~k N(k, 53 20)X (L, t)+
avl.--()lc--Zs:|

v u+.:a'1 , '
Z z q2u—kN(k’ S15 2V)X(Ek,t):

’ '
s,=8) k=m1—-9 +s,+1

where N(k, s;;2v) is the number of type (k, s;) subspaces in ]F.(,z").

Proof For convenience, we write V = ]F(2") L = [,R(ml,sl,2u) Ly =
LR(FP), where Lp(F) is all flats in ASG(2v,F,).
For m;-dimensional U + z € £, define

LV = (WHyel'|W+y>U +1)

LV =(WayelylW+y>U+zx).
Clearly, LV = L. For U +z € L \V, by Proposition 2.4 we get
LU+ = £U+’ Therefore, the characteristic polynomial of £ is

X(L'V, t) =] X(E’, t) = Z /“(Va U + x)tr' (0)—1" (U+:).
U+zel!

LY =,

XL =X(Lnt)= Y pVU o) O @),
Utzel,

From Mébius inversion formula

Qu-mitl _ Z X(L'U+= 8) = Z X(L'V+= p),

U+zel'v Utzel
Pt S xel = Y X,
UtzeLy Utz€la
Thus,
X(E',t) = X(L'V,t) = $2v—mi+l _ Z X(["U+:n,t)
U+zel'\V
= X X(cllj+z’t) - > X(E'U+x’ t)
U+zel, U+zel'\V

= > XY=, ).
U+z€(£1\L'UV)
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By Proposition 2.4, U +z € (£, \L'UV) if and only if {U+z € £,|U+
zis (ml,s )—flat, 31—31 <0} U{U+z € L1|U+z is (my, s;)—flat, s, —s; >
0,m; — ml <s1 -8}

’
s1—1 v+s,

Thus, X(Lz(m1, 51;2v),t)= Z Z q2"~m1 N(my,sq; 20)X(LY+= )+
s1=0 ml —231
v V+3'l ’ R ,
Z Z q2u—ml N(mlw 81; 2V)X(‘Ctlj+z» t)s
s, =9 ml —-ml—sl+al+l
where N(m;, s;;2v) is the number of (my, sy)-flats in ASG(2v,F,).
It is a routine to show that £y Utz ~ £, where k=dim(U + z). Hence
both the lattices E'“’"‘ and Ly have the same characteristic polynomial.

Then
s;—1v
X(Lo(my, s1;20),t)= z z g% N (k, s1;20) X (Lk, t)+
s} =0 k=25
v u+.sll ,
3 > g kN (k, sy; 2v) X (L, t).

a'l =81 k=m;~35, +.9'l +1
as desired. O

Secondly, let F' € C’é(mg, Sg; 2v), and the rank function of E};(mg, sg; 2v)

is
, 0, if F =F&),
TR(F) =14 ma2+2, if F=0,
mq —dimF + 1, otherwise.

(see(12]).
Theorem 4.2. Let 25, < mg < v + s3. Then

" v v+s .
X(Lp(ma,s2;20),t)= 3 Z)z q? "N (k, s; 20) X (Li, t)+

s'2 =g2+1 k:=2.~3'2

82 l/+8’2 ,
2 2 a® 5N (k, 593 20) X (L, t)

sp=0 k=mg—sp+sy+1

where N(k, s,;2v) is the number of type (k, s,) subspaces in 1F¢(,2").

Proof We write V = F) £" = Ly(ma,s0;20), L2 = Lp(FS)). For
any U+z € L, define
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Ellu+z={W+y€[,"|W+yZU+x},

LI = {W +ye LoW+y>U +x).
It is easy to see that L'V =L . ForU+z e L” \V, by Proposxtlon 2.5
we get £ Utz = CU'” Therefore, the characteristic polynomial of £” is
XLV =L )= 3 wU o) O,

U+zel

‘CV = £2)

XY =X(Lot)= Y wV,U+a) O O,

U+zel,

From Mébius inversion formula

o S XLV = T (LU,

U+4zel"Vv U+tzel”
P SEPYY: LR SRy )
U+zely Utzel,
Thu§l’ " ”
XL ) =XV, t)y=tm2 - T XUtz p)
U+zeL"\V
= ¥ XL T XL
U+zel, U+zel"\V

= > x(LYtet).
U-I-Ze(l:g\C”UV)

By Proposition 2.5, U +z € (L2\L"UV)ifand only if {U+z € Lo|U +
zis (mz,s )—flat, 32—32 <0} U{U+z € Ly|U+z is (my, s,)—flat, s—s;, >
0, 7n2—m2 <32—-82}

Thus,

" v y+9; ’ P
X(Lp(me,s2;20),8)= 35 3 q® ™2N(my,sq;20)X (LY H=, 1)+
sp=sz+1my=2s

32 U+8; ! v s U ’

Z Z qzu—mzN(mZ)s2;2V)X(‘cl +$:32;2V)at)'
82=0 mz—ma—32+32+1
It is a routine to show that £Y** ~ £, where k=dim(U + z). Hence

both the lattices £5+* and Ly have the same characteristic polynomial.

X(Lip(mays0:20),t)= > z q* kN (k, s3; 20) X (L, t)+

sy=s3+1 k=23
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’
S2 v+38,

s > qz"_kN(k, 3'2; 20)X (L, 8,2; 2v),t). O

s;=0 k=mg —sz+s’2+ 1

Thirdly, let F € Lg(m;, s1; ma, S2; 2v), and the rank function of
Lp(my,s1;ma, 82;2v) is

0, if F =F%
TR(F)= ms —my + 2, ifF=0.
mo —dimF + 1, otherwise.

(see[12]).

Theorem 4.3. Let 2s; < my < v+ 81, 282 < mg < v + 89, then

S2 mi+s—s;

X (Lgr(my, s1;m2, s2;20),t) = > > gk N(k,s; 20) X (L, t)+

s=81 k=ma—s82+s+1

81 v+s8 v v+s
Zl: S @ EN(k, ;. 20)X (L, t) + Y. Y g EN(k, s; 20) X (Lk, £).
8=0k=2s s=89+1 k=2s ()

v

where N(k, s;2v) is the number of type (k, s) subspaces in Fq

Proof We write V = F{), L = Lp(my,s13m2,52;20), Lo = Lr(FS).
For any U + = € L, define

LVt ={WyelW+y>U+z},

LY ={(WHyeLloW+y>U+z}.
Clearly, LV = L. For U4z € L\V, we get LU+ = Eg *+* by Proposition
2.6. Therefore, the characteristic polynomial of £ is

XLVt =x(L,t)= Y, wV,U+z)yr@-—rU+=),
Utzel

LY = Lo,

X(ct‘)/, t) = X([:o, t) = Z I-"(I/, U + z)tr(ﬂ)—r(U+3).
U+zelo

From Mdébius inversion formula
grammit2 = N pLVE = Y XLV,

U+zelV U+zel
tmz—m|+2 = Z X(£U+x Z X(£U+:c
U+zely U+tzelo
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Thus,

X(L,t)=X(LY,t) =tmammi¥2_ N (LUt g
' U+zel\V

= ¥ XLt - T XLty

U+tz€Llo UtzeL\V
= ¥ XL,
U+z€(Lo\LUV)

By Proposition 2.6, U + z € (Lo \ LU V) if and only if
{U+z€LolU+zis (m,s)-flat,s; <s<sp,m—my <s—81,Mmg —m <
s2 —sU {U+z € LoJU +z is (m,s)-flat,s < s;}U {U +z € Lo|U +
z is (m, s)—flat,s > s,}
Thus,
32 my+8—81
X(Lr(my,s1;ma, 52;20),8) = 3 X @¥TN(m, s 20)X (LG, t)-

8=8) m=mga—82+4s+1

81 v+s v v+s
> 2 ¢ TmN(m,s;20)X(LY )+ X Y ¢ "™N(m,s; 20)X (LY
s=0m=2s 8=82+1m=2s

It is a routine to show that £J** ~ £, where k=dim(U + z). Hence

both the lattices £§** and L have the same characteristic polynomial.
We obtain
S2 my+s—s
X(Lr(my,s1;m2,82;20),8) = 3, > g kN (k, s;20) X (Lk,t)+

3=89) k=ma—ss+s+1

81 V+s v v+s
> Y @TEN(k, 520X (L t) + S D @ EN(k, s;20) X (L, t).0
§=0 k=23 s=82+1 k=2s
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