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Abstract. Let K, be the complete graph with v vertices,
where any two distinct vertices = and y are joined by exactly
one edge {z,y}. Let G be a finite simple graph. A G-design
of K,, denoted by (v,G,1)-GD, is a pair (X, B), where X is
the vertex set of K, and B is a collection of subgraphs of K,
called blocks, such that each block is isomorphic to G and any
two distinct vertices in K, are joined in exactly one block of B.
In this paper, the discussed graphs are G;,i = 1, 2, 3,4, where
G; are the four graphs with 7 points,7 edges and a 5-circle. We
obtain the existence spectrum of (v, G;,1)-GD.
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1 Introduction

A complete graph of order v, denoted by K, is a graph with v vertices,
where any two distinct vertices £ and y are joined by exactly one edge
{z,y}. A t-partite graph is one whose vertex set can be partitioned into ¢
subsets X1, Xs, - - -, X;, such that two ends of each edge lie in distinct sub-
sets respectively. Such a partition (X1, X2, -+, X) is called a t-partition of
the graph. A complete t-partite graph is a t-partite graph with ¢-partition
(X1, X2,+++,X¢), in which each vertex of X; is joined to each vertex of
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X; by one time (where i # j). Such a graph is denoted by K, n,,..n, if
| Xil=n; 1 <i<t).

Let (X1, X2,+,X;) be the t-partition of K, ny.....n,, and | X;| = .
Denote v = i n; and G={X,, X5, -+, X,}. For any given graph G, if
the edges of Ei,,n,,...,n, can be decomposed into edge-disjoint subgraphs
A, each of which is isomorphic to G and is called block, then the system
(X,6,.A) is called a holey G-design, denoted by G-HD(T'), where T =
ninl...n} is the type of the holey G-design. Usually, the type is denoted
by exponential form, for example, the type 1°273% . .. denotes i occurrences
of 1, r occurrences of 2, etc. A G-HD(1V~"w!) is called an incomplete G-
design, denoted by G-ID(v; w) = (V, W, A), where |V| =v, |W| =w and
W c V. Obviously, a (v,G,1)-GD is a G-HD(1*) or a G-ID(v;w) with
w=0orl.

Let G be a finite simple graph. A G-design of K, denoted by (v, G, 1)-
GD, is a pair (X, B), where X is the vertex set of K, and B is a collection
of subgraphs of K, called blocks, such that each block is isomorphic to G
and any two distinct vertices in K, are joined in exactly one block of B. It
is well known that if there exists a (v, G,1)-GD, then

v(v — 1) =0 (mod 2¢(G)) and v—1=0 (mod d),

where e(G) denotes the number of edges in G and d is the greatest common
divisor of the degrees of the vertices of G. For the path P, and the star
K i, the existence problems of their graph designs have been solved (see
{1] and [2]). For the graphs which have four vertices or less, the problem
of their graph designs has already been solved (see [3]). For some graphs
which have k& vertices (where k = 5, 6), the problem of their graph designs
has already been researched (see [4]-[11]). In [12], the existence problem
of G-decomposition for graphs G with 7 points, 7 edges and an even-circle
has been completely solved.

In this paper, the discussed graphs are G; (i = 1,2, 3,4), where G; are
the four graphs with 7 points,7 edges and a 5-circle, they are listed as fol-

lows.
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G
For convenience, the graphs G;-G4 above are denoted by (a,b,¢,d, e, f, g).
we obtain the existence spectrum of (v, G;, 1)-GD.

2 General structures

Theorem 2.1 Let G be a simple graph. For positive integers h, m and non-
negative integer w, if there exist G-HD(h™), G-ID(h+w;w) and (w, G, 1)-
GD (or (h+w,G,1)-GD), then there exists (mh + w,G,1)-GD, too.

Proof. Let X = (Zy x Z,,) | JW, where W is a w-set. Suppose there exist
G-HD(h™) = (2, X Zm, A),
G-ID(h+w;w) = ((Zn x i})UW, B;), i € Zmm or i € Z\ {0},
and
(w,G,1)-GD = (W,C) or (h+w,G,1)-GD = ((Z, x {0}) UW, D),
then (X, Q) is a (mh + w, G, 1)-GD, where
Q= AU(T[_JOI B)UC or .AU(':EJ: B)UD

Note that

(mh+w) 2 h2 m( 2 +"”h') 2
) Y

e(G’ Em)hz (m—l)( 2 +wh) + g::hl
m—1
| A} + ;0 |Bi| + |
m—1 °
Al + ;1 |B:| + | D

o

The necessary conditions for the existence of (v, G;,1)-GD are v(v—1) =
0 (mod 14) and v > 7, i.e., v = 0,1 (mod 7) and v > 7. For G2, we can
prove that (7, Gz, 1)-GD doesn’t exist (see Lemma 5.3), so by Theorem 2.1
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and the following tables, we only need to give the constructions of HD,ID
and GD for the pointed orders.

(Table 2.1) For Gy,i=1,3,4

vimod14) | HD | ID |GD

0 A4 | 7
1 7241 | (15;8) | 8
7 2L (700 | 7
8 72+ | (8;1)* | 8

(Table 2.2) For G,
v(mod14) | HD | ID | GD

0 T (14;7) | 14
1 72+l | (15;8) | 8
7 72-1 | (21;14) | 14
8 72+ | (8;1)* | 8

x G-ID(7;0) = (7,G;:,1)-GD, G:-ID(8;1) = (8, G;,1)-GD.

3 Holey G;-designs

A quasigroup is an ordered pair (Q,-), which is a set @ with a binary
operation - such that the equations a -z = b and y - a = b are uniquely
solvable for every pair of elements ¢,b in Q. It is well known that the
multiplication table of a quasigroup is equivalent with a Latin square. A
quasigroup is said to be idempotent (or symmetric) if the identity z-z2 =«
(or z-y =1y-z) holds for all z € Q (or z,y € Q). It is well known that
there exists an idempotent quasigroup of order v if and only if v # 2 and
there exists an idempotent symmetric quasigroup of order v if and only if
v is odd.

Suppose (I, ) is an idempotent symmetric quasigroup on the set I,, =
{1,2,---,n}. Now, let’s construct a G-HD(e"™), where e = |E(G)|. Let the
element set be Z. x I,,, and the automorphism group of the block set be
Z. It is enough to construct a base block for any i,5 € I, and i < 5. In
a base block of a G-HD(e™), all edges can be partitioned into three types:
{(z,3), (z+4d,5)}, {(z,%),(z+d,i-5)} and {(z,i-7), (z+d,7)}, denoted by
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d(,5),d(i,%- 7) and d(i - 7, §) briefly, where = € Z,, 1,5 € I,,. We have the
following Lemma.

Lemma 3.1 8 Letn be odd and (In, ") be an idempotent symmetric quasi-
group on the set I, = {1,2,---,n}. The block set A = {A;; : i,j €
I, and i < j} can be taken as a base of a G-HD(e") if and only if the
following conditions hold,

(1) For any given block A; ; in A, the differences d(i,i-3) and —d(i-j, j)
both appear or not in A; ;;

(2) {d:3d(3,7)} U{d : 3d(5,- 7))} U{d : 3d(i- 5,5)} = Z..
Lemma 3.2 There exists a G-HD(7#*!) for k =1,2,3,4 and t > 0.

Proof. The number of the edges of Gy is 7. Suppose (I2t+1,') is an
idempotent symmetric quasigroup on the set Ioy; = {1,2,--+,2¢t+1}. Let
X = Z7 X I2g+1 and

By = (2i.4,14,3:.5,06,05, 15, 45.5),

By = (2:4,1;,3:5,0i,04,15,6,),

B3 = (Oj, 2:.5,64, 13.5, 04, 3.4, lj),

By = (1:.5,0:, 2.5, 6:,64,5;,1;),
where 1 < i< j < 2t+1. We can verify that each B, mod (7, —) gives the
expected G-HD(7%+1) by Lemma 3.1 for k = 1,2, 3, 4. o

4 Incomplete G;-designs

Lemma 4.1 There exist G,-ID(7 + w;w) forw =7,8 .

Proof. Let X = Z7|J{o01,002, --,004} and G;-ID(7 + w;w)=(X, B),
where |B| = w + 3. The family B consists of the following blocks.

w="T:
(0) 21 001:57 g, 1: 003)’ (1121 004, 67 002, 41 001)7 (67 05, 01 °°4)1)5v 002)7
(3) 003, 412,005) 01 002), (4: 05, 51 3: 6a 01 001): (5a41 00613) 1, 0’ 003)9
(2) 007,1,006)6’ 31 004)1 (001, 3’4:007’61 1$°°5)7 (002:4: 00475s2131 007)7
(0033 5) 07, O) 6’ 23 006)'

w=2_8:
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(01 o0, 37410033 004, 1)’ (1)006’3) 6)00514)0)1 (2: 1:0a 5v °°8s3’°°4))
(3’ 05, 2’ 002, 1, 003, 5); (4) 001,6’0’002:21003)1 (008,6) 5: 2: 0) 11 001),
(6’ 11 °°7’0’ ©0g, m4’2)7 (005)4’6:007,5:01 3)7 (006’4’ 008)3757 276)1
(007: 2, 001)5’43 31 002)) (59 1’ 003:6;002’00414)~ O

Lemma 4.2 There exist Go-1D(7 + w;w) for w = 7,8, 14.

Proof. Let X = Z7|J{001,002,::,004} and Go-ID(7 + w;w)=(X, B),
where |B| = w + 3. The family B consists of the following blocks.
w="T

(01 07, 2) 1: Qg °°1a°°5)7 (1: °°714161 51 00213); (2)006: 3: 4, 0': °°3,°°4))
(3: 2; 005)4’002)0031007)’ (°°2$01 ]-,41 5:2:6)1 (5100411a61 0! °°6)°°7):
(61 001, 3,0,&4, 0063007)) (001511005’6, 2)4) 5)’ (4r°°4: 3, 5, 21 °°3,°°6))
(0031 5) 05, 3, 6,0, 1)-

w=2_8:
(Ov 11 00g, 6$ 005, 001, 5)1 (61 1) °°1)2; 0» 0g, 3)a (2a o0g, 5: 31 00g, 003, 6):
(31 0; g, 51 005, 004, 4), (4$ 5) 1»2) 005, 008, 6)$ (5$ 004, la 3: 002, 007, 2):
(11 007, 2: 4, cog, 002, °°5)1 (001, 49 01 007, 3: 5’ 6)1 (002) 4, 003,5,6,0, 2):
(003, 6,07,4,1,0,3), (004,2,3,008,0,4,6).

w = 14:
(001, 3’ 0014, 6; 1, 2: 4)) (1s 2,003, 5’ 00312, 0014, °°2)s (008) 61 5’ ©0s, 01 2) 4)a
(0047 Ov 007, 2} 51 4» 6): (4’ 003, 61 2, 0014, 005, 006)) (6' 39 41 51 001, ©Ag, X010
(0091 1) O0sg, 3: 01 41 5): (01 o011, 1) 4) 0013, 013, 001), (0021 Oa 2) ©Qg, 3: 5, 6),
(°°3y 01 6’ 006, 1; 3$ 5)’ (31 12, 6, 4: 09013, 0011, 004)’ (0071 31 27 CO4, 11 4) 6)’
(006:21 0032, 410a 3) 5)) (51 09013, 1:0; 0014, 007, 008)) (0010’0751 3: 1: 4) 2))
(005’ 3a 0010,5,1,2, 6): (21 4, 00131, 6, 0013, 0012, 003)- -

Lemma 4.3 There ezist G3-ID(7 + w;w) forw=17,8 .

Proof. Let X = Z7(J{001,002,:+,00,} and G3-ID(7 + w;w)=(X, B),
where |B| = w + 3. The family B consists of the following blocks.

w=T

(°°2a2:°°6v4)510)°°3)a (°°4f4slr°°21316,°°7)1 (003)17005,2)4’6,0):
(115»003)0:°°7$°°1:2)1 (Oa°°6’6)°°2v4r°°111); (5,001,6,007,3,0,4),
(2:3:4,°°5a0:°°h°°3)a (°°5)310a°°4a5)67°°l)1 (316:2$°°471’°°6a0)7
(6,5,007,2,1,4,006).

w=_:
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(004, 11003)2:5:61001)1 (00313)001’2)4153004)1 (Oa°°1v4: 37 1,003’5)1
(3,008; 4, 004,2,002’6), (1, 6, cos5, 4, 002:006:001), (016’ 2,1,4,004, 003):
(6y 3’ 01 07, 51 41 008); (0081 5y 3’ 0_07741 6) 006), (57 002:01 o0g, 1,4v 6):

(005,2’ 006101 5131002)3 (0071 2»0’ 05, 1161008)- O

Lemma 4.4 There exist G4-1D(7 + w;w) forw=7,8 .

Proof. Let X = Z;|J{o01,002,-+,004} and G4-ID(7 + w;w)=(X, B),
where |B| = w + 3. The family B consists of the following blocks.

w="T:
(O’ 004, 2:4s 005, °°ls°°3)! (005,5, °°5)370: 2’1)1 (11007»2’0: 51 01, 005))
(3’ °°7a6v0s 4: 4, 006)! (31 2) 001161 002, 5: 4)1 (1) 2) 51 00113’ ©O6, 002)1
(41 °°3:6: 3: 06, 0027005)1 (4v1)°°2a276»°°770)’ (004711003:5’ 41 61 3)’
(01 007, 57 6! 1: 03, 004)’

w=28:
(007’ 1100214; 3: 6: 2)a (001, 2’4$ 03, 3v 5’ 6), (°°3a0) 4’ 00735: 6,001),
(0041 11 2i 005;4$ 6: 003), (51 004301194’ 21 001), (00610)31 00814117004),
(5: 00216’1)005) s, 008)1 (61012)00573’ 51 004)’ (008)2s 61 00111151006)1

(3) 002101 00772$51°°8)a (005,3’ 1,5, 01 61 003)' O

5 Graph designs

Lemma 5.1 There ezist (v,G;,1) forv=17,8 .

Proof.
v="T: X = (23 x Z3) | J{oo}
(0g, 29,00,11,01,21,10) mod (3,-)
v=8 X =128

(4,6,7,2,1,0,3), (5,2,4,7,0,3,1), (6,3,4,5,1,2,0), (7,5,6,0,1,3,2). O

Theorem 5.2 There exist (v,G1,1) if and only if v(v—1) =0 (mod 14)
andv > 1.

Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.1 and Lemma 5.1. m

Lemma 5.3 There ezists no (7,G2,1).
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Proof. Let X = Z;. If there exists a (7, G2,1)-GD = (X, B), then the sum
of degrees of any vertex is six and |B|=3. By the structure of the graph
G2, we know that the degrees of the vertices of the graph G, are 4, 2, 2,
2, 2, 1, 1 respectively. If a vertex occurs ¢ times in 1-degree position, j
times in 2-degree position and & times in 4-degree position, then we call
T = 1°294* the type of the degree-distribution of the vertex. It is easy to
know that the type of the degree-distribution of the vertices in X is merely
2141, 23 or 1241, Suppose the numbers of the vertices of the three types are
u, v, w respectively, since there are seven vertices in X and there are six
1-degree positions, twelve 2-degree positions and three 4-degree positions
in the blocks of B, therefore we have the following equations:

111 7
00 2 “Y | s
130 IT] 12
101 w 3

We can get the only solution is u = 0, v = 4 w = 3. Without loss of
generality, suppose the three vertices which have the type 124! are 0, 1, 2,
then the three blocks must be as follows:

1 0 0
Obviously, it is impossible to exist a (7, G2,1) under this condition. a

Lemma 5.4 There ezist (v,Ga,1) for v=8§,14.

Proof.
v=8 X=23
(0,5,3,6,7,4,2), (1,6,4,7,2,5,0), (2,4,1,7,5,6,3), (3,0,6,5,4,7,1).
v=14: X = Z13|J{c0}
(1,0,6,2,4,9,00) mod 13 m]

Theorem 5.5 There exist (v,G2,1) if and only if v(v — 1) = 0 (mod 14)
andv >T.
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Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.2, Lemma 5.3 and Lemma
5.4. a

Lemma 5.6 There ezist (v,G3,1) forv=17,8.

Proof.
v="T X = (23 x Z2) | J{oo}
(21, 10,00, 00,11, 20,0;) mod (3,—)
v=8 X= Za

(O’4l 1)5367372)1 (1)6’4)7101 273)1 (7’ 2’ 3’4, 5’ 110)) (3$5l 2’6J 7’110)' D

Theorem 5.7 There ezist (v,G3,1) if and only if v(v—1) =0 (mod 14)
andv>1T.

Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.3 and Lemma 5.6. ]

Lemma 5.8 There ezist (v,Gy,1) forv=7,8.

Proof.
v=T7 X = (Z3 x Z3) J{o0}
(04, o0, 00, 10,11,20,21) mod (3,—)
v=8 X=23

(0,5,7,2,6,3,1), (5,6,1,3,4,2,0), (2,4,6,7,0,1,3), (3,7,4,1,5,2,0). O

Theorem 5.9 There ezist (v,Ga,1) if and only if v(v—1) =0 (mod 14)
endv > 1.

Proof. By Theorem 2.1, Lemma 3.2, Lemma 4.4 and Lemma 5.8. (]
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