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Abstract

It is well known that the Petersen graph does not contain a Hamilton
cycle. In 1983 Alspach completely determined which Generalized
Petersen graphs are Hamiltonian [1]. In this paper we define a larger
class of graphs which includes the Generalized Petersen graphs as
a special case, and determine which graphs in this larger class are
Hamiltonian, and which are 1-factorable. We call this larger class
spoked Cayley graphs.

keywords:

Hamilton cycle, Hamiltonian, generalized Petersen graph, spoked Cayley
graph, I-graph, Petersen graph, vertex-transitive, Tait coloring, 1-factorization,
Y-graph

ARS COMBINATORIA 103(2012), pp. 205-224



1 Introduction

Hamilton cycles and the Petersen graph P, both featured in the early his-
tory of the four colour problem, and have both become popular concepts
of graph theory (see [9] and [12]). The Petersen graph became of interest
as a cubic bridgeless graph which has no 1-factorization, and consequently
no Hamilton cycle (see [9]). The generalized Petersen Graphs, first defined
by Watkins [14], provided more examples of cubic, bridgeless graphs and
have also been studied in this regard.

Figure 1: GP(10,3) and GP(5,2) = P

The generalized Petersen graph GP(n, k), where n > 3 and 1< k <, has
vertices %g,U1,...,Un—1, V0, V1,.-.,Vn—1, and edges {u;, uit+1}, {vi, viti}
and {u;,v;} for each ¢ with 0 < ¢ < n. The edges of type {u;,v;} are
usually called spokes (see Figure 1). Castagna and Prins showed in 1972
that P = GP(5,2) = GP(5, 3) is the only cubic generalized Petersen graph
which has no 1-factorization. Ten years later, after partial results were
found by various authors (see [8]), Alspach [1] completely determined which
generalized Petersen graphs are Hamiltonian (Theorem 1.1 below). In this
paper we generalize this family of graphs further to a new class, which we
call spoked Cayley graphs and determine which spoked Cayley graphs on
Abelian groups are Hamiltonian, and also which are 1-factorable. But first
we define a Cayley graph on an Abelian group.

Given a finite Abelian group A and a subset S C A\ {0}, the Cayley graph
Cay(A, S) is the graph with vertex set A and edge set {{a,a+s}|a € A, s €
S}. If S = {s,t} where 2s # 0,2t # 0 and s # =*t, then Cay(4,S) is a
4-regular graph. Figure 2 (a) shows a circular representation of the the
Cayley graph Cay(Zso, {9,5}), and Figure 2 (b) shows the (isomorphic)
pseudo-cartesian product Cs x3 Cg. Pseudo-cartesian products were defined
in [7], see also [5] and [6]. Note, for clarity of the figure, some of the edges
are not fully drawn.
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Figure 2: Cay(Z30,{9,5}) = Cs x3 Cs.

In this paper, all groups under consideration will be Abelian, so we use
additive notation for group operations. Note however, that the following
definition also applies in the case of non-Abelian groups. Given a finite
group A and two non-zero elements s,t € A, not necessarily distinct, we
define the spoked Cayley graph SCay(A, s,t) as follows. For each element
a € A, the graph has two vertices, labelled a and a’. The edges of the
graph are {a,a + s}, {a,a’} and {a’,(a + t)'} for each a € A. The use of
the same labels for group elements and (half of the) vertices should not
cause confusion. The edges of type {a,a’} are again called spokes. Figure 3
shows Cay(Zs, {1,2}) & K5 and SCay(Zs,1,2) = P. If each spoke {a,a’}
of the spoked Cayley graph SCay(4, s,t), is contracted to a single vertex
a, we obtain the Cayley graph Cay(A4, {s,¢}). Compare also Figures 2 and
4.

Spoked Cayley graphs might also have been called further generalized Pe-
tersen graphs as the generalized Petersen graph GP(n,k) is the spoked
Cayley graph SCay(Z,,1, k). Thus we have generalized the family of gen-
eralized Petersen graphs in two ways: firstly by considering A an arbitrary
finite group rather than just a cyclic group, and secondly by allowing both
s and t to be any non-zero elements. Spoked Cayley graphs on cyclic
groups are also studied in [13]. Alspach [1] completely determined which
generalized Petersen graphs contain a Hamilton cycle.
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Figure 3: K5 = Cay(Zs, {1,2}) and SCay(Zs,1,2) = P

Theorem 1.1 The generalized Petersen graph GP(n, k) is Hamiltonian if
end only if it is neither

(1) GP(n,+2) = GP(n,(n+1)/2) wheren =5 (mod 6), nor

(2) GP(n,n/2) where n=0 (mod4) andn > 8.

In this paper we prove the following result.

Theorem 1.2 A connected spoked Cayley graph on an Abelian group is
Hamiltonian if and only if it is none of the following.

(1) SCay(Z,,s,+2s) where n=>5 (mod 6) and ged(s,n) =1,
(2) SCay(Zn,s,n/2) where n =0 (mod 4), n > 8 and ged(s,n) =1, and
(3) SCay(Zn,s,n/2) wheren =2 (mod 4) and ged(s,n) = 2,

=~ SCay(Zn/2 x Z2,(a,0),(0,1)) where n/2 is odd and ged(a,n/2) = 1.

We wish to consider only simple graphs, without loops. Consequently,
if 2s = 2t = 0, then SCay(A4,s,t) is 2-regular. If 2s # 0 and 2t # 0,
then SCay(A, s, t) is 3-regular. Otherwise SCay(A, s, t) is not regular. The
exceptions in Class (1) of Theorem 1.2 are 3-regular, but those in Classes
(2) and (3) are not regular. Let (s,¢) denote the subgroup generated by s
and t. Each component of SCay(A, s,t) is isomorphic to SCay((s, t), s, t).
So, SCay(A, s,t) = SCay(A,t,s) is connected if and only if A = (s,1).
Since we are interested in Hamilton cycles, for the remainder of this paper,
except where otherwise stated, all the spoked Cayley graphs we consider
will be connected.
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2 Preliminaries

We introduce the spoke product as a convenient way to represent a con-
nected spoked Cayley graph on an Abelian group (see Figure 4). We will
work with spoke products to obtain our result.
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Figure 4: SCay(Z30,9,5) = Cs %3 Cs.

We define the spoke product Co % Cp for integers ¢, 8 and v where & > 0
and 0 < v < B as follows. For each element (i, j) € Zo x Zg, there are two
vertices, labelled (,7) and (¢, 5)’. There are edges of four types:

@ {G 9,60} fori € Z,, j € Zg,
(ii) {(iij),i (7').7 + 1),} forie Zat .7 € Zﬁ;
(i) {G5), G+ 1,0} fori€ Zo\{a—1},j € Zp, and

(iv) {(@—1,7),(0,7+3)} forje€ Zs

We shall follow the convention that vertices (z,j) and (%,7) both lie in
column i and row j. Figure 4(b) shows the spoke product Cs 3 Cs. The
labelling of this figure illustrates the following isomorphism between spoked
Cayley graphs and spoke products.
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Lemma 2.1 A connected spoked Cayley graph SCay(A, s,t) on an Abelian
group A, is isomorphic to the spoke product Cr %ro Cro where

o=|A4/(s), T=|A/®, k=[s)N(t)], and
ifk=1, thenw=0, or
if k > 1, then w is given by mwot = T3 so that ged(m, k) = 1.

The function f which maps vertices is+ jt — (3,7) and (is+ jt) — (3,5),
where 0 € i < 7 and 0 £ j < ko, is such an isomorphism.

Proof. Group isomorphism theorems such as |(s, t})|-[{s)N(t}| = |(s}]|-|{t)|
imply |A| = ko, |[{s)| = k7 and |(t)| = ko. We also note that

(ot) = (1s) = (s) N (t) is a cyclic group of order k. (1)

Since A = (s, t), each a € A may be uniquely expressed as a = is+jt where
0<i<|A/(t)) =7and 0<j<|(t)| =ko. Thus f is a bijection. To see
that f preserves incidence, we consider its effect on the three kinds of edges.
Ifa=is + jt, then {a': a,} — {(l,J), (iaj)l}1 {a,a (a + t),} — {(i)j),) (7".7 +
1 (mod ko))’}, and provided i # 7 — 1, {a,a + s} — {(4,5), (6 + 1,5)'}. If
a = (T — 1)s + jt, the adjacent vertex 7s + jt maps to (0,7 + j) for some
r,sincers € (t). If k=1,then rs=0,s0o # =0. If k > 1, then 7s = 7ot
for some w coprime to k, by equation (1). Thus r = 7o as required. w}

For each 0 < i < 7, the connected spoked Cayley graph SCay(A, s,t) has a
cycle of length |(t)| on the primed vertices corresponding to coset (t) + is.
We call this |(t)|-cycle i. Similarly, for each 0 < j < o, SCay(A4, s,t) has a
cycle of length |(s)| on the unprimed vertices corresponding to coset (s)+ jt.
We call this |(s)|-cycle 7. In the spoke product Cr %, Cke, we define vertical
cycle ¢ for each 0 < ¢ < 7, as the cycle on the primed vertices in column
i. We also define horizontal cycle j for each 0 < j < o, as the cycle on
the unprimed vertices in the k rows j, 7o + 3,270 + j,...,(k - 1)mo + j
where all row numbers are computed mod ko. Thus the isomorphism of
Lemma 2.1 maps |(t)|-cycle i to vertical cycle i for each 0 < ¢ < 7, and
maps |(s)|-cycle j to horizontal cycle j for each 0 < j < 0.

If k > 1, then for each 0 < ! < k we define the I-th boz B; of C;r %5 Cio
as the induced subgraph on vertices (z,5) and (¢,5)’ for 0 < i < 7 and
lo <j<({+1)o. If k =1, we define the 0-th box By, of C, 5%¢ C, as
C; %0 C, with the following edges removed: those connecting column 7 —1
with column 0 and those connecting row ¢ — 1 with row 0. Figures 5, 11,
13 and 16 show each box contained in a dotted region.
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Figure 5: (a) SCay(Zso, {2,9}), (b) C3 34 Cho, (C) Cy %9 Cis
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Lemma 2.2 Given positive integers o and 7, Cr %9 Cy & Cy %o C.
Further, if k > 1 and ged(m, k) = 1, then C; %56 Crg = Cg %g¢r Crr for
some ¢ satisfying ged(g, k) = 1.

Proof.

By Lel’IHna 2.1, C-r *no Cka = SC&y(A, S, t) =] SCay(A, t, S) = Ca 9:6¢1- Ckf
where m = 7s/(ot) (mod k) and ¢ = ot/(7s) (mod k). Since m¢ = 1 (mod
k) the result follows. 8]

Figure 5 illustrates the above lemmas. The spoked Cayley graph Cay(Zso, 2, 9)
in Figure 5(a) is isomorphic to the spoke product C3 %4 Cjp in Figure 5(b)
by Lemma 2.1. The two spoke products C3 %4 C)o and Cy %9 C15 in Figures
5(b) and (c) are isomorphic by Lemma 2.2.

Let Fy = Fo(Cr %no Cko) be the subgraph of C; %, Ck, obtained by
deleting the spokes. If Fp is 2-regular, we call it the natural 2-factor. It
consists of the T vertical cycles and the ¢ horizontal cycles. To construct a
Hamilton cycle in a spoke product we shall usually begin with the natural 2-
factor, and divert it at certain locations. We now define this notion. Given
a vertex (z,j) where ¢ # 7 — 1, and some 2-factor F of C; %, Cro which
contains all the edges in F,(%,5) = {{(,7), G+ 1, )}, {5 +1),E+ 1,5+
DLA{G 3,65+ 1)EL{(E+1,5),(i+ 1,5+ 1)'}}, but none of the edges
(spokes) in Ea(%,5) = {{(3,7), (5, 4)'}, {(5, 7+ 1), G, 5 + 1)}, {i + 1,5), (6 +
L,iYHL{(E+1,7+1),(i 41,7+ 1)'}}, then the diversion of F at (i,5) is
defined and denoted by F'- {(z,5)} = (F \ E1(3,3)) U Ea(4, j).
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Figure 6: (a) 2-factor F' and (b) diverted 2-factor F' - {(3,7)}

We say that the diversion occurs in column ¢ and row j, see Figure 6. Note
that if F is a 2-factor of C; %z Cks, then F - {(3,7)} is also. If D is a
set of permissible diversion locations for a 2-Factor F, we write F' - D for
the diversion of F' at each element of D. If Fp is the natural 2-factor of
Cr %ne Cro and Fy - D is a Hamilton cycle, we say that D is a joining set
for the graph C; %5, Cks. Figure 7 shows joining sets for C, %o C, for
various o and 7. In the figure, diversions are indicated by circles.
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In this paper we have no need to consider a diversion in column 7 — 1 of
Cy %70 Cre. Further, we say a diversion set D is proper for a spoke product
Cr %z Cro if and only if none of the diversions in D are on horizontal cycle
o — 1. Thus the edges affected by a proper diversion set are in the boxes
of the graph.

If A and B are subgraphs of some graph, we denote by A — B the graph
induced by the edges in A but not in B. Given an edge {v;,v2} in a graph G,
the graph G obtained by deleting this edge and identifying vertices v; and
v is called an edge contraction of G. If a graph Gy can be obtained from G
by a sequence of edge contractions, then Gy, is said to be a contraction of
G and we say that G is contractible to Gx. Clearly, graphs have the same
number of components as their contractions.

3 Results

We prove our main theorem (Theorem 1.2) by first establishing which spoke
products are Hamiltonian (Lemma 3.6). For spoke products C; %75 Cio
with large values of ¢ and 7, as in Lemma 3.5, joining sets can be found
which lie properly inside a single box. For spoke products with small val-
ues of o and T, we sometimes can find joining sets which lie properly inside
two or three boxes. Sometimes other constructions are more convenient.
Lemmas 3.1 and 3.2 are technical lemmas which support inductive argu-
ments on the values of 7 and o respectively. Lemmas 3.3 and 3.4 are also
supporting lemmas concerning the number of boxes, k.

Lemma 3.1 If D; is a joining set for Cr %5o Crs where ko > 2, and
(c,d) is the only element of Dy in vertical cycle ¢, then Dy = {(3,5) €
Dili < e} U{(i +4,5)|(7) € D1yi = c}U{(c+2,d+ 1)} is a joining set
for Cry4 %pe Cre. Also, (c,d) is the only element of Dy in vertical cycle ¢
Of C—,-+4 *ro Cka-

Proof. Let Hy = Fo(Cr %40 Cke) - D1 and Ha = Fo(Cr 44 %o Ciks) - D2.
We show that H; is a contraction of Hz (see Figure 8). For each row
y # d,d+ 1 or d + 2, the path (c,y),(c+ 1,9),(c + 2,9),(c + 3,9),(c +
4,y),(c+ 5,y) in Hy contracts to the edge {(c,¥),(c+ 1,y)} in H;. The
path (¢,d+2),(c+1,d+2),...,(c+4,d+2),(c+5,d+2) in Hy contracts
to the edge {(c,d + 2),(¢+ 1,d + 2)} in H;. Thus both H; and H; have
one component. Also Hs is a 2-factor of Cr44 %706 Cks, so it is a Hamilton
cycle. o
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Figure 8: (a) Hl = FO(C'r*ﬂaCka)‘Dl and (b) H2 = FO(CT+4*1kaa)'D2

Lemma 8.2 If D, is a joining set for Cr %no Cxs where 7 > 2, and
(c,d) is the only element of D, in horizontal cycle d (mod o), then, Dy =
{(i,5) € D1lj < d} U {(3,5 +4)|(3,5) € D1,j 2 d}U{(c+1,d+2)} isa
Jjoining set for Cr %g(g14) Ci(ot4)- Also, (c,d) is the only element of D,
in horizontal cycle d (mod o) of Cr %x(g44) Cr(o+4)-

Proof. This follows immediately from Lemma 3.1 and Lemma 2.2, a]

Lemma 3.3 If D is a proper joining set for either C; %9Cy or Cr %4Caq,
then D is a joining set for Cr %o Crke for any k > 1 and w coprime to k.

Proof. The proof splits into two cases.
Case(1) D is a proper joining set for C; % C,.

Let R = Fy(Cr %50 Cro)- D — By = Fy(Cr %20 Ciko) — Bo. So R consists of
o + 7 disjoint paths: a subpath of each vertical cycle and of each horizontal
cycle. Contracting each path of R in Fo(Cr%75Cks ) D to asingle edge gives
Fo(Cr %0 C;) - D which is a Hamilton cycle. Thus the 2-factor Fo(Cr %re
Cio) + D also has one component, and hence it is a Hamilton cycle.

Case(2) D is a proper joining set for Cr %, Ca,.
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Let R= FD(CT *ro Cka) «D—By—B, = Fo(c-,- *ro Cka) —By—B;. SoR
consists of 2(c + 1) disjoint paths: two subpaths of each vertical cycle and
each horizontal cycle. Contracting each path of R in Fo(Cr %76 Cko) - D
to a single edge gives Fo(C; %, Cas) - D which is a Hamilton cycle. Thus
the 2-factor Fo(Cr %#o Cro) - D also has one component, and hence it is a
Hamilton cycle. 0

Lemma 3.4 For any integers o > 1,7 > 1,k > 3 and 7 coprime to k, if
D, is a proper joining set for C; %, Css and Dy is a proper joining set for
Cy %94 Cag, then either Dy or Ds is a joining set for C, %14 Cko -

Proof. Let D be a proper diversion set for C; %, C3, where 7 =1 or 2.
We show that Fy(Cr %xs Cko)- D is contractible to either Fo(Cy %, Cso)-D
or Fy(Cr %25 C35) - D. To see this, consider R = Fo(Cy %46 Cko) - D —
By — By — By = Fy(Cr %76 Cro) — Bo — By — Ba. Note that R consists of
3(c + 1) disjoint paths of two kinds:

(i) 3 subpaths of vertical cycle ¢ for each 0 < ¢ < 7, and
(ii) 3 subpaths of horizontal cycle j for each 0 < j < 0.

Depending on the values of m and k, the (directed) paths of type (ii) will
connect the boxes By, By and B; in either the cyclic order (012) or (021).
Thus, contracting each path of R in Fo(Cr %zs Cio) - D to a single edge
gives either Fy(Cr %4 Cag) - D or Fo(Cr %2, C35) - D. In the first case let
D = D;. In the second let D = Ds. Then either Dy or Ds is a joining set
for Cr %zo Ckeo-

0

Lemma 8.5 The spoke product Cr %nq Cko, where either w is coprime to
k, or both k =1 and m = 0, has a joining set for all integers o, 7,7 and k
satisfying

(i) o>4and7T>4,0r

(ii) {o,7}={4,2} wherez >3 and z # 0 (mod 4), or

(iii) {o,7} = {8,z} where z =0 (mod 4).

Proof. If the values of 7 and o satisfy one of the three conditions of this
lemma, then 7 and ¢ can be expressed in terms of positive integers a and
b, by exactly one of the sixteen cases listed below:
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(1) 7T=4a, 0 =4b—1 (9)7=4a+3,0=4b+3

(2) T=4a+2,0=4>b (10) 7 =4a+4,0=4b+4
(8)T=4a+1,0=4b+1 (11)7=4a—1,0=4b
(4)'r=4a,a'=4b+1 (12)1'=4a,,a=4b+2
(5)1‘=4a+1,0'=4b+2 (13)1‘=4a+1,0=4b
(6) T=4a+2, c=4b+2 (14) 71=4a+2,0=4b+1
(NrT=4a+1,0=4b+3 (15) 7=4a+3,0=4b+1
B)T=4a+2,0=4b+3 (16) T=4a+3,0=4b+2

Case (1) 7=4a,0=4b—1:

We show that Dg;y = {(0,1),(2,0), (4,1),(6,0), ..., (4a~2,0),(1,3),(0,5),
(1,7),(0,9),...,(0,4b—3)} is a joining set for C; %5 Cror. Figure 7(1) illus-
trates that {(0,1), (2,0)} is a joining set for Cy3oC3. This is easily checked
by hand. Applying Lemma 3.2 to Cy%C3 with (¢, d) = (0, 1) as many times
as necessary, we obtain that {(0,1),(2,0)} U {(1,3),(0,5),(1,7),(0,9),
...,(0,4b — 3)} is a joining set for Cy %o C,. Applying Lemma 3.1 to
Cy %0 C, with (c,d) = (2,0) as many times as necessary, establishes that
D(y) is a joining set for C, 3o C,. Note that D,y is a proper joining set
for C; %9 C,. Lemma 3.3 establishes that D(;) is also a joining set for
C, %z Cio for any k > 1 and any w coprime to k.

Cases (2) - (10) are proven similarly and we omit the proofs. The joining
set for each case is listed below, and illustrated in Figure 7 for the values
a=b=k=1.

Dzy = Dy U {(7 — 2,0 - 2)} Dgy = Dy U {(7 — 2,0 — 2)}
Diay = Dy U{(1,46 - 1)} D5y = Digy U{(7 — 2,0 — 2)}
Digy = Dy U {(1 - 2,0 - 2)} D7y = Dy U {(T — 2,0 — 2)}
Dy = D4y U {(4a,1),(0,4b+ 1)} Dy = Digy U {(1 — 2,0 - 2)}

D10y = D(gy U {(T — 2,0 — 2)}

Cases (11) - (16) These spoke products are isomorphic (by Lemma 2.2)
to the spoke products of cases (1),(2),(4),(5),(7) and (8) respectively.

o

Lemma 3.6 Every spoke product contains a Hamilton cycle, except for
the following, which do not:

(0)Cy %0 Cr, 2 C,, %0Cy wheren 21,

(1) C1 % C, wheren =5 (mod 6) end r = £2,(n£1)/2,
(2) Cp %1 C2 = C) %, Cap,  where n is even and n > 4, and
(3) Cp %9 Co = Cy %9 C,  where n is odd.
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Proof. Without loss of generality, let our spoke product be C; %, Cro
where 7 is coprime to &, or 7 = 0 and k£ = 1. By Lemma 2.2 it suffices to
examine spoke products where o < 7. We divide the proof into cases on
the value of o. '

Case (i) 0 = 1,7 > 1: We divide this into two subcases.

(a) If £ = 1, our graph is C;, %o C;. All the primed vertices of this graph
have degree one, so this graph is not Hamiltonian. Hence the class (0) of
exceptions listed above.

(b) If £ > 1, by Lemma 2.1, C; %, Cx = SCay(Z-,1,t) = GP(k7,t) for
some t # 0. By Theorem 1.1 these are all Hamiltonian except for classes
(1) and (2) listed above.

Figure 9:

Case (ii) 0 = 2,7 > 2 : We divide this into three subcases.

(a) If 7 is odd and k& = 1, each of the primed vertices of C, %o Cy has
degree 2. See Figure 9. Suppose this graph contains a Hamilton cycle.
Then the Hamilton cycle contains the paths (z,0), (¢,0), (¢,1), (3,1) for
each 0 < 7 < 7. Since the number of such paths is odd, this is impossible.
We see that C; sxg Cy = C; % C; is class (3) of non-Hamiltonian graphs.
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(b) If 7 is odd and k = 2, or if T is even, then by Lemma 2.2 the spoke
product is isomorphic to Cy %,Cay, for some r and n. Figure 10(a) illustrates
a Hamilton cycle in this graph.

C»O _O

v

r
\7-\1

et el
NIl

7:1 )

|

N
L2

&

/
fo——

Figure 11:

(¢) If T is odd and k > 3, the spoke product is shown to be Hamiltonian
as follows. Firstly, if k£ = 3, then the diversion set D, = {(0,0),(1,3),
(2,0),(3,3),...,(r—3,0),(7—2,3),(r—2,5)} is a joining set for the spoke
product C; %2 Cs, for both values # = 1 and w = 2. This can be shown
by induction on 7: Figure 11 illustrates the basis case(s) when 7 = 3.

The inductive step 7 => 7 + 2, is illustrated in Figure 12.

c E c+1

& "

d+1% 1 % 2+1 % 5
:

:
d+2% 2 % d+2 ._.
:

Figure 12:
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The proof of this inductive step is similar to that of Lemma 3.1 and we
omit it. Finally, Lemma 3.4 establishes that the diversion set D, is also a
joining set for C %z2 Cko for any k > 3 and any « coprime to k.

Case (iii) 0 = 3,7 > 3: We divide this into seven subcases.
(a) If 7 = 0 (mod 4), then the proof is given in Lemma 3.5 case (1).

[ [T
[ N I & &

|-
-

C ; -
7 i 2
250 '..-_so . ; j.so '.__sot Losjj ?so s._.sOL LOL’?
P - N > O N 7
dArd /2 T LA |1 i B
C—¥ » LO S> ch "»- é LO N
.0, T O, 7 r
= > R > S >
(2) (b) (c)
Figure 13:

(b) If r = 1,2 or 3 (mod 4), 7 > 5 and k > 1, then the proof, similar to
that of Lemma 3.5, uses an inductive argument on 7 based on joining sets
given in Figures 13(a), 13(b) and 13(c) respectively. Lemmas 3.1 and 3.3
then imply the result.

(c) If r =1 (mod 4) and k = 1, then a Hamilton cycle is given in Figure
14.

" S
. P
Figure 14:

(d) If 7 = 2 (mod 4) and k£ = 1, then D = {(0,0),(2,1), (4,2)} is a joining
set for the basis case 7 = 6. Applying Lemma 3.1 to this joining set with
(e,d) = (0,0) proves the result.

(e) If 7 = 3 (mod 4) and k = 1, then Figure 14 shows a Hamilton cycle.
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(f) If 7 = 3 and k = 2, then Figure 15 shows a Hamilton cycle.

(g) If 7 = 3 and k > 3, Figure 16(a) shows a joining set D, for C3%3Cy, and
Figure 16(b) shows a joining set Dj for Cj3 3¢ Co. Lemma 3.4 establishes
that either D; or Ds is a joining set for C3 %3, Cax for any & > 3 and any
7 coprime to k.

Case (iv) 0 24,7 > 4,

Lemma 3.5 shows that these spoke products are Hamiltonian except pos-
sibly when ¢ = 4 and 7 = 0 (mod 4), or when 7 = 4 and ¢ = 0 (mod 4).
By Lemma 2.2 it suffices to show the latter are Hamiltonian. Figure 10(b)
illustrates a solution.

(]
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We can now prove our main result.

Proof. (of Theorem 1.2) By Lemma 2.1, each spoked Cayley graph
is isomorphic to some spoke product. Lemma 3.6 lists four classes of non-
Hamiltonian spoke products. Of these four, classes (1) - (3) of Lemma
3.6 are isomorphic to classes (1) - (3) of Theorem 1.2 respectively. The
isomorphisms are given by Lemmas 2.1, 2.2 and group automorphisms.
However, no spoked Cayley graphs are isomorphic to the spoke products
in class (0) of Theorem 3.6, as this would imply that either s or ¢ is zero.
Hence the result follows by Lemma 3.6.

(]

4 Epilogue
We present two consequences of Theorem 1.2 and ask a question.

Corollary 4.1 Every regular spoked Cayley graph on an Abelian group is
1-factorable, except those which consist of disjoint copies of the Petersen
graph.

Proof. If the spoked Cayley graph SCay(A, s,t) is not connected, then
it consists of disjoint copies of a connected spoked Cayley graph. A reg-
ular graph is 1-factorable if and only if each of its components is also
1-factorable. Hence we need only consider connected graphs. Except those
graphs listed in Class (1) of Theorem 1.2, every connected regular spoked
Cayley graph on an Abelian group is Hamiltonian. A Hamilton cycle in a
3-regular graph immediately gives a 1-factorization. The graphs in Class
(1) of Theorem 1.2 are all 3-regular generalized Petersen graphs. Castagna
and Prins [4] showed that the Petersen graph is the only 3-regular gen-
eralized Petersen graph which is not 1-factorable. Finally, any 2-regular
spoked Cayley graph can be 1-factored by taking the spokes as a 1-factor.
So, the Petersen graph is the only connected regular spoked Cayley graph
on an Abelian group which is not 1-factorable. o

Thomassen has conjectured that there are only finitely many connected
vertex-transitive non-Hamiltonian graphs [2]. Only five have been pub-
lished in the literature. The four non-trivial ones are the Petersen graph,
the Coxeter graph Cog and the graphs obtained from these two by replacing
each vertex with a triangle (see [8] or [9]).
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Classes (2) and (3) of Theorem 1.2, are not vertex-transitive since they
are not regular. Class (1) graphs of Theorem 1.2 are the generalized Pe-
tersen graphs in Class (1) of Theorem 1.1. Frucht, Graver and Watkins
[11] have shown that the only vertex-transitive generalized Petersen graphs
are GP(n, k) where k? = +1 (mod n) or (n,k) = (10, 2). These conditions,
together with the conditions n = 5 (mod 6), and k = +2 or (n+1)/2 imply
the following result.

Corollary 4.2 Excepting the Petersen graph, every connected vertez-transitive
spoked Cayley graph on an Abelian group, has a Hamilton cycle.

Another class of graphs, similar to the spoked Cayley graphs may also
be of interest. Given an Abelian group A and three nonzero elements
s,t,u € A, we define the clawed Cayley graph CCay(A, s,t,u) to have ver-
tices a,a’,a”,a” for each a € A and edges {a,a'}, {a,a"},{a,a”},{d, (a+
s)'},{a",(a + t)"},{a", (a + u)"} for each a € A. Clawed Cayley graphs
on a cyclic group are called Y-graphs in [10]. The Coxeter graph Cog is
CCay(Z7,1,2,4) [3]). Thus, P is spoked Ks, and Cog is clawed K7. Which
clawed Cayley graphs are Hamiltonian?
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