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Abstract

Dirac characterized chordal graphs by every minimal (2-)vertex
separator inducing a complete subgraph. This generalizes to k-vertex
separators and to a characterization of the class of {Ps,2Ps}-free
chordal graphs. The correspondence between minimal 2-vertex sep-
arators of chordal graphs and the edges of their clique trees parallels
a correspondence between minimal k-vertex separators of {Ps,2Ps}-
free chordal graphs and certain (k — 1)-edge substars of their clique
trees.

1 k-vertex separators and chordal graphs

If G is a connected graph with an independent set Z of two or more vertices,
then S C V(G) is an Z-separator of G if the vertices of Z are in |Z| separate
components of the subgraph of G induced by V(G) — S; a minimal Z-
separator is an inclusion-minimal Z-separator. When |Z| = k, these will
also be called (minimal) k-verter separators. Minimal 2-vertex separators
are the well-studied ‘minimal separators’ (sometimes called ‘minimal vertex
separators’ or ‘minseps’); see [2, 6].

Chordal graphs can be defined by every cycle of length four or more
having a chord (meaning an edge between two vertices of the cycle that
are not consecutive along the cycle)—so, every cycle long enough to have
a chord does have a chord. This is equivalent to a graph being chordal if
and only if every induced subgraph contains a simplicial vertez (meaning
a vertex whose neighborhood induces a complete subgraph). See [7] for
history, proofs, and additional characterizations, including the following.

Dirac’s Theorem ([4], 1961) A graph is chordal if and only if every min-
imal 2-vertexr separator induces a complete subgraph.
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We extend Dirac’s theorem to a new subclass D of chordal graphs—
those graphs G in which, for all £ > 2, every minimal k-vertex separator
of G induces a complete subgraph of G. (The forbidden subgraph charac-
terizations in Theorem 3 and Corollary 4 will give more memorable names
for the class D.) Figure 1 shows two graphs in the class D. In each,
for instance, {b, e} is a minimal {a, d}-separator and {b, c, e} is a minimal
{a, d,f}-separator.

b/a—\c b/a\c
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Figure 1: Two graphs in the class D.

Figure 2 shows that the class D is properly contained in the class of
chordal graphs. In each graph shown there, letting Z consist of the ‘hollow’
vertices, the ‘solid square’ vertices form minimal Z-separators that do not
induce complete subgraphs.

] <O

Figure 2: Two chordal graphs that are not in the class D.

Let v ~ w denote that vertices v and w are adjacent. For any S C V(G),
let G—S denote the subgraph of G that is induced by V(G)~S. Let d(v, w)
denote the distance between v and w and d(v, S) denote the minimum value
of d(v, w) over all w € S. Lemma 1 consists of two immediate observations
that will be used tacitly in later proofs.

Lemma 1 If S is a minimal I-separator of G, then each v € S has neigh-
bors v/ and v in two different components of G — S, and vertices w' and
w" in two different components of G — S are not adjacent in G. a

Theorem 2 gives a slightly refined characterization of the graphs in D.

Theorem 2 If G is in the class D and S is a minimal k-verter separator
of G, then S induces a complete subgraph of nonsimplicial vertices of G,
and S is a minimal Z-separator, |Z| = k, where I is an independent set of
simplicial vertices of G.
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Proof. Suppose G € D and S is a minimal Z-separator of G with |Z| =

Since each v € S has nonadjacent neighbors v’ and v” in two different
components of G — S, vertex v cannot be a simplicial vertex of G.

For each component H; (1 < i < k) of G-, choose a vertex v; € V(H;)
with maximum d(v;, S). Vertex v; cannot be adjacent to vertices = and y
with z - y, since that would force d(z,S) or d(y,S) to be greater than
d(v;,S) (since Dirac’s theorem implies that G is chordal and so the in-
duced path z,v;,y cannot be part of a cycle). Therefore, each v; will be
a simplicial vertex of G. The set S will be a minimal Z’-separator when
I'={v;:1<i<k}. o

A graph G is {Hy, ..., Hy}-free if G contains no induced subgraph that
is isomorphic to any of Hy,..., H;. Recall that Cy, denotes an induced
cycle on n > 3 vertices, P, denotes an induced path on n > 1 vertices, and
2P; denotes a 2-component graph, each isomorphic to P3. (In Figure 2,
the graph on the left is a Ps, and deleting the vertex of degree six from the
graph on the right leaves an induced 2P3 subgraph.)

Theorem 3 The class D is the class of { Ps,2Ps}-free chordal graphs.

Proof. First suppose G is a connected chordal graph (so every minimal
2-vertex separator induces a complete subgraph by Dirac’s Theorem). Sup-
pose S is a minimal Z-separator with |Z| > 3 and H1, H2, and H3 are among
the distinct components of G—S. Suppose G ¢ D with nonadjacent vertices
a,b € S (arguing that G contains an induced Ps or 2P3)

There cannot exist y; € H; and y; € H; with i # j such that a ~ y. ~b
and a ~ y; ~ b, (since they would form a chordless 4-cycle, contradicting
that G is chordal). Yet each of a and b must be adjacent to vertices in at
least two components of G — S. Hence, without loss of generality, there is
a vertex z; € Hy with a ~ z; and b # y for all y € V(H,), and there is a
vertex zo € Hy with b~ 24 and a o y for all y € V(Hz). So {a,b,z1, 22}
induces a 2P, subgraph with edge set {az,bzs}. Vertex a [respectively, b]
also has a neighbor z, € H; [z, € H;] with {1,2}N {7, j} = ; hence, neither
a nor b is a simplicial vertex of G. Let E' = {x,a, az,, z2b, bz} C E(G).
If i = j and =; is an induced a-to-b-path in H;, then will G will contain an
induced P with k > 5 that consists of edges in £’ U E(m;); in particular,
G will contain an induced Ps. If ¢ # j, then the subgraph H of G induced
by {z1,a,z4,22,b,z5} will form an induced 2P;.

Conversely, suppose G € D. If G were not chordal, then G would have
a minimal 2-vertex separator S with {z,y} C S and z 4 y (by Dirac’s
theorem). If G contained an induced Ps path a,b,¢c,d, e, then {b,d} would
be in a minimal {a, c, e}-separator S of G with b % d. In the remaining case,
suppose G had an induced 2P; subgraph consisting of the paths z,,a,z2
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and z3,b,z4. Let Z be the independent set {z1,z3, 23,24} and S be a
minimal Z-separator. Then a and & would have to be in S with a # b.
Hence, in every case, S would not induce a complete subgraph. m]

Corollary 4 The class D is the class of {C4, Cs, Ps,2P3}-free graphs.

Proof. This follows directly from Theorem 3 and the observation that ev-
ery induced Cy with k > 6 contains an induced Ps. ]

The starlike graphs (meaning the intersection graphs of substars of stars)
from [5] are characterized in [3] as being the {Cy,Cs, Ps, 2Ps}-free graphs
that, in addition, contain neither of the graphs shown in Figure 3 as induced
subgraphs. Hence, the starlike graphs form a subclass of D, and this is a
proper subclass since the graphs in Figure 3 are in D. (In the graph on the
left, notice that the two ‘solid square’ vertices form a minimal Z-separator
where T consists of the three ‘hollow’ vertices or the three degree-2 vertices
or just the two hollow’ degree-2 vertices.)

Figure 3: Two {Ps, 2P3}-free chordal graphs that are not starlike graphs.

Lemma 5 will be needed for the proofs in section 2.

Lemma 5 Suppose G is a {Ps, 2Ps}-free chordal graph, S C V(G) induces

a complete subgraph of G, and T C V(G) is an independent set with |Z| > 2

and SNZ = 0. Then S is a minimal I-separator of G if and only if both

the following hold:

(6.1) S =S81U---USjz|-1, where each S; is a minimal 2-vertez separator
and, for every v # w in Z, some S; is a minimal {v, w}-separator.

(5.2) Each vertez in S is adjacent to vertices in at least two components of
G-S.

Proof. Suppose G is a {Ps, 2P3}-free chordal graph, 5 C V(G) induces a
complete subgraph of G, Z = {v1,...,v} C V(G) is an independent set,
k>2 and SNZ =40.

First suppose S is a minimal Z-separator of G, where each v; is in a
component H; of G — S, with ¢ # j = H; # H;. When1 < { < k, let
Si={s€S:N(s)NV(H;) # 0}. When 1 < i< j < k, each vj-to-v;
path will intersect both S; and Sj, so each of S; and S; is a (possibly non-
minimal) {v;, vj}-separator. If S; C S;, then every s € S; is on a vi-to-v;
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path that only contains s from S, and so S; is a minimal {v;, v; }-separator.
If S; € S; and s* € S; — S, then every s € S; is adjacent to s* (since
S induces a complete subgraph) and s is on a v;-to-v; path that contains
exactly s and s* from S, so S; is a minimal {v;, v;}-separator.

Therefore, i # j implies that at least one of S; and S; is a minimal
{vi, vj}-separator, and so, in particular, at least k — 1 of the sets Sy, ..., Sk
are minimal 2-vertex separators. Reorder these sets if necessary so that
S1,-..,Sk-1 are minimal 2-vertex separators. Since each s € S is adjacent
to vertices in at least two H; components, each such s is in at least two
S; sets, 1 < 1 <k, so S is the union of the minimal 2-vertex separators
S1,. .., k-1 and these include a minimal {v;, v;}-separator for every vertex
pair v;,v; € Z. Thus (5.1) holds. The minimality of S then ensures that
(5.2) holds.

Conversely, suppose that both (5.1) and (5.2) hold. Then (5.1) ensures
that S is an Z-separator of G, and (5.2) ensures the minimality of S. D

2 k-vertex separators and clique trees

The clique tree approach to chordal graphs, as detailed in [7], is one of the
traditional uses of Dirac’s theorem and one of the important occurrences of
minimal separators. Briefly, for any chordal graph G, a cligue tree T for G
is a tree that has nodes—called that to lessen confusion with the vertices
of G—that are the mazcliques (meaning the inclusion-maximal complete
subgraphs) of G such that, for each v € V(G), the subgraph T, of T" that is
induced by the nodes containing v is connected: in other words, every T, is
a subtree of T'. A graph G is chordal if and only if it has such a clique tree
T, clique trees can be elegantly constructed from the intersection graph of
the maxcliques of G, and G is the intersection graph of the subtrees T, of
T. Each edge Q@' of T corresponds to the minimal separator @ N Q' of G,
and every minimal separator similarly corresponds to an edge of T. This
is in spite of the possibility that G has more than one clique tree and the
possibility that the same minimal separator corresponds to more than one
edge of T'; again, see [7] for history, proofs, and details.

As an example, Figure 4 shows a graph G from Figure 1 with a clique
tree T for G (T happens to be unique in this case). The nodes of T are
the maxcliques of G; the edges of T correspond to the minimal 2-vertex
separators {a,b,c,z}N {b,c,e,2} = {b,c,z}, {b,d,e} N {b,c,e,z} = {b,¢},
and {c,e,f} N {b,c,e,z} = {c,e}.

Theorem 6 will generalize the correspondence of minimal 2-vertex sep-
arators with the edges of cliques trees of chordal graphs to the corre-
spondence of minimal k-vertex separators with certain substars of edges
of clique trees of {Ps,2Ps}-free chordal graphs. A substar of a clique
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{a,b,c,z}

¢ b@c T {b,c,!:,:c}
d/ |7\f O

{b,d, e} {e,e.f}
Figure 4: A {Ps,2Ps}-free chordal graph G with its clique tree T'.

tree T is any subgraph that consists of a node  and one or more of
its neighbor nodes @,...,Q@q; that substar will correspond to the set

U{RNQ@i:1<i<d}CV(G).

Theorem 6 Suppose G is a { Ps,2Ps}-free chordal graph that has a clique
tree T and suppose k > 2. Then S C V(G) is a minimal k-vertez separator
of G if and only if both the following hold:

(6.1) S corresponds to a substar of k — 1 edges of T.
(6.2) For every v € S, subtree T, has at least two nodes not equal to S.

Proof. Suppose G, T', and k are as in the statement of the theorem.

First suppose that S is a minimal Z-separator of G with |Z| = &£ > 2.
Conditions (5.1) and (5.2) of Lemma 5 and the correspondence of minimal
2-vertex separators of G with the edges of T" imply that the minimal 2-
vertex separators Si,...,Sk—1 from (5.1) correspond to k — 1 edges of T'
whose removal from T would leave the vertices of Z in nodes of k different
components of the resulting forest. (Some of the S; sets may be identical,
but their multiplicity will equal the number of edges QQ' of T' with equal
QNQ'; see [7].) Moreover, those k—1 edges are all incident with a node of T
that corresponds to a maxclique of G that contains the complete subgraph
induced by S. Thus (6.1) holds. Condition (5.2) directly implies (6.2).

Conversely, suppose (6.1) and (6.2) hold. Then (6.1) implies (5.1) by
constructing Z to consist of one simplicial vertex from each component of
the forest that results from deleting the & — 1 edges of the substar from T
and by taking the sets S; to correspond to the edges of the substar. Con-
dition (6.2) directly implies (5.2). o

In Figure 4 for example, the minimal 2-vertex separators {b,¢} and
{c, e} correspond to two adjacent edges of T', and their union S = {b,c,¢}
is a minimal 3-vertex separator of G (T}, T¢, and T, each has three nodes).
On the other hand, the minimal 2-vertex separators {b,c,z} and {b,¢}
correspond to two adjacent edges of T', but T has only one node, {a, b, ¢, z},
not equal to S, and their union {b,c,e,2} = S is not a minimal 3-vertex
separator of G.

230



Condition (6.2) holds automatically in the k = 2 case, since v being in
a minimal 2-vertex separator S implies that v is in both nodes of the edge
of T that corresponds to S, and S will be a proper subset of both of the
maxcliques that correspond to those two nodes.

Theorem 7 will resemble Theorem 2 for the & > 3 cases when S is a
maxclique of G (rather than just a complete subgraph). In it, a vertex v is
bisimplicial [1] if N (v) is the union of two complete subgraphs; equivalently,
if v is in at most two maxcliques of G (or, in the case when G is chordal, if
v is in at most two nodes of a clique tree). Every simplicial vertex is also
bisimplicial.

Theorem 7 If G is a {Ps,2Ps}-free chordal graph and S is a mazclique
that is a minimal k-verter separator of G with k > 3, then S induces a
complete subgraph of non-bisimplicial vertices of G, and S is a minimal
I-separator, |Z| = k, where I is a set of vertices that are pairwise distance
two apart in G.

Proof. Suppose G is a {Ps,2Ps}-free chordal graph with clique tree T
and S is a maxclique of G that is also a minimal k-vertex separator of G.
Then k # 2; otherwise, Lemma 5 would imply that S corresponds to both
an edge and a node of T" (contradicting that maxcliques are incomparable
subsets of V(G)). Thus k¥ > 3 and Theorem 6 implies that S corresponds
to a substar of k — 1 > 2 edges QoQ1, - .., QoQ@k—1 of T where S C Qo and
each v € S is in at least three Q; nodes of T. So no v € S is bisimplicial.
Let Z consist of one vertex v; from each set @; — @o. Then Z is an inde-
pendent set, and S is a minimal Z-separator. Lemma 5 implies that every
two vertices v;,v; € Z have a minimal vertex separator S; C S as in (5.1),
making v; and v; both adjacent to some vertex in S. Hence, every v; and
v; are distance two apart in G. o

Toillustrate the role of bisimplicial vertices, observe that, in the example
of Figure 4, the maxclique S = {b,¢c, ¢, z} is the center vertex of a 2-edge
substar with leaf nodes {b,d, e} and {c,e,f}, but z € S is bisimplicial and
S is not a minimal 3-vertex separator.

References

[1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, and P. Seymour,
Bisimplicial vertices in even-hole-free graphs, submitted.

[2] A. Brandstddt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey,
Society for Industrial and Applied Mathematics, Philadelphia, 1999.

231



[3] M. Cerioli and J. L. Szwarcfiter, Characterizing intersection graphs of
substars of a star, Ars Combin. 79 (2006) 21-31.

[4] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg
25 (1961) 71-76.

[5] J. Gustedt, On the pathwidth of chordal graphs, Discrete Appl. Math.
45 (1993) 233-248.

[6] T.Kloks, Treewidth: Computations and Approzimations, [Lecture Notes
in Computer Science 842] Springer, Berlin, Heidelberg, 1999.

[7] T. A. McKee and F. R. McMorris, Topics in Intersection Graph Theory,
Society for Industrial and Applied Mathematics, Philadelphia 1999.

232



