A proof to the odd-gracefulness of all
lobsters!

Xianggian ZHOU, Bing YA0?, Xiang'en CHEN, and Haixia TAO

College of Mathematics and Information Science, Northwest Normal University,
Lanzhou, Gansu 730070, China

Abstract

Gnanajothi conjectured that all trees are odd-graceful and ver-
ified this conjecture for all trees with order up to 10. Since the
conjecture is open now we present a proof to the odd-gracefulness of
all lobsters and show a connection between set-ordered odd-graceful
labellings and bipartite graceful labellings in a connected graph.
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1 Introduction and concepts

Gnanajothi [5] defined that a graph G with g edges is odd-graceful if it has
a proper labelling f : V(G) — {0,1,...,2q — 1} such that {|f(u) — f(v)| :
wv € E(G)} = {1,3,...,2¢ — 1}. She proved that the class of odd-graceful
graphs lies between the class of a-graphs with a-labellings defined by Rosa
[6] and the class of bipartite graphs; every a-graph is also odd-graceful,
and the reverse case does not work. Furthermore, Gnanajothi conjectured:
All trees are odd-graceful. This conjecture was verified for all trees with
order up to 10 [5]. Barrientos ([2], [4]) has shown that all disjoint unions
of caterpillars are odd-graceful and all trees of diameter 5 are odd-graceful.
Eldergill (3] shows that a spider T with odd legs of the same length is odd-
graceful. In (7], the author shown many odd-graceful graphs (including
several classes of lobsters). A few classes of trees have been verified to be
odd-graceful up to now [4].

In this note, we will prove that every lobster is odd-graceful. A con-
nection between set-ordered odd-graceful labellings and bipartite graceful
labellings in a connected graph will be shown.

We use standard terminology of graph theory. Graphs mentioned are
simple, undirected, connected and finite. A (p,¢)-graph G is one with p
vertices and ¢ edges. The shorthand symbol [m, n] stands for an integer set
{m,m +1,...,n}, where m and n are integers with 0 < m < n; and the
notation [s,¢]° indicates an odd-set {s,s+2,...,t}, where s and t are odd
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integers with 1 < s < ¢. A graph G has a proper labelling f : V(G) — [0, k]
if f(u) # f(v) for distinct u,v € V(G). Correspondingly, each edge uv of
G is assigned by the value |f(u) — f(v)| (called the edge label), denoted by
) = |£(w) = F(v)]. Write F(V(G)) = {f(u) : u € V(G)}, F(E(G)) =
{f(uwv) : wv € E(G)}, and max(f) = max f(V(G)) here. If a (p,q)-graph
G admits a proper labelling f : V(G) — [0, g] such that f(E(G)) = [1,4],
then we say that G and f both are graceful.

Definition 1. [8] Let (X,Y) be the bipartition of a bipartite (p, ¢)-graph
G. If G admits a graceful labelling f such that max{f(z) : z € X} <
min{f(y) : y € Y}, then we call f a bipartite graceful labelling, and write
this case as f(X) < f(Y). Furthermore, if G has a perfect matching M
and f is a (bipartite) graceful labelling such that f(z)+ f(y) = g for every
edge Ty € M, so we call f a strongly (bipartite) graceful labelling.

Motivated by this definition we have the concept of a (strongly) set-
ordered odd-graceful labelling as follows.

Definition 2. Let (V4, V2) be the bipartition of a bipartite (p, ¢)-graph G.
If G admits an odd-graceful labelling f such that max{f(u) : v € 1} <
min{f(v) : v € Va}, then we call f a set-ordered odd-graceful labelling, and
write this case as f(Vi) < f(V2). Furthermore, if G has a perfect matching
M and f is a (set-ordered) odd-graceful labelling such that f(u) + f(v) =
2q — 1 for every edge uv € M, we say that G and f both are strongly
(set-ordered) odd-graceful.

A leaf is a vertex of degree one. A caterpillar is a tree such that the
graph obtained by deleting all leaves from the tree is just a path. A lobster
is a tree H such that the deletion of all leaves of H produces a caterpillar.

2 Every lobster is odd-graceful

Lemma 1. If a graph G admits an odd-graceful labelling, then G is a
bipartite graph.

Proof. Let f be an odd-graceful labelling of G. We define V; = {v: f(v)
isodd, v e V(G)}, Vo = {v: f(v) is even, v € V(G)}. Clearly, V(G) =
ViuVz and VNV, = 0. Since G is odd-graceful, then V; and V; both are
independent. O

The addition of m vertices ;,z2,...,%, to the vertex set of a graph
G, each of them joined with a vertex of G, is called “adding leaves to G.”

Theorem 2. For any connected set-ordered odd-graceful graph H, adding
leaves to H produces an odd-graceful graph.
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Proof. Let H be a connected graph with ¢ edges and a set-ordered odd-
graceful labelling f. By Lemma 1, V(T') = V; U V,, where V; = {u;: i €
[1,s]} and Vo = {v; : j € [1,t]} with s +¢ = |T|. Since f is set-ordered
odd-graceful, thus, f(u;) < f(uit1) for ¢ € [1,s — 1] and f(v;) < f(vj41)
for j € [1,t — 1], and f(Vi) < f(V2). Notice that f(u1) =0, fusn) =1
and f(v;) = 2¢g — 1. Clearly, f(u;) is even, i € [1,s]; and f(v;) is odd,
j€1,t).

The sets of leaves joining with u; and v; are denoted as {u;1, ui2, ...,
u;e,} and {v;,1,9j,2,...,jk,; }, respectively, where £; > 0 for i € [1, 5] and
kj > 0 for j € [1,t]. The resulting tree is denoted as G*. Let M(s) =
Yoioili and M(t) = Z 1 kj. Hence, |V(G*)| = |[V(H)| + M(s) + M(t),
|E(G’*)| =q+ M(s) + M (t)- We define a labelling h of G* as follows.

(i) Let h(w;) = f(u;) for i € [1,s], h(v;) = f(v;) +2(M(s) + M(t)) for
jelLi.

(ii) Let h(uiuy1) = 1, h(u1,1) = h(u1) + h(uiu1,1) = 1 since h{u;) =
0. We define edge labels A(ujui,;) = 25 — 1 for j € [1,£1], and then
define vertex labels as h(u1,;) = h(u1) + h(uiuy ;) = 25 — 1 for j € [1,£1].
In general, we define edge labels h(uiu; ;) = h(uiuvi1) +2(7 — 1) =1+
2(2‘_1 ) +2(3-1) =20+ Z’:l £,) — 1 and vertex labels h(u; ;) =
h(u,) + h(u;u; ;) for j € [1,4;] and i € (2, 5].

(iii) Let h(viv1,1) = 2(M(s) + M(t)) — 1, h(v1,1) = h(v1) — h(viv1,1),
and h(vyv1,) = h(viv1,1) —2(1—1) = 2(M(s)+ M (t))—2l+1for I € [1, k1};
and h(vyy) = h{v1) —h(viv1,) forl € [1, k). In general, we have h(vv; ;) =
h(vivi1) — 2(j — 1) = h(v1v1,1) — 25 emy kg — 205 — 1) = 2(M () + M(t) —
YTl k) —2j+1 and h(v; ;) = h(v;) — h(viv,;) for j € [L, k] and i € [2,4].

We, now, verify that h is an odd-graceful labelling of G*.

It is easy to see h(u;) is even for i € [1,s], h(v;) is odd for j € [1,%];
h(u; ;) is odd for j € [1,4:] and i € [1,3], and h(v;,.) is even for r € [1, k]
and ! € [1,t]. Clearly, h(u;;) # h(v,r). Notice that h(u;) < h(uit1) for
i € [1,5 — 1], h(vj) < h(vj41) for i € [1,£ — 1] and h(us) < h(v1); and
h(u1) = 0, h(usvr) = 1+2(M(s)+ M(t)), h(ve) = 2q—142(M (s)+ M(2)).

We have h(uiu; ;) < h(uiuijq1) for j € [1,6; — 1] and i € [1,s]; and
h(uiuig,) < h(uip1uipr,1) for i € [1, s—1]. Similarly, h(vivi ;) > h(vivij41)
forj € [1,ki—1] and i € [1,¢]; and h(vivik;) > h(viy1viea,1) fori € [1,¢~ 1].
Furthermore, h(u;;) < h(uijt1) for 5 € [1,4; — 1] and ¢ € [1,s]; and
h(uie;) < h(uip1,1) for i € [1,s —1]). Analogously, h(v;,;) < h(v;,j+1) for
j €L, ki—1] and i € [1,t]; and A(vik,) < A(vig1,1) for i € (1,2 —1].

Since h(usv1) = h(v1)—h(us) = 142(M(s)+M(t)), M(viv1,1) = h(v1)—
h(vi,1) = 2(M(s) + M(2)) — 1, h(ususe,) = h(use,) — h(us) = 2M(s) ~ 1,
then h(use,) = h(us) +2M(s) — 1 < f(v1) + 2(M(s) + M(t)) = h(w),
and h(vy1) = h(or) — 2(M(s) + M(®) +1 = Fo1) +1 > flus) = h(us).
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Therefore, h(x) # h(y) for distinct =,y € V(G*).

The set h(E(G*)) of edge labels of G* consists of {h(zy) : zy € E(G*)\
E(H)} = [1,2(M(s) + M(t)) — 1]° and {h(zy) : =y € E(H) C E(G*)} =
(14 2(M(s) + M(t)),29 — 1 + 2(M(s) + M(2))]°, that is, h(E(G*)) =
(1,29 — 1+ 2(M(s) + M(¢t))]° = [1,2|E(G*)| - 1)°.

The proof of the theorem is completed. O

Figures 1, 2 and 3 are used for illustrating the proof of Theorem 2.
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Figure 1: Adding ten leaves (black vertices) to the set-ordered odd-graceful tree

T shown in Figure 3(a).
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Figure 2: A procedure of relabelling each vertex of the tree shown in Figure
3(b).

Figure 3: (a) A set-ordered odd-graceful tree T; (b) adding leaves (black vertices)
to T yields a tree with an odd-graceful labelling.

Theorem 3. Every lobster is odd-graceful.

Proof. First, we will show that every caterpillar is set-ordered odd-graceful.
By induction on the orders of the caterpillars. Since the deletion of all leaves
from a caterpillar produces a path, so we can describe a caterpillar T' in the
following way. T contains a path P = ujug - - -um, and each set of leaves
u;; adjacent to a vertex u; is denoted as L(u;) = {us; : j € [1, 4]} with
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integers a; > 0 for ¢ € [1,m]. It is allowed that some a; = 0 if no leaf is
adjacent to u; in T

Clearly, each graph T; = T — V;, where V; = (UL, £(u;))U{w;:j €
[i +2,m]}, is a caterpillar too. T} is a star with the vertex set {u1,us} U
L{uy) = {u1,u2,u1,;5 : j € [1,01]}. We label the vertices of T} as: my(u;) =
0, my(u1,;) = 25 —1 for j € [1, 1], and 71 (u2) = 2a;+1. Obviously, 7; is a
set-ordered odd-graceful labelling of Ty. Next, we define the complementary
labelling m! of m; as 7/ (z) = max(m) — m(z) for z € V(T1). Clearly, 71,
also, is a set-ordered odd-graceful labelling of T;. Notice that 7{(u;) =
2a; +1 and 7/ (u2) = 0. Joining each x € L(u2) U {uz} with the vertex up
of T results To. We define a proper labelling m, of T as: ma(x) = 7(z) for
z € V(Th) C V(T2), ma(ug,;) = 20y + 1425 =2(cq +3) +1 for j € [1,02),
and ma(us) = 2(ay+ag+1)+1. Since 72(T2) = [1, 2a;+1]°U[201 +3, 2(c1 +
ag+1)+1]°, so g is set-ordered odd-graceful. Similarly, the complementary
labelling w4 of my is defined as m5(z) = max(m) — mo(z) for z € V(I2);
and it is set-ordered odd-graceful such that 75(u2) = 2(a1 + a2+ 1) +1
and 75(u3) = 0. In general, each caterpillar T; admits a set-ordered odd-
graceful labelling m; such that its complementary labelling 7}, defined as
7 i(z) = max(m;) — mi(z) for z € V(T}), is set-ordered odd-graceful with
miw) = 2(i — 14+ 35, aj) + 1 and 7j(us41) = 0. Therefore, every
caterpillar is set-ordered odd-graceful by the principle of induction.

Notice that deleting all leaves from a lobster remains a caterpillar. This
theorem follows by Theorem 2. (|

Observe that the proof of Theorem 2 needs the help of set-ordered odd-
graceful graphs. So we wish to characterize set-ordered odd-graceful graphs.

Theorem 4. A connected graph H has a (strongly) set-ordered odd-graceful
labelling if and only if H admits a (strongly) bipartite graceful labelling.

Proof. Let H be a connected bipartite graph with g edges. So V(T) =
ViuV,, where Vi = {u; : i € [1,s]} and Vo = {v; : i € [1,t]} with
s+t = |T|. The proof about “A connected graph H has a strongly set-
ordered odd-graceful labelling w if and only if H admits a strongly bipartite
graceful labelling” is very similar with the following proof.

We consider the proof of “if”. Let f be a set-ordered odd-graceful
labelling of H such that f(u;) < f(uiq1) for i € [1,s — 1] and f(v;) <
f(vjq1) for j € [1,t = 1], and f(Vi) < f(Va). Notice that f(u1) = 0,
f(usv1) =1 and f(v;) = 2g—1; and f(u;) is even for i € [1, s}, f(v;) is odd
for j € [1,]. We define a proper labelling 8 of H by setting 6(u;) = 1 f(u:)
for u; € V1, and 6(v;) = §(f(v:) + 1) for v; € Vo. Hence,

0=0(u) < 8(u) <+ < O(us) <O(v1) <(v2) <--- < OB(vg) =gq.
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Since |f(u:) — f(vj)| = f(v;) — f(us) =2k —1 € [1,2¢ — 1)° for k € [1,4],
thus, |6(u:) — 0(v;)| = 3(F(vj) +1) — 1f(ui) = k, which means that 8 is
bipartite graceful from (V1) < 6(V2).

To show the proof of “only if”, we let g be a bipartite graceful labelling
of H such that g(u;) < g(uiy1) for i € [1,s — 1] and g(v;) < g(vj41) for
j € [1,¢ - 1], and g(V1) < g(V2). Notice that g(u1) = 0, g(usv;) = 1 and
J(vt) = g. Next, we extend the labelling g to a labelling  of H by setting
(ui) = 2g(u;) for u; € Vi, ©(v;) = 2g(v;) — 1 for v; € V5. Thereby,
0=p(u1) < p(uz) < - < p(us) < p(v1) < p(v2) < -+ < p(ve) =29 — 1.

Notice that |g(u;) — g(v;)| = g(v;) — g(ui) = k € [1,4g). Hence, |p(u;) —
p(v;)] = 29(v;) — 1 —2g(u;) = 2k — 1 € [1,2q — 1]°, which implies that ¢
is set-ordered odd-graceful since ¢(V}) < ¢(V2).

This theorem is covered. O

Since the Graceful Tree Conjecture [4] is open now, Theorem 4 shows
that it is not easy to settle Gnanajothi’s conjecture. Furthermore, “each
tree having a perfect matching is strongly odd-graceful” does not work since
there are trees with perfect matchings and diameter four that are not
strongly odd-graceful.
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