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Abstract This work presents explicit expressions of the 3-restricted edge
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1 Introduction

Since restricted edge connectivity of graphs plays an important role in analyzing
reliability of communication network, its optimization problem draws a lot of
attentions and many important observations are obtained as a result [1-7, 9-10,
12-13], for advances in this field the readers are suggested to refer to a survey
[1]. This work pays attention to finding explicit expressions of restricted edge
connectivity of Cartesian product graphs, these expressions lead to the solution
of above optimization problem for Cartesian product networks.

The Cartesian product G10G; of graphs G; and G; has vertex-set V(G1) x
V(G2), where two vertices (z1,%1) and (z2,y2) are adjacent to each other if and
only if either y; = yo and ;25 € E(G1) or 21 = z2 and y1y2 € E(G,). Cartesian
product graphs have many applications, for their properties we suggest the
readers to refer to monograph [11].

For any subgraph F of graph G or subset of V(G), let 8(F) denote the
number of edges of G with exactly one end in F and £,(G) = min{d(F) : F
is a connected vertex-induced subgraph of order m of G}. Let A(G) denote
the edge connectivity of graph G and A3(G) its restricted edge connectivity.
Let p&g(G1) + ¢ép(G2) = min{l§;(Gs) + ¢6(G1) : 1 £ 1 L |G| - 1,1 £ ¢ <
[G2| = 1,m + 1< I+t < (|G| +|G2])/2}. With these conventions, we present
the expression on restricted edge connectivity of Cartesian product graphs in
following theorem.

Theorem 2.2 If G; and G, are connected graphs of order at least 3, then
Am(G10G3) = min{|G1|\(G2), |G2|M(G1), P€4(Gh) + a€p(G2)}.

Theorem 2.3 Let G; and G be two connected graphs of order at least three,
and triangle free. If max{A(G1), A(G2)} > 3 then A3(G10G2) = min{A(G1)|G2|,
MG2)lG1|,£3(G10G2)}.
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These observations will lead to sufficient and necessary conditions for Carte-
sian product graphs to be maximally restricted edge connected. Before pro-
ceeding, let us introduce some more symbols and terminologies. For any two
subgraphs A and B of graph G or subsets of V(G),let A=G—Aor V(G)- A
and [A, B] denote the set of edges with one end in A and the other in B. For any
edge cut S = [F, F] of G10OGz, we always assume that |F| < |F|. Let GZ rep-
resents the subgraph of G100G> induced by {£}0G,. G§ is called separated by
edge cut S if GENF # 0 # GEZNF. For any vertex x € V(G,), let S; = SNE(G%)
and similarly define S, for any vertex y € V(Ga). LetS. = S N (G5, Gy’] for
any edge e = z;z; € E(G1). We follow [8] for other symbols and terminologies
not specified herein.

2 Restricted edge connectivity

Lemma 2.1 If G;0G; contains 3-restricted edge cuts, then either it contains
a minimum 3-restricted edge cut S’ = [F, F] such that F = X0OY for some
connected subgraphs X C G; and Y C Gj, or it contains a component of order
3.

Proof Let S be a minimum restricted edge cut of G,00G,. If GY is separated
by S, then GY — S, consists of two components. This observation is also true
for any subgraph G§. Let |S,| = min{|Sz| : G} is separated by S}, |S,|=
min{|Sy| : GY is separated by S}, r = |[{x € V(G1) : G3 is separated by S}|
and s= |[{y € V(Gs) : G} is separated by S}|. Consider at first the case when
7> 1and s > 1. In this case, S, = [{x}0Y, {«}0Y] and S, = [XO{v}, XO{v}]
for some connected subgraphs X C G; and Y C G2. Assume without loss of
generality that | X| < |X| and [Y| < |Y).

If max{|X|,|Y|} >3, or | X| =|Y]| =2, let F = XOY then S' = [F,F]is a
3-restricted edge cut such that

1912 Y 1Sel + D 1Syl 2 1X|ISul + Y ISu| = |57} (1)
z€X yeY

If | X| = |Y| = 1, then XO{v} and {u}EIY are isolated vertices in G} and
G respectively. Let X = {a}, So = [{¢}0Z, {a}(V(G2) — Z)], a.nd Y =
{8}, 8 = [{5}OW, (W)D(V(Gy) — W), Obviously, maz{|Z], W[} > 2. If
maz{|Z|,|W|} > 3, suppose |Z| > 3. Let S, = [{}02Z, V(G10G2)—{a}0Z],Then

5] 2 [Sal + Y 1Syl 2 |Sa| +1211S.] = 1Sa| = 15
y€Z

If | X] = |Y]| = 2, say X = {a,c}, and S, = [{c}OT, {c}O(V(G2) — T)], and
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similar to the S, we have S.. Then either |F| =3, or min{|T|,|Z|} = 2. If the
second case happens, and suppose S/, > S’, then let &' = XOT

If|X|=1, |Y| =2, or |X| =2, |Y| =1, without loss of generality, suppose
|X| = {a,c}| =2, |Y| =1. If min{|T|,|Z|} > 2 and then similar to the above,
we have done. Otherwise, suppose |T| < |Z|. If |T] = 1, and |Z] > 3, let
S = [{a}0Z,V(G10G3) — {a}0Z). If |T} = 1, and | Z| = 2, then either |F| =3
or a has another neighbor in Gy, say d, such that {d,e} € G§NF # ¢. Then
let §' = XOK,, where K is an induced subgraph of G, by {b, e}.

191 > 1Sal + Y 1Sy1 2 ISal + 121150 = |S"].
YyEZ

Since S is a restricted edge cut, it follows that Z induces a connected subgraph
of order at least two. And so, S’ is a restricted edge cut in either of these two
subcases, the lemma follows in this case. When r = 0, we have s = |V(G,)|. If
let Y = G5 and X be as before, then formula (1) is still true. This method also
works when s = 0 and so the lemma follows. D

Theorem 2.2 If G: and G2 are connected graphs of order at least two,
then Xo(G10G3) = min{|G1|A(Gz2), |G2|A(G1), p&4(Gh) + ¢€(G2)}-

Proof Let S be a minimum restricted edge cut of G;0G5. By the lemma
2.1, we may assume that S = [XOY, XOY]. Let r and s be as is defined in the
proof of lemma 2.1. If r = 0, let Y = G and [X, X] be a minimum edge cut
of Gy, then by lemma 2.1 [XOY, XOY] is a minimum restricted edge cuts of
G10G; with cardinality |G2|A(G); if r = |Gy, then s = 0. Let X = G; and
[Y, Y] be a minimum edge cut of Go. Then [XOY] is & minimum restricted edge
cut of G;0G; with cardinality |G1|A(Ga).

Finally, if 1 € r < |Gy| — 1, by lemma 2.1, G;0G> contains a minimum
restricted edge cut S = [XOY, XOY]. If either | X| > |Gy|/2 or |[Y| > |G2|/2,
then [XOY, XOY] or [XOY, XOY] is a restricted edge cut with less cardinality
than S. The theorem follows from these observations. O

Considering that the expression of theorem 2.2 is somewhat complicated, in
the last of this section we turn to determine the restricted edge connectivity of
Cartesian product of triangle-free graphs.

Theorem 2.3 Let G; and G» be two triangle-free connected graphs of order
at least three. If max{\(G1), M(G2)} = 2 then A\(G10G2) = min{MG1)|G2],
AMG2)|G1|,€2(G10G2)}.

Proof Let [X,X] and [Y,Y] be minimum edge cuts of G; and G, respec-
tively, uv be an edge of G;(0G; with minimum edge degree. Then [XOGy, XOG3),
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[¢:0Y,G,0Y)] and [{u, v}, V(G10G2) — {u, v}] contains a restricted edge cut of
G10G3 respectively. It follows that A2(G10G2) < min{A(G1)|G2|, MG2)|G4,
£2(G10G2)}.

To show that Ap(G10G2) > min{A(G1)|Ga], M(G2)|G1|, £2(G10G?)}, let S
be a minimum restricted edge cut of G;0G5. By lemma 2.1, we may assume
that § = [X0OY, XOY]. Let r and s be as are defined in the proof of lemma 2.1.

If r =0, then s =ny, Y = G and |S| = |[XOY, XOY)| 2 M(G1)|Ge|; if r =
ny, then s = 0 and similarly we have |S| > |G1|A(G2). And so, assume in what
follows that 1 <r < n; —1and 1 < s < n2 — 1. Since max{A(G1),(G2)} > 2,
by the symmetry of G; and G in G100Gs it suffices to consider the case when
AMGy) 22

Case 1. X contains at least two vertices.

For any given edge x;z2 of X, since G; is triangle-free it follows that

NG; (21) r\NG, (2:2) =0.

1S = D 1S+ Y IS+ Y. 1S

e€[X,X) z€Nx(z1) z€Nx (z2)

NGIY| + (dg,(z1) = |[z1, X]| + dg, (z2) — |[z2, X]|)|[Y, Y]

Y]+ (MG1) - 2)IY| +2|[Y, V]| +

+(dg, (21) + dg, (z2) = 2 = |[z1, X]| = |[z2, XII[Y, V]|

2(Y| + [V, Y1) + MGh) +dg, (z1) + dg, (22) — 4 = |[z1, X]| - |[z2, X]|
2(Y] +[Y, Y1) + do, (1) + de, (z2) - 4.

Noticing that for any vertex y € V(G2) we have |Y|+|[Y,Y]| = dg,(y) + 1, the
above formula implies that

ISI > 2(de,(y) +1) + de, (1) + de, (22) — 4
= d(z1,y) + d(z2,9) - 2 2> £(G10G?).

Case 2. X = {z} for some vertex z € V(Gy).

Since S is a restricted edge cut, it follows that Y contains at least two
vertices. If |[Y,Y]| > 2 in this case, then |S| > £&(G10G>) by a similar reasoning
as is employed in the proof of case 1. Hence, we assume in what follows that
|[Y,Y]| = 1, which implies A(G2) = 1. With this assumption we have

|S|'= z |Sel +15z] = dG,(Ic)lYl +1
e€lz,G1~7]

v

v v

Since |[Y,Y]| = 1, every vertex in Y has degree at most |Y| in graph G and at
most one vertex, say y, has degree |Y|. It is obviously that |S| > &(G10G?)
when |Y| = 2. In the case when |Y| = 3, for any vertex 3’ € Ny (y) we have

de,(@)|Y|+1 > 3dg,(z)+12>2de,(z)+3
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