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Abstract

The cycle structure of a Latin square autotopism © = (a, 3,7) is the
triple (1a,1s,1,), where 15 is the cycle structure of 8, for all § € {c, 8,7}
In this paper we study some properties of these cycle structures and, as a
consequence, we give a classification of all autotopisms of the Latin squares
of order up to 11.
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1 Introduction

A quasigroup [1] is a nonempty set G endowed with a product -, such that
if any two of the three symbols a,b, ¢ in the equation a - b = c are given
as elements of G, the third is uniquely determined as an element of G. It
is equivalent to say that G is endowed with left and right division. Two
quasigroups (G, ) and (H,o) are isotopic [2] if there are three bijections
a,B,7 from H to G, such that y(a o b) = a(a) - B(b), for all a,b € H.
The triple © = (a, 8,7) is called an isotopism from (H,o) to (G,-). The
multiplication table of a quasigroup is a Latin square. A Latin square L of
order n is a n x n array with elements chosen from a set N = {z1,...,Zn},
such that each symbol occurs precisely once in each row and each column.
The set of Latin squares of order n is denoted by LS(n). The calculus of
the number of Latin squares of order n is an open problem. However, this
number is known up to order 11 [7]. A general overview of Latin squares
and their applications can be seen in [3] or [5].

Throughout this paper, we will consider N = {0,1,...,n—1} and S, will
denote the symmetric group on N. The cycle structure of a permutation
§ € S, is the sequence (13,1, ...,1,), where l; is the number of cycles of
length 7 in 8. For a given § € S, define the set of its fixed points by
Fiz(6) = {i € N : §(3) = i}. If L = (l;5) € LS(n), the orthogonal array
representation of L is the set of n? triples {(i,4,L;) : i,7 € N}. The
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previous set is identified with L and so, it is written (%, 4,1; ;) € L, for all
i,j € N. Moreover, since L is the multiplication table of a quasigroup,
then distinct triples of L never agree in more than one element.

An isotopism of a Latin square L € LS(n) is a triple © = (a,8,7) €
I, = Sp X Sy X Sp. So, &, B and v are permutations of rows, columns and
symbols of L, respectively. The resulting square L® is also a Latin square
and it is said to be isotopic to L. In particular, if L = (l; ;), then L® =
{G,j,7? (la(i)’ﬂ(jb) :4,7 € N}. If L; and L are two distinct Latin squares
of order n, then LY # LY. If @ = 8 = 4, the isotopism is an isomorphism.
If v = ¢, the identity map on N, © is called a principal isotopism. An
isotopism which maps L to itself is an autotopism. Moreover, if it is an
isomorphism, then it is called an automorphism. If its permutations are
n cycles, then L is said to be diagonally cyclic. Indeed, diagonally cyclic
Latin squares of even order do not exist [8]. (e,¢,¢) is called the trivial
autotopism. The stabilizer subgroup of L in Z,, is its autotopism group,
U(L)={© €I,: L® = L}. For agiven L € LS(n), © = (o, 8,7) € U(L)
and o € 83, it is verified that (m5(0)(©), To(1)(©), To(2)(©)) € U(L?), where
m; gives the (i + 1)** component of ©, for all i € {0,1,2}. For a given
© € I, the set of all Latin squares L such that © € U(L) is denoted by
LS(©). The cardinality of LS(®) is denoted by A(©). Specifically, the
computation of A(©) for any isotopism © € Z, is at the moment an open
problem having relevance in secret sharing schemes related to Latin squares
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Figure 1: Isotopism permuting 1% with 2"¢ and 37¢ with 4t rows and 2"¢
with 3™ columns.

The following result gives some necessary conditions of the possible
non-trivial Latin square autotopisms:

Theorem 1 (McKay, Meynert and Myrvold [6]). Let L € LS(n). Every
non-trivial © = (a, B,v) € U(L) verifies one of the following assertions:
a) a,f,7 have the same cycle structure with at least one and at most
| %] fized points.

b) One of &, B, has at least one fized point and the other two have the
same cycle structure without fized points.



¢) None of o, 8,7 has fixed points. O

The classification given in the previous theorem depends on the cycle
structures of the permutations of each Latin square autotopism and on their
fixed points. In this paper, we are interested in giving a complete catalogue
with all the possible cycles structures of any autotopism of a Latin square
of order up to 11. This catalogue seems to be useful to study the open
problem of the calculus of the number A(©). Specifically, we prove in
Section 3 that the number of Latin squares having a given isotopism © € I,
in its autotopism group only depends on the cycle structure of ©.

The structure of the paper is the following: in Section 2, some general
results about Latin square autotopisms are reviewed. In Section 3, we define
the cycle structure of a Latin square autotopism and we study several of
its properties. All these properties have been implemented in a computer
program to give in Section 4 the classification of all autotopisms of the
Latin squares of order up to 11.

2 Some general results

Every permutation of S, can be written as the composition of pairwise
disjoint cycles. So, from now on, for a given © = (a,8,7) € I,, we will
consider that, for all § € {e, 8,7}

§=CoClo..0Cf _,, (1)
where:
i) For all i € {0,1,...,ks — 1}, one has C{ = (cf'o ey .. e .\4-1)' with

M < nand c‘,-s,o = min; {c‘is.j }
i) 355 M =n.
iii) For all 4,5 € {0,1,..., ks — 1}, one has A} > A, whenever i < j.

iv) Given i, € {0,1,..,ks — 1}, with i < j and A{ = X}, one has
fo <o
Specifically, the following result is verified:
Proposition 1. Let © = (a, 3,7) € In be a non-trivial isotopism. If one
of the permutations o, B or vy is equal to €, then A(©) > 0 only if the other

two permutations have the same cycle structure with all their cycles of the
same length and without fized points.
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Proof. Let © = (o, 3,7) € Z,, be such that A(©) > 0 and let us con-
sider L = (l; ;) € LS(6). If one of the permutations a, 3 or - is equal to
€, then we are in case (b) of Theorem 1 and, therefore, the other two per-
mutations must have the same cycle structure without fixed points. Now,
we must prove that all the cycles of these two permutations have the same
length. To do it, since rows, columns and symbols have an interchangeable
role in the study of Latin squares, it is enough to study the case o = ¢,
being equivalent the proof when 8 = € or 4y = ¢. Thus, 8 and 7 have the
same cycle structure without fixed points. Specifically, kg = k,. Let us
suppose that there exist r,s € {0 1,..,kg — 1} such that M2 £ AY. Now,
let @ € N be such that I, = 5.0° If)\f > A, then:

b, o8, = €30 = €437 (mod A7) = L, &g
which is a contradiction with being L a Latin square. Otherwise, if A2 < A7,
then:

v = = =7
cs’o - la) cf.o - l“y cf.Ae (mod *e) - cs,Af’
which is a contradiction with the conditions (1) imposed at the beginning of
this section. Therefore, it must be that A = A7, for all r,s € {0, 1,..., kg —
0O

1}.

From now on, for a given § € {a, 8, 'y} and i € {0,1,. 1}, we will
write a € C¥ if there exists j€{0,1,..,2¢ —1} such that a=¢cl; The
following result is verified:

Theorem 2. Let L = (I;;) € LS(n) and © = (a,B,7) € U(L) and let us
consider r € {0,1,...,kq ~ 1} and s € {0,1,...,kg — 1}. Let us denote m=
Lem.(A2, A8). Now, for a givena € C andb € Ch, lett € {0,1,...,ky—1}
be such that l,, € C;. Then, it is vemﬁed that:

i) A divides m.

) A} does not divide any multiple of \* smaller than m.
ii) A does not divide any multiple of M2 smaller than m.
w) If g.c.d. (A%, N2) = 1, then AZ =m.

Proof. Let u € {0,1,..,A¢ — 1}, v € {0,1,.. —l}a.ndwe
{0,1,...,A7 — 1} be such that a = 2y b =2, and lab = €] Tespec-
twely Since © € U(L), we obtain that A} divides m, because it must be
that:

P

=1 =1 g =
a,b Cf."“, Ca,v c:.u-l-m (mod AZ)? cf.v+m (mod "E)

=c!
t,w+m (mod AJ)*
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Now, let us suppose that A2 # M. Then, we see that A} does not divide
any multiple & of A% smaller than m:
#1 s =

ct = l a
)’ c,-_u+h (mod AZ)? a,v+h (mod Ag)

Crou v CPuth (mod AZ) E
=c’
t,wt+h (mod AJ)"

In a similar way, it can be obtained that A} does not divide any multiple
of M2 smaller than m.

Finally, if g.c.d.(A%,A%) = 1, then m = A% - M2. Let us suppose that
A7 < m. By keeping in mind assertions (ii) and (iii), since g.c.d.(AZ, X8) =
1, there must exist two distinct primes p,q € [m] such that p divides AZ,

g divides A? and )] divides e Specifically, A] divides %> Which is a

multiple of 2. It is a contradiction with assertion (iii) and, therefore, it
must be that A} = m.

3 Cycle structures of Latin square autotopisms

From now on, for a given n € N, we will denote the set {1,2,...,n} by [n].
So, let © = (o, B,7) € Z, and let us define, for all § € {a, 3,7} and r € [n]:

L =4{i € {0,1,.. ks — 1} : X! =7},

where { denotes the cardinality of the corresponding set. Then, let us
consider, for all § € {a, 8,7}

15 = (15,13,..., 15).

The triple (la,1s,1,) will be called the cycle structure of ©. The set of
all autotopisms of the Latin squares of order n having the cycle structure
(las1g,1,) will be denoted by Z,(la, 1g, Ly)-

Some immediate properties of the cycle structure of an isotopism are
given in the following:

Lemma 1. Let © € Z,,(1,, lg, 1,). Then, for all § € {a, 8,7}, it must be
that:

a) Zre[n] lg = k¢5°
b) Zre[n] T- lg =n.
¢) ¥ <minfks — 3, 1,1 (n— T, i 1)}, for allr € [n].
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d) Ifks=1, thenld =1 and ¥ =0, for allr € [n—1].
e) If ks =m, thenl} =n and 12 =0, for all r € [n] \ {1}. Specifically,

d=e.
Proof. Assertions (a) and (b) are immediate from definitions. Then,
assertions (c), (d) and (e) are consequences of the previous ones. a

Now, let us see that the number of Latin squares having a given iso-
topism © € I, in its autotopism group only depends on the cycle structure
of ©:

Theorem 3. Let (1a,1s,1,) be the cycle structure of a Latin square iso-
topism and let us consider ©, = (a1, 81,7),02 = (a2, 82,72) € Zn(la, 13,
L,). Then, A(©,) = A(O3).

Proof. Since ©; and 6, have the same cycle structure, we can consider
the isotopism © = (01,02,03) € T,,, where:

i) o1(cf}) = i3, foralli € {0,1,...,ka, } and j € {0,1,..., A3},

i) oa(cfy) = &2, for all i € {0,1,..., kg, } and j € {0,1,..., A%},

iii) o3(c]y) =), foralli € {0,1,...,k,,} and j € {0,1,...,A]*}.

Now, let us see that A(©,) < A(©,). If A(©,) = 0, the result is imme-
diate. Otherwise, let Ly = (l;;) € LS(©,) and let us see that LY = (4;) €
L5(©z). Specifically, we must prove that (c2(i), 82(5), v2(%} ;) € LY, for
all (4,5,l;) € L®. So, let us consider (i, jo, Lyjo) € LY and let 1y €

{0,1,...,ka, },uo € {0,1,. wArchso € {0,1,...,kg, },v0 € {0,1,. ,)\30},
t € {0,1,. ky,} and wo € {0,1,...,A%?} be such that ¢z, = io,cfg,,,o =
Jjo and cZo’,wo =1l ;. Thus:

i0.d0°
( fo,uo’cﬁl,vo’cto,wo) - (0'1—1(7:0)»0'2_1(.7.0), l(lzo':,o)) € L1-
Next, since L; € LS(©), we have that:

c 2 e ) =
To,u0+1 (mod A%})’ “so,u0+1 (mod AS1)’ Cto,wo+1 (mod AT )

= (@1(C7 o) P15t 10) T1.(SFo ) € L1
Therefore, (e:2(i0), B2(jo), 12(ll, ;,)) € LY, because:

c*? ,c c? may) =
To,uo+1 (mod '\r )? 80,v0+1 (mod Aeg)’ to,wo+1 (mod Atg)
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— (231 1 71
- (0’1 (cro.uo+1 (mod ’\:o‘)), a2(cfo,vo+l (mod )\,ﬂf}))’ 0'3(Ct°’w0+1 (mod '\Z‘;)))

Analogously, it is verified that LYY *°2 3 ) g LS(6,), for all Ly €
LS(©,), and hence, the result follows. ]

From Theorem 3, a catalogue of the cycle structures of all possible
autotopisms of a Latin square, which is the goal of the present paper,
seems to be useful, because it would simplify the general calculus of the
number A(©), which is at the moment an open problem. Now, in order to
obtain the mentioned catalogue, let us see some previous results.

Proposition 2. Let © = (o, B,7) € I, be such that A(®) > 0. If15 =
18 =11 =1, then n must be odd.

Proof. From Lemma 1, o, 8 and < consist of a single n cycle. Let
©' = (a,a,a) € I,. The cycle structure of ©' is the same as that of ©
and, therefore, from Theorem 3, A(©') = A(®) > 0. Let L € LS(©'). By
definition, L is a diagonally cyclic Latin square, which is possible only if n
is odd (Theorem 6, [8]). ]

The following results are consequences of Theorems 1 and 2:

Proposition 3. Let © € Z,(la, 1g, L,) be such that A(©) > 0. If there
erist § € {a,B,7} such that 1{ > 0, then it must be that 11 = 1%, for
all 7 € [n], where 6, and &, are the two permutations in {a, 8,7} \ {6}.
Specifically, if 15 > |2, then 13 =152 =0.

Proof. For a given 4,6, and d in the hypothesis, we will be in case (a)
of Theorem 1, if 13 > 0, or in case (b) of such a result, if I* = 0. In both
cases, the two permutations §; and 2 must have the same cycle structure
and, therefore, it must be that 18 = 1%, for all » € [n]. Specifically,
if 1§ > | 2], we are in case (b) of Theorem 1 and so, it must be that
1 =12=0 ]

Proposition 4. Letn > 2 and let © € I, (1o, 1, 1,) be such that A(©) >

0. If there exist 8; € {a, 8,7} and &2 € {a, B,7}\ {61} such that 15152 > 0,
then the three permutations c, 8 and «y have the same cycle structure with
at least one and at most | 3] fized points. Specifically, it must be that

118 =1 =17 < (3] and 2 < ky = kg =k, < | 2] + [L£1].

Proof. The first part of the lemma is immediate from Theorem 1,
because we would be in case (a) of that result. Specifically, that theorem
assures that 1 < 1¢ = 1# =17 < | 2] and that ko = kg = k,. Now, since

245



o, B and v all have at least one fixed point, then they must have at least
two cycles, because n > 2. The upper bound of this number of cycles is
obtained when I = l1 =17 = [3] and the rest of the cycles have all of
them length 2. O

Proposition 5. Let © € I,(la, 1g, L)) be such that A(©) > 0. If there
ezists t € [n] such that 1] > 0, then there must exist v,s € [n] such that
12.18 > 0 and t divides l.c.m.(r,s).

Proof. Let L = (I; ;) € LS(©) and let. us consider ¢ € {1,2,...,k,—1}
such that A7, =t. Then,let o € {0,1,...,ka—1}, s0 € {0,1,...,kg—1}, up €
{0,1...,22 —1} and v € {0,1..., )8 — 1} be such that [, s

= Cto 0
r0,ug '€80,v0 »
Thus, from Theorem 2, t = A}, must divide l.c.m. ()\ro, £ )- Moreover, it is
verified that lf\' >1< l’\,9 a.nd, therefore, 1§ lA > 0. So, it is enough
'0 "o T

t;ot;a.ker=)\;"oa.nds—)\mo O

Proposition 6. Let © € Z,(ls, 1g, 1,) be such that A(©) > 0. Let
7,8 € [n] be such that 12 -12 > 0 and let m = l.e.m.(r,s). Then, there must
erist t € [m] such that:

i) 17 >0,
i) t divides m,
iii) t does not divide any multiple of r smaller than m,
iv) t does not divide any multiple of s smaller than m.
Indeed, if g.c.d.(r,s) = 1, then it must be that m < n and 1}, > 0.

Proof. The result is an immediate consequence from Theorem 2. O

Let 7, s € [n] such that 12 -1 > 0 and let us denote by S, the set of
t's satisfying the four assertions of Proposition 6. Finally, let us define the
following sets:

SP,={uen]:¥ >0and 87, = {t}},

Sg,={u€ln]:1 >0and S, = {t}}.
Then, the following result is verified:
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Theorem 4. Let © € I,(la, 15, 1) be such that A(©) > 0. Let t € [n] be
such that 1] > 0. Then, if r,s € [t] are such that 1% > 0 and 12 > 0, then
it is verified that:

S oul<t-lf and > ou-lg<t-n.

uesf" ‘uES:g

Proof. Let L = (l; ;) € LS(©) and let us consider tq € {0,1, ..., ky—1}
such that A} = t. We will prove the result with the set Sf’ ¢, being analogous
the proof with the set Sg,. If Sg ¢ = 0, then the result is immediate. So,

we can suppose that Sf, : #0. Let u € Sf, . and let us consider 7o €
{0,1,...,ks — 1} and ug € {0,1,..., kg — 1} such that A = and A3, = u.
Since S7,, = {t}, we have that, for all v € {0,1,...,u — 1}, there must exist
t, € {0,1,...,k, — 1} such that A}, =tandl, s € C]. Therefore,

0,080V
as L is a Latin square, it must be that »-18 < ¢-17. Since u has been
arbitrarily taken in Sg ¢, then, by working in the same (c7 o + 1)t* row of
L, it must be that 3 . 58, U 12 < ¢.17, because L is a Latin square and
so, L cannot have any repeated element in the mentioned row. O

Let us see an example:

Example 1. Let © € Z5((0, 1,0, 1,0,0), (6,0,0,0,0,0),(0,1,0,1,0,0)) and
let us consider r =t = 4. In this case, SZ‘, = {1} and Zuesf,, u-18 =
1-6=6>4=4-1]. Therefore, from Theorem 4, it must be A(©) =0.

Let us observe that Theorem 4 can be stated in a conjugacy invariant
way, by interchanging the role of rows, columns and symbols. So, from
Example 1, it can be deduced that any isotopism with cycle structure
((0,1,0,1,0,0), (0,1,0,1,0,0), (6,0,0,0,0,0)) or ((6,0,0,0,0,0),(0,1,0,1,
0,0),(0,1,0,1,0,0)) cannot be a Latin square autotopism.

Let us finish this section with a result corresponding to autotopisms
having cycles of prime lengths:

Theorem 5. Let © € Z,(la, 1g, 1y) be such that l;‘~1§ > 0, for some prime
p€[n]. If1 <p-max{13,16} and Iy = 0, then A(©) = 0. Moreover, if
I]=0and 1} < max{lg‘,lg}, then A(©) = 0. Finally, if p=2,1] =0 and
17 =1, then A(©) =0.

Proof. Let us suppose that A(©) > 0 and let us consider L = (l;;) €
LS(©). We can suppose that 17 < lg (the reasoning is similar in the other
case). Let po € {0,1,...,ka — 1} be such that Ay = p. Now, let us study
each part of the hypothesis:
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a) Let us suppose that I < p-max{15,18} = p-15 and I = 0. From
Theorem 2, since 17 = 0, we have that, for all p, € {0,1,...,kg — 1}
such that A3 = p and for all v € {0,1,...,p — 1}, it must be that
lc;?o,mcg;.v € Fiz(y). So, y must have at least p - 12 fixed points,

because L is a Latin square. But then, we obtain a contradiction
with being 17 < p - max{13,15}. So, it must be that A(6) =0.

b) Let us suppose that I = 0 and Iy < max{1Z,18} = 18. From Theorem

2, since 17 = 0, we have that, for all p; € {0,1,...,kg — 1} such that
A = pand for all v € {0,1,..,p — 1}, there must exist t,,, €
{0,1,...,ky — 1} such that A{ = p and lc‘,fo.o,cfl,v € Cy, .- So,
« must have at least p - 12 different elements in cycles of length p,
because L is a Latin square. Specifically, v must have at least lg

cycles of length p. But then, we obtain a contradiction with being
17 < max{13,18}. So, it must be that A(©) =0.

¢) Let us suppose that p = 2 and let us consider 1] = 0 and IJ

1. Let pr € {0,1,....,kg — 1} be such that M3 = 2 and let ¢ €
{0,1,...,ky — 1} be such that [, ol o € C/. From Theorem 2,
P0+0"P1,

t must divide l.c.m.()\go,)\g‘) = 2. Then, it must be that ¢ =

2, because 1] = 0. Indeed, let us observe that the four elements
oz 0B 0? lcﬁo.o-cg,.x’lcio.vcfl o and lc;'o.uc;fl,l’ must be in C7, because

13 = 1. Now, let w € {0,1} be such that !

20,0
; = o7
it must be that [ ey = € w1 (mod 2)° Therefore, let us observe
that [,

o o8  cannot be in C}, because L is a Latin square. So, we
P0:0°"py,

have a contradiction and thus, it must be that A(©) = 0. a

= 7
’cgl.o Ct'w. Thell,

4 Cycle structures of autotopisms of the Latin

squares of order up to 11.

All the results of the previous section have been implemented in a computer
program to generate all the possible cycle structures of the set of non-trivial
autotopisms of the Latin squares of order up to 11. We can see all these
cycle structures in the below tables. Let us observe that it is enough to
show those autotopisms © = (a, 8,7) in which k., < kg < k., because of
the conjugacy of rows, columns and symbols in Latin squares. Otherwise,
(la, 1g, L,) is a cycle structure of a Latin square autotopism if and only
if it can be found a permutation o € S3 such that k,,c(o)(e) < Ic,,,(l)(e) <
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kryay(@) 20d (Lr, 5 (0)s lmyry(0)s Lz, (@) is a cycle structure of a Latin
square autotopism, where m; gives the (i + 1) component of ©, for all

i€ {0,1,2}.

Table 1: Cycle structures of non-trivial autotopisms of LS(n), for 2 < n < 6.

n la 15 1,
2 (0,1) (0,1) (2,0)
3 (0,0,1) (0,0,2) (0,0,1)
(3,0,0)
(1,1,0) (1,1,0) (1,1,0)
4 (0,0,0,1) (0,0,0,1) (0,2,0,0)
(2,1,0,0)
(4,0,0,0)
(0,2,0,0) (0,2,0,0) (0,2,0,0)
(2,1,0,0)
(4,0,0,0)
(1,0,1,0) (1,0,1,0) (1,0,1,0)
(2,1,0,0) (2,1,0,0) (2,1,0,0)
51 (0,0,0,0,1) (0,0,0,0,1) (0,0,0,0,1)
(5,0,0,0,0)
(1,0,0,1,0) (1,0,0,1,0) (1,0,0,1,0))
(1,2,0,0,0) (1,2,0,0,0) (1,2,0,0,0)
(2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0)
6 (0,0,2,0,0,0)
(1,1,1,0,0,0)
(0,0,0,0,0,1) | (2,2,0,0,0,0)
(0,0,0,0,0,1) (8,0,1,0,0,0)
(4,1,0,0,0,0)
(6,0,0,0,0,0)
(0,0,2,0,0,0) | (0,3,0,0,0,0)
(0,0,2,0,0,0)
(0,0,2,0,0,0) | (0,0,2,0,0,0) [ (3,0,1,0,0,0)
(6,0,0,0,0,0)
1,0,0,0,1,0) | (1,0,0,0,1,0) | (1,0,0,0,1,0)
(2,2,0,0,0,0)
(0,3,0,0,0,0) | (0,3,0,0,0,0) | (4,1,0,0,0,0)
(6,0,0,0,0,0)
(2,0,0,1,0,0) | (2,0,0,1,0,0) | (2,0,0,1,0,0)
(2,2,0,0,0,0) | (2,2,0,0,0,0) | (2,2,0,0,0,0)
(3.0,1.0,0,0) | (3,0,1,0,0,0) | (3,0,1,0,0,0)
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(0,0,0,0,0,0,1)

(0,0,0,0,0,0,1)

(0,0,0,0,0,0,1)

(7,0,0,0,0,0,0)

(1,0,0,0,0,1,0)

(1,0,0,0,0,1,0)

(1,0,0,0,0,1,0)

(1,0,2,0,0,0,0)

(1,0,2,0,0,0,0)

(1,0,2,0,0,0,0)

(1’1’0’1)0)0’0)

(1,1,0,1,0,0,0)

(1,1,0,1,0,0,0)

(210)0’0$ 1 ’0,0)

(2,0,0,0,1,0,0)

(2,0,0,0,1,0,0)

(1,3,0,0,0,0,0)

(1,3,0,0,0,0,0)

(1,3,0,0,0,0,0)

(3’0’0’1’0)0’0)

(3’0’0)11010’0)

(3,0,0,1,0,0,0)

(3,2,0,0,0,0,0)

(3,2,0,0,0,0,0)

(3,2,0,0,0,0,0)

Table 2: Cycle structures of non-trivial autotopisms of LS(7).

Example 2. Let us consider © = ((012345), (012)(345), (01)(23)(45)) €
76((0,0,0,0,0,1),(0,0,2, 0,0,0),(0,3,0,0,0,0)). The following one is a
Latin square of LS(O):

0 2 4135
5 1 3 4 0 2
2 403 51
1 3 656 0 2 4
4 0 2 5 1 3
3 561240

Example 8. Let us consider © = ((01)(23)(45), (01)(23)(45), (01)(23)(45))
€ T+((1,3,9,0,0,0,0), (1,3,0,0,0,0,0),(1,3,0,0,0,0,0)). The following
one is a Latin square of LS(©)

6 1 3 45 20
0 6 5 2 3 41
3 56140 2
4 2 0 6 1 5 3
5 3 2 0 6 1 4
2 41306 5
1 0 45 2 3 6
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(0)010,0!0’010’1)

(0,0,0,0,0,0,0,1)

(0,0,0,2,0,0,0,0)

(0,2,0,1,0,0,0,0)

(0’4’010’0101010)

(2)110’110,0,0,0)

(2’3’0’0)0!0l0]0)

(4,0,0,1,0,0,0,0)

(47270’07010,0l0)

(6,1’0’0’0?010’0)

(8,0,0,0,0,0,0,0)

(01050)210’0’0)0)

(0,0,0,2,0,0,0,0)

(0,0,0,2,0,0,0,0)

(0,2,0,1,0,0,0,0)

(074’0,0)010l010)

(2,1,0,1,0,0,0,0)

(2’370707010l0’0)

(4,0,0,1,0,0,0,0)

(4,2,0,0,0,0,0,0)

(6,1,0,0,0,0,0,0)

(8’07010707010,0)

(0,1,0,0,0,1,0,0)

(011 10‘0)0’ 1 ’0)0)

(270’07070’1,0,0)

(2?0|270'070’0’0)

(1 )0’0’0)0 10) 1 ,0)

(1,0,0,0,0,0,1,0)

(1,0,0,0,0,0,1,0)

(072 ’0, 1 ’010 10’0)

(0,2,0,1,0,0,0,0)

(0,2,0,1.0,0,0,0)

(2,1,0,1,0,0,0,0)

(4,0,0,1,0,0,0,0)

(2,0,0,0,0,1,0,0)

(2,0,0,0,0,1,0,0)

(2’0’0’0)0’ 1 ’0’0)

(0,4,0,0,0,0,0,0)

(0,4,0,0,0,0,0,0)

(0,4,0,0,0,0,0,0)

(2,3,0,0,0,0,0,0)

(4,2,0,0,0,0,0,0)

(6,1,0,0,0,0,0,0)

(8,0,0,0,0,0,0,0)

(2,0,2,0,0,0,0,0)

(2,0,2,0,0,0,0,0)

(2,0,2,0,0,0,0,0)

(2717071,0!0’070)

(2’1’0’170,0’070)

(2,1,0,1,0,0,0,0))

13,0,0,0,1,0,0,0)

(3,0,0,0,1,0,0,0)

(3,0,0,0,1,0,0,0)

(2,3,0,0,0,0,0,0)

(2,3,0,0,0,0,0,0)

(2,3,0,0,0,0,0,0)

(4,0,0,1,0,0,0,0)

(4’0’0’1,0’07070)

(Z)OJO: 1 ,0a07010)

(4,2,0,0,0,0,0,0)

(4,2,0,0,0,0,0,0)

(4!2101010’0’070)

Table 3: Cycle structures of non-trivial autotopisms of LS(8).

Example 4. Let us consider © = ((01)(23)(45)(67), (01)(23)(45)(67), (01)
(23)(45)) € Zs((0,4,0,0,0,0,0,0),(0,4,0,0,0,0,0,0),(2,3,0,0,0,0,0,0)).
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(0,0,0,0,0,0,0,0,0,1)

(0,0,0,0,0,0,0,0,0,1)

(0,0,0,0,2,0,0,0,0,0)

(1,2,0,0,1,0,0,0,0,0)

(3,1,0,0,1,0,0,0,0,0)

(2,4,0,0,0,0,0,0,0,0)

(5 ’0’010) 1 ,0,0’0!0’0)

(4,3,0,0,0,0,0,0,0,0)

(6,2,0,0,0,0,0,0,0,0)

(8,1,0,0,0,0,0,0,0,0)

(10’0’0)070’0!0’0)0’0)

(0,0,0,0,2,0,0,0,0,0)

(0,5,0,0,0,0,0,0,0,0)

(0’0’010’210)0’0’0$0)

(0,0,0,0,2,0,0,0,0,0)

(0’07010’27070’07070)

(5,0,0,0,1,0,0,0,0,0)

—(10,0,0,0,0,0,0,0,0,0)

(0’1’010!0,010’1’0’0)

{0,1,0,0,0,0,0,1,0,0)

(2,0,0,0,0,0,0,1,0,0)

(1,0,0,0,0,0,0,0,1,0)

(1,0,0,0,0,0,0,0,1,0)

(1,0,0,0,0,0,0,0,1,0)

(0,1,0,2,0,0,0,0,0,0)

(0,1,0,2,0,0,0,0,0,0)

(2,0,0,2,0,0,0,0,0,0)

(0’2 ’0’0’07 1 70’0'0’0)

(0,2,0,0,0,1,0,0,0,0)

(0,2,2,0,0,0,0,0,0,0)

(2,1,0,0,0,1,0,0,0,0)

(2,112l010’0)010’0’0)

(470’010)0’ 1 )0’070’0)

(4,0,2,0,0,0,0,0,0,0)

(1,0,1,0,0,1,0,0,0,0)

{1,0,1,0,0,1,0,0,0,0)

(1,0,1,0,0,1,0,0,0,0)

(2,0,0,0,0,0,0,1,0,0)

(2,0,0,0,0,0,0,1,0,0)

(2,0,0,0,0,0,0,1,0,0)

1,0,3,0,0,0,0,0,0,0) | (1,0,3,0,0,0,0,0,0,0) { (1,0,3,0,0,0,0,0,0,0)
(2,0,0,20,0,0,0,0,0) | (2,0,0,2,0,0,0,0,0,0) [ (2,0,0,2,0,0,0,0,0,0)
2’1)0’070)1’070’0’0) (2’120)0’0)1)0)0’0’65 (2’110)0)0!1!010l0’0)

(3,0,0,0,0,0,1,0,0,0)

(3,0,0,0,0,0,1,0,0,0)

(3,09070)0’0’1’070’0)

(0,5,0,0,0,0,0,0,0,0)

(0,5,0,0,0,0,0,0,0,0)

(2,4,0,0,0,0,0,0,0,0)

(4,3,0,0,0,0,0,0,0,0)

(612!0!0,0’0)0’0’0’0)

(8’ 1 3070! 0’0’070’0’0)

(10,0,0,0,0,0,0,0,0,0)

(4,0,0,0,0,1,0,0,0,0)

(4,0,0,0,0,1,0,0,0,0)

(4,0,0,0,0,1,0,0,0,0)

3,4,0,0,0,0,0,0,0,0)

(2,4,0,0,0,0,0,0,0,0)

(274’010!0)01070’0’0)

(4,0,2,0,0,0,0,0,0,0)

(4,0,2,0,0,0,0,0,0,0)

74’012’0’0’0’0’0’0’0)

(5,0,0,0,1,0,0,0,0,0)

(5,0,0,0,1,0,0,0,0,0)

(5,0,0,0,1,0,0,0,0,0)

(413)0’010’01010!0’0)

(4,3,0,0,0,0,0,0,0,0)

(4,3,0,0,0,0,0,0,0,0)

Table 5: Cycle structures of non-trivial autotopisms of LS(10).
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(0,0,0,0,0,0,0,0,0,0,1)

(0,0,0,0,0,0,0,0,0,0,1)

(0)0501010?0)0’0’020,1)

(11,0,0,0,0,0,0,0,0,0,0)

(1,0,0,0,0,0,0,0,0,1,0)

(1,0,0,0,0,0,0,0,0,1,0)

(1,0,0,0,0,0,0,0,0,1,0)

( 1 ’0)0’0’2 70’0,0’0’0,0)

(1,0,0,0,2,0,0,0,0,0,0)

(1,0,0,0,2,0,0,0,0,0,0)

(1,1,0,0,0,0,0,1,0,0,0)

(1,1,0,0,0,0,0,1,0,0,0)

(1,1,0,0,0,0,0,1,0,0,0)

(2,0,0,0,0,0,0,0,1,0,0)

(2,0,0,070’0’070’ 1 ’0’0)

(2!0!010!0’0)0’0! 1 ’0’0)

(1,1,0,2,0,0,0,0,0,0,0)

(1,1,0,2,0,0,0,0,0,0,0)

(1,1,0,2,0,0,0,0,0,0,0)

(1,2,0,0,0,1,0,0,0,0,0)

(1,2,0,0,0,1,0,0,0,0,0)

(1 ’2,0’0!0’ 1 !0’0’010’0)

(2,0,1,0,0,1,0,0,0,0,0)

(210,:[,0:0;1:0:0:070)0)

(2,0,1,0,0,1,0,0,0,0,0)

(3,0,0,0,0,0,0,1,0,0,0) | (3,0,0,0,0,0,0,1,0,0,0) | (3,0,0,0,0,0,0,1,0,0,0)
(2,0,3,0,0,0,0,0,0,0,0) | (2,0,3,0,0,0,0,0,0,0,0) | (2,0,3,0,0,0,0,0,0,0,0)
(3,0,0,2,0,0,0,0,0,0,0) | (3,0,0,2,0,0,0,0,0,0,0) | (8,0,0,2,0,0,0,0,0,0,0)
(4,0,0,0,0,0,1,0,0,00) | (4,0,0,0,0,0,1,0,0,0,0) | (4,0,0,0,0,0,1,0,0,0,0)
(1,5,0,0,0,0,0,0,0,0,0) | (1,5,0,0,0,0,0,0,0,0,0) | (1,5,0,0,0,0,0,0,0,0,0)
(5)0)0’01011)0’0)0;010) (5’0)0’0:0:1)010)010!0) (5)0)07010’1:0’0)0,0,0)
(3,4,0,0,0,0,0,0,0,0,0) | (3,4,0,0,0,0,0,0,0,0,0) | (3,4,0,0,0,0,0,0,0,0,0)
(5,0,2,0,0,0,0,0,0,0,0) | (5,0,2,0,0,0,0,0,0,00) | (5,0,2,0,0,0,0,0,0,0,0)
(5137070501010)010,0)0) (513)0:0a0a0,0’0v0v010) (5)3’0)0;0)010)(]’0)0)0)

Table 6: Cycle structures of non-trivial autotopisms of LS(11).

(0 2
7 1
6 8
3 5
2 4
10
47
5 3
\ 8 6

1 46 8 35
0 23 5 8 4
2 10 4 5 7
7 0 21 4 6
6 810 7 3
3 5 7 2 6 8
5 3 8 6 0 2
8 6 4 7 2 1
4 75 310
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Example 5. Let us consider © = ((012345)(678), (012345)(678), (012)(34)
(56)(78)) € Zo((0,0,1,0,0,1,0,0,0),(0,0,1,0,0,1,0,0,0), (0,3,1,0,0,0,0,
0,0)). The following one is a Latin square of LS(©):

—

—

Example 6. Let us consider © = ((012345)(678), (012345)(678), (012345)
(678)) € To((1,0,1,0,0,1,0,0,0,0),(1,0,1,0,0,1,0,0,0,0),(1,0,1,0,0,1,
0,0,0,0)). The following one is a Latin square of LS(©):




(465798 1320\
6 57 08 93 2 41
9 7 08 165 43 2
7 9816 24053
389627051 4
846 9732105
0 2435109876
2 135408967
132400576 9 8
\5 01 23 4678 9)

Example 7. Let us consider © = ((01)(23)(45)(67), (01)(23)(45)(67), (01)
(23)(45)(67)) € T11((3,4,9,0,0,0,0,0,0,0,0), (3,4,0,0,0,0,0,0,0,0, 0), (3,
4,0,0, 0,0,0,0,0,0,0)). The following one is a Latin square of LS(©):

( 10 0 4 6 8 2 9 3 7 5 1)
1 106 7 5 3 8 2 9 6 4 0

9 5 10 2 0 6 8 4 3 1 7

4 9 3 10 7 1 5 8 2 0 6

8 7 9 1 10 4 0 2 5 6 3

6 8 0 9 5 10 3 1 4 7 2

5 1 8 3 9 7 10 6 0 2 4

0 4 2 8 6 9 7 10 1 3 5

2 3 1 0 4 5 6 7 10 9 8

7 6 5 4 2 3 1 0 8 10 9
\3 2 6 7 1 0 4 5 9 8 10/

5 Final remarks

Apart from the previous cycles structures, the following ones verify all the
results of Section 3, although an exhaustive computation proves that they
do not correspond to any Latin square autotopism:

n la Ig 1,

6 (0,0,0,0,0,1) (0,0,0,0,0,1) (0,3,0,0,0,0)
(0,1,0,1,0,0) (0,1,0,1,0,0) (2,0,0,1,0,0)
(0,3,0,0,0,0) (,3,0,0,0,0) (0,3,0,0,0,0)

10 | (0,0,9,0,0,0,0,0,0,1) | (9,9,0,0,0,0,0,0,0,1) | (9,5,0,0,0,0,0,0,0,0)

(0,2,0,0,0,1,0,0,0,0) | (,2,0,0,0,1,0,0,0,0) | (0,2,0,0,0,1,0,0,0,0)
(0,5,0,0,0,0,0,0,0,0) | (0,5,0,0,0,0,0,0,0,0) | (9,5,0,0,0,0,0,0,0,0)

Although in Section 4 we give all the cycle structures of autotopisms
of the Latin squares of order up to 11, let us remark that the properties
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of Section 3 can be implemented in an algorithm to obtain all the cycle
structures of autotopisms of the Latin squares of greater orders.
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