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Abstract

In this paper, we investigate super-simple cyclic (v,k, A)-BIBDs
(SCBIBs). Some general constructions for SCBIBs are given. The
spectrum of super-simple cyclic (v, 3, A) is completely determined for
) =2,3 and v— 2. From that some new optical orthogonal codes are
obtained.
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Introduction

(partial) t-(v, k, A) design is a pair (X, B) where X is a v-set (the point
set), and C is a family of k-subsets of X (the family of blocks), such that

any t-subset of X occurs in (at most) precisely A blocks.

A balanced incomplete block design of block-size k, index A ((v,k, A)-
BIBD in short ) is a 2-(v,k,A) design. A BIBD with A = 1 is called a

Steiner 2-design.

For a (v, k,A)-BIBD, (X, B), let o be a permutation on X. For a block
BeB/let B ={y :ye€ B} I B°={B’|Be€ B} =58 thnois
called an automorphism of (X, B). If there is an automorphism o of order

v = | X|, then the BIBD is said to be cyclic, denoted by (v, k, A)-CBIB.
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For a (v,k,)\)-CBIB, the set of points X can be identified with Z,,
the residue group of integers modulo v. In this case, the design has an
automorphism o :¢—i+1 (mod v).

Let B = {b1,---,bx} be a block of a cyclic BIBD. The block orbit
containing B is defined by the set of distinct blocks

B+i={by+14,---,bxg +i} (mod v)

for i € Z,. If a block orbit has v blocks, then the block orbit is said to be
Jfull, otherwise short. We choose an arbitrary block from a block orbit and
call it a base block. A base block is also referred to as a starter block or an
initial block.

There is a very extensive literature on cyclic BIBDs with particular
attention to cyclic Steiner 2-design [20] (see also [2, 4, 5, 10], etc).

A design is said to be simple if it contains no repeated blocks. A design
is said to be super-simple if the intersection of any two blocks has at most
two elements. The existence of super-simple designs have been investigated
by many people (refer to [6, 7, 8, 24, 26, 27|, etc). When A = 1, any BIBD
is necessarily super-simple. In this paper, when we talk about super-simple
designs, we usually mean the case A > 1.

Now we define super-simple cyclic designs. A design is called super-
simple cyclic if it is both cyclic and super-simple. In the sequel, we will
use the shorthand notation (v, k, A)-SCBIB to denote a super-simple cyclic
(v, k, A)-BIBD with full orbits (without short ones).

It is easy to see the followings are the necessary conditions for the exis-
tence of a (v, k, A)-SCBIB:

lL.u>(k-2)A+2

2. M(v—-1)=0 (mod k(k —1)).

We now review the concept of an optical orthogonal code. An (v, k, p)
optical orthogonal code (OOC) C is a family of (0,1) sequences of length
v and weight k which satisfy the following two property (all subscripts are
reduced modulo v):

1. The Autocorrelation Property:

v—1
Z TtTerr < P
t=0

for any X = {z:}}=¢ € C and every integer r, with 0 < r < v.
2. The Cross-Correlation Property:

v—1

Z TeYeqr < P
t=0
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for any X = {z;}'-} € C, Y = {9:}}=0 € C with X # Y and every integer
7.

For a given set of values of v,k and p, the largest possible size of an
(v, k, p)-OOC is denoted by ®(v, k, p). An (v,k, p)-O0C C is called optimal
if the number of codewords |C| = ®(v, k, p). The most general upper bound
for ®(v, k, p) in [16] is derived from the Johnson bound for constant-weight
codes, which is as follows.

Theorem 1.1 ([28]) (Johnson bound)
®(v,k,p) < J(v, K, p),

l1|v—-1|v-2 v—p
sk = [ [23 [55 [-[=5 )

Since [16] was published, optical orthogonal codes have attracted a lot
of attention in both the information theory area and the combinatorial
design field. There are many infinite families of OOCs which have been
constructed.

The close relationships between OOCs and cyclic t-designs have been
investigated in [21]. The so-called cyclic difference packing or difference
families is the main method used in the construction of (v, k,1) OOCs and
fruitful results have been obtained from it.

Recently, some direct and recursive constructions for (v,k,2) OOCs
were given by Chu et al in [13] and [14].

The following result can be found in [14].

where

Lemma 1.2 Anyt-(v,k,1) strictly cyclic partial design is equivalent to an
(v,k,t — 1)-00C, where t > 2. On the other hand, any (v,k,p)-00C is
equivalent to a (p+ 1)-(v, k, 1) strictly cyclic partial design.

It is well known that a (v, k, 1)-CBIB gives an optimal (v, &, 1) optical
orthogonal code. We shall show that a (v,k,A)-SCBIB can be used to
construct an (v, k, 2)-OOC. In particular, a (v, k, A)-SCBIB with A = I_”‘zj
gives an optimal (v, k,2)-O0C.

In fact, a (v, k, A)-SCBIB is a 3-(v, k, 1) strictly cyclic partial design. So
we have the following.

Theorem 1.3 If there ezists a (v, k, \)-SCBIB, then there exists an (v, k, 2)-
00C with Av — 1)/(k(k — 1)) codewords. Furthermore, the resulted OOC

is optimal when A = |2=2|.
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Proof A (v,k,))-SCBIB may be viewed as a 3-(v,k,1) strictly cyclic
partial design. By Lemma 1.2, an (v, k, 2)-O0C exists.

When X\ = l""z J the number of base blocks is l"‘” J 7‘{?15, which

approaches the Johnson bound of an (v, k,2)-O0C. So the resulted (v, k, 2)-
0O0C is optimal. i]

OOCs were first motivated by an application in a fiber optic code-
division multiple access channel ([16]). Suppose there are b codewords in
an OOC. Then a communication system using this OOC can handle up to
b simultaneous transmitters with v optical chips. This is our main moti-
vation of researching on super-simple cyclic designs. On the other hand,
super-simple cyclic designs are also interesting objects in combinatorics.
So we will investigated super-simple cyclic designs in general even for those
not closely related to OOCs.

The main contributions of this paper are as follows. We investigate
super-simple cyclic BIBDs and first consider constructing OOCs from them
(cyclic designs have been used of OOCs previously). We give constructions
of super-simple cyclic BIBDs for both recursive and direct methods. We
have tried to use a uniformed method to summarize known recursive con-
structions. We give complete solutions for (v, 3, A)-SCBIBs, where A = 2,3
and v — 2. Some infinite classes of (v,3,4)-SCBIBs and (v, ¥, \)-SCBIBs
for 4 < k < 6 are also given. From the construction of SCBIBs we obtain
some new classes of OOCs.

The rest of this paper is arranged as follows. Direct and recursive con-
structions for (v, k, A)-SCBIBs will be described in Section 2.The existence
of (v, 3, A)-SCBIBs will be discussed in Section 3. Fork =4,5and2 < A < 4
or k =6 and A = 2, the existence of a (v, k, A\)-SCBIBs with v a product of
primes congruent to 1 modulo k(k — 1) will be shown in Section 4. Finally,
new (v, k,2)-O0Cs obtained from SCBIBs will be summarized in Section
5.

2 Constructions for (v, k, \)-SCBIBs

We first consider several constructions for general super-simple cyclic de-
signs.

Let k£ > 3, for some small values v, the corresponding super-simple
cyclic designs with admissible index A > 1 can be found by a computer
program. It is easy to see that a family F of k-subsets of Z, forms the base
blocks of a (v, k, A)-CBIB with full orbits if and only if the list of differences
AF = JgerAB is A times Z, \ {0}, where B = {b;,bs,---,bx} € F and
AB = {b; — bi| 1 <14,5 <k,i# j} is the list of differences from B.
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Let F be a family of k-subsets of Z, forms the base blocks of a (v, k, A)-
CBIB with full orbits. Clearly |F| = A(v —1)/(k(k — 1)). In order to
check whether the cyclic design is super-simple, by definition, we form
k(k —1)(k — 2)/6 3-subsets of each base block and develop them modulo v.
Thus we get a list of Av(v — 1)(k — 2)/6 triples. If these Av(v —1)(k —2)/6
triples are pairwise distinct, then the design is super-simple. This criteria
can be further reduced by the following.

Let B € F. For any 3-subset S = {s1, 2,83} C B, let VS be a list of
the following three pairs

{s2 — 51,53 — s1}, {81 — 82,53 — 82}, {51 — 83,82 — 83}

Denote by
VB = {VS'S = {81,82,83} C B}

and

VF={VB|B € F}.
Chen and Wei have proved the following in [9].

Theorem 2.1 Suppose that F is a family of k-subsets of Z, which forms
the base blocks of a (v,k,\)-CBIB with full orbits. Then the cyclic design
is super-simple if and only if all pairs listed in VF are distinct, which is
equivalent to the following conditions:

(i) for any B € F, any $-subset S C B, the three pairs in VS are
distinct;

(ii) for any B € F, any two 3-subsets S, 5’ of B, S # §', VS and VS’
have no common pairs, i.e., VSNVS' =0;

(iii) for any two base blocks B,B' € F, B # B', VB and VB’ have no
common pairs, i.e., VBNVB' = 0.

By Theorem 2.1, to check whether a cyclic design obtained by developing
a family F of A(v — 1)/(k(k — 1)) base blocks over Z, is super-simple, we
need only to check A(v — 1)(k — 2)/2 pairs in VF to see whether they
are pairwise distinct. It should be mentioned that the naive approach of
generating a design and then checking for super-simplicity is hopeless with
large values of v and A.

It is readily found that many super-simple (v,4,)-BIBDs with A =
2,3,4,6 and super-simple (v, 5, A)-BIBDs with A = 2,4,5, constructed in
Z, in [6, 7, 8, 26, 27, are cyclic. Bluskov and Heinrich (3] considered the
existence of (v, 4, A)-BIBDs for v < 32 with all admissible A, most of which
are also cyclic. [9] also showed the following.

Lemma 2.2 (/9]) There exists a (v,4,A)-SCBIB for all 7 < v < 41 and
all admissible \ with two exceptions (v,A) = (9, 3), (13,5).
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Now we consider the recursive constructions for (v, k, A)-SCBIBs. There
are various recursive constructions for cyclic BIBDs. We will modify these
methods to construct super-simple cyclic BIBDs. In this subsection, we use
a uniformed method to describe these constructions. In our construction,
we need the concept of difference matrix, which is defined as follows.

Let (G, ) be a finite group of order v. A (v, k, A)-difference matriz over
G is a k x vA matrix D = (d;;) with entries from G, such that for each
1 €1i < j < k, the multi-set

{di-dz':1<i<vA}

contains every element of G exactly A times. When G is an Abelian group,
typically an additive notation is used, so that the differences d;; — d;; are
employed. In what follows, we assume that G = Z,. We usually denote
a (v, k, A)-difference matrix over Z, by (v,k,))-DM. Difference matrices
have been investigated extensively, see, for example, [18] and the references
therein. Here is one example.

Lemma 2.3 ([18]) Let v and k be positive integers such that ged(v, (k —
1)) =1. Letd;j =4j (mod v) fori=0,1,---,k—1andj=0,1,.--,v-1.
Then D = (di;) is a (v,k,1)-DM over Z,. In particular, if v is an odd
prime number, then there exists a (v,k,1)-DM over Z, for any integer k,
2<k<w.

We give our construction for super-simple cyclic BIBDs in the following.

Theorem 2.4 (Product Construction) Suppose u,v,k and X are positive
integers. If the following conditions hold:

(1) there exists (v, k, \)-SCBIB,

(2) there exists a (u, k,1)-DM over Z,,

(3) there exists a (u, k,\)-SCBIB,
then there exists a (uv, k, \)-SCBIB.

Proof Suppose that M, and M are the set of all base blocks of a (v, k, A)-
SCBIB and a (u, k, \)-SCBIB, respectively. Let D = (d;;) be a (u, k,1)-DM
over Z,. For each B = {b,bs,-,bx} € My, define

Bj={bi+div|i=1,2,.---,k},7=1,2,-+,u.
For each B = {b1,bs,---,br} € My, define
vB = {vb;| i =1,2,-.. k}.
Denote

]'-1 = U {BJ|.7= 1,2,'--,11,}
BeM,
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and
Fo = {vB|B € M,}.

Then, it is easy to check that F = F; U F; is a set of all base blocks of a
(uwv, k, A)-CBIB.

Next, we shall show that the resulted (uv, k, A)-CBIB is super-simple.
By Theorem 2.1, we need only to prove that the conditions (i)-(iii) men-
tioned in Theorem 2.1 are satisfied.

Suppose that C € F, T is a 3-subset of C. If C € F;, then there exists
a block B = {b1,b2,-++,bc} € My and an integer j such that C = B;. In
this case we can write T' = {b;, + d;, jv, bi, + di,jv, biy + digjv}. It is easy
to see that VT is the same as V.S modulo v, where S = {b;,,b;,,b;;} is a
3-subset of B. By Theorem 2.1, the three pairs in VS are distinct modulo
v, so the three pairs in VT are also distinct modulo uv.

If C € F>, then there exists a block B = {b;, bz, - -,bx} € M2 such that
C = vB. In this case we can write T = {vb;,, vb;,,vb;, }. It is easy to see
that VT = vV S, where S = {b;,,bi,,bi;} is a 3-subset of B. By Theorem
2.1, the three pairs in VS are distinct under modulo u, so the three pairs
in VT are also distinct under modulo uv. Thus, condition (i) holds.

In a similar way, one can prove that condition (ii) holds.

Now we check condition (iii). Suppose that C,C’" € F with C # C'. If
C € Fi, C' € Fa, then it is easy to see that VC N VC’ = @ since any pair
listed in VC' is (0,0) under modulo v and no pair in VC has this property.

If C,C' € F, then there exist B and B’ in M; and there exist integers
4,5' such that C = B;,C’ = Bj,. Let T be a 3-subset of C and T be
3-subset of C'. If B # B’, then VBN VB’ = () by Theorem 2.1. Note that
VC and VC' are the same as VB and VB’ modulo v, respectively. So we

_have VCNVC’' = 0. If B = B’ then we must have j # j'. Suppose that
T = {bi, +di, v, bi, + diy5v, big +dijv}, T = {b;1 +d¢1:i'v’b;z +diyj0v, b;:; +
diyjov}. Denote by S = {b;,,bi,,bi3}, ' = {b},,b},,b,}. If S # S’ then
VSNVS' =0 from Theorem 2.1. Noting that VT and VI are the same
as VS and VS’ under modulo v, respectively. So we have V' N VT’ = 0.
If $ = S’ then we also have VI'NVT" = () noting that d;; —d,; # dij» —dsj
when i # s, § # j'. Consequently, VCNVC' = 0.

If C,C' € F», then there exist B, B' € M, such that C = vB,C’ =vB/,
where B # B'. Clearly, VC = vVB, VC' = vVB'. Since VBN VB’ =,
we have VCNVC' = 0. 1]

It is clear to see that Theorem 2.4 can be used iteratively to construct
new SCBIBs if the conditions (1)-(3) hold in each step. We give an example
to illustrate this in the following.

Example 2.5 There exists a (17™-19",4,6)-SCBIB for all positive integers
m and n.
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Proof Let 71 = {{0,2},2*-3,2¢-11} (mod 17)|i = 0,1,---,7} and
F2 ={{0,2%,2°.3,2°. 4} (mod 19)| i =0,1,---,8}. It is readily checked
by Theorem 2.1 that F; and F; are the set of base blocks of a (17,4, 6)-
SCBIB and a (19,4, 6)-SCBIB respectively. Since there exist a (17, 4, 1)-
DM over Z;7 and a (19,4,1)-DM over Z19 by Lemma 2.3, a (17 - 19,4, 6)-
SCBIB follows from Theorem 2.4. By induction on integers m and n, a
(17™ - 19", 4, 6)-SCBIB is obtained. 0

We will generalize the above construction for super-simple cyclic BIBDs.
Before proceeding, we define the notion of a group divisible design (GDD).

A GDD with index A is a triple (X, G, B) which satisfies the following
properties:

(1) G is a partition of a set X (of points) into subsets called groups,

(2) B is a set of subsets of X (called blocks), each of cardinality at least
two, such that a group and a block contain at most one common point, and

(3) every pair of points from distinct groups occurs in exactly A blocks.

We denote (X,G,B) as (v, K,g,A)-GD if |[X| = v, |G| = g for every
G € G and |B| € K for every B € B, where K is a set of positive integers.
If K = {k} we simply write k for K. It is easy to see that a (v,k,A)-BIBD
is just a (v, k&, 1, A)-GD.

Group divisible designs have been instrumental in the construction of
various combinatorial configurations. A GDD (X, G, B) is said to be cyclic if
there exists an automorphism o of X such that G° = {o(a)| a € G} € G for
any G € G and B? = {0(b)| b € B} € B for any B € B. Full and short orbits
can be defined as previous. We use the notation (v, K, g, A\)-CGD to denote
a cyclic GDD without short orbits. In this case, we can identify X with
Z, and G with the set of cosets of subgroup H = {0,w, 2w, ---, (g — 1)w},
where w = v/g.

A GDD is called super-simple if any two blocks have at most two com-
mon elements. If a (v, K, g, A\)-CGD is also super-simple, we call it super-
simple cyclic and denote it by (v, K, g, A)-SCGD.

Suppose that F is the set of base blocks of a cyclic GDD. It is easy to
see that this cyclic GDD is super-simple if and only if the conditions (i)-(iii)
mentioned in Theorem 2.1 are satisfied. We have the following.

Lemma 2.6 If there ezist a (v, k, g,A)-SCGD and a (g,k,\)-SCBIB, then
there exists a (v, k, \)-SCBIB.

Proof By hypothesis, let 7 and F> be the sets of all base blocks of a
(v,k,9,))-SCGD and a (g,k,A)-SCBIB, respectively. Denote w = v/g.
For any B € F3, we construct a new base block wB as follows:

wB = {wb (mod v)| b€ B}.

Let wF; = {wB| B € F,}. By using Theorem 2.1, one can easily check
that £ = F; U (wF2) is the required family of base blocks. 1]
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Theorem 2.7 If the following conditions hold:
(1) there ezists a (v, k, g, \)-SCGD,
(2) there ezists a (u,k,1)-DM over Z,,

then there exists a (uv, k,ug, A)-SCGD. Furthermore, if
(3) there exists a (ug, k, A)-SCBIB,

then there exists a (uv, k, A)-SCBIB.

Proof By Lemma 2.6 we need only to construct a (uw, k, ug, A)-SCGD.
By the assumptions (1) and (2), let F be the family of starter blocks of a
(v,k,9,))-SCGD and D = (di;) be a (u, k,1)-DM over Z,. For any base
block B = {bj,bs,---,b;} of F, we construct a family D(B) = {B;| j =
1,2,---,u}, where

Bj={bi+dyv (modwv)|i=1,2-,k}, j=1,2,u.

Let £ = UperD(B). Then £ is the desired family of base blocks of a
(wv, k,ug, \)-SCGD. The detailed verification is similar to that in the proof
of Theorem 2.4, we omit it here. |

We give an example to illustrate the above constructions in the follow-
ing.

Example 2.8 There exist a (5" - 17,4,5"1 . 17,6)-SCGD and a (5" -
17,4,6)-SCBIB for all integer n > 1.

Proof We first construct a (5 - 17,4,17,6)-SCGD, whose base blocks are
listed bellow:
3¢{0,1,27,54}, 3*{0,7,9, 63}, 3{0,7,39,71},0<i < 7,
{0, 23,29, 36}, {0, 4, 21,47}, {0,17,61,78}, {0, 51,59, 77},
{0,22, 34,73}, {0,51, 72,79}, {0,51, 67,69}, {0, 49, 66,83},
{0,23,69,71}, {0,6,37,54}.

A (17,4, 6)-SCBIB was shown in the proof of Example 2.5. By Lemma
2.6, a (5-17,4,6)-SCBIB is obtained.

On the other hand, there exists a (5,4,1)-DM over Zs from Lemma
2.3. Start from a (5 - 17,4,17,6)-SCGD and apply Theorem 2.7, a (5% -
17,4,5-17,6)-SCGD is obtained. Consequently, there exists a (5%-17,4,6)-
SCBIB. By induction on n, we obtain a (5" - 17,4,57~! - 17,6)-SCGD and
a (5™ -17,4,6)-SCBIB. 0

As mentioned above, when g = 1, a (v, k, g, A)-SCGD is just a (v, k, A)-
SCBIB. So Theorem 2.7 can be consider as a generalization of Theorem
2.4.

We shall give a more generalized construction for super-simple cyclic
BIBDs. To do this, we introduce the notion of a generalized difference
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matrix, which will be used in our generalized construction, just as a DM
used in previous construction.

Let u, k, X and h be positive integers such that k¥ < h and Auh(h—1) =0
(mod k(k — 1)). Let n = %—El A (h,u,k,))- generalized difference
matriz D over Z, U {z} ( (h,u,k,A)-GDM in short) is a h x n matrix
D = (d;;) with entries from Z,U{z} satisfying the following two conditions:

(1) each column of D contains exactly & elements of Z,. In other words,
z appears exactly h — k times in each column,

(2) for any 1 < i < j < h, the multiset Aij = {dia - djal dis,dja €
Zy,1 £ 8 < n} contains every element of Z,, exactly A times.

From the above definition one can see that when k = h, a (h,u,k, ))-
GDM is just a (u, k, A)-DM. To illustrate the above definition, we give the

following two examples.

Example 2.9 A4 (5,3,4,1)-GDM over Z3 U {z} is shown as follows

- OOy
O O+ 8 =
O R RO
R =00
8 =, OO

Example 2.10 A (6,6,4,1)-GDM over Zg U {z} is listed below.
zrzzzxzzxz0230000501
z2001zzzxzzx021435%5
123052000z z2z02020
50z 241213z20zz20
000z2z050zx212z2z320T«x
0212x430z50z1zzx

It is easy to show that a generalized difference matrix can be used to
form a group divisible design. Specifically, we have the following.

Lemma 2.11 If there exists a (h,u, k, A)-GDM, then there ezists a (hu, k, u,
A)-GD.

Proof Let D = (d;;) be a given (h,u,k, \)-GDM over Z, U {z} and let
n = 3382 Denote Iy = {1,2,++,h}. Let X = Iy x Z, and G =
{GilG;i = {i} x Z,,% € I}. Take F = {B;|j =1,2,---,n}, where Bjs are

defined as follows:

Bj = {(z)dtj)ldt] € Zvai € Ih}r J = 1,2,'-‘,11,
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Denote
Bj +s={(i,dij + 3)|dij € Z,,i € I},s € Zy,

where the addition is taken under modulo u.
Let
B= {B_,- +SIB_1‘ e F,se Zu}.

It is readily checked that (X, G, B} is a (hu, k, u, A)-GD. o

Examples 2.9 and 2.10 are modified from [30].
Now we describe our generalized construction for super-simple cyclic

BIBDs.

Theorem 2.12 If the following conditions hold:

(1) there ezists a (v, K, g,X)-SCGD,

(2) there exists a (h,u, k,1)-GDM over Z, U {z} for each h € K,
then there ezists a (uv, k, ug, A)-SCGD. Furthermore, if

(3) there exists a (ug,k,A)-SCBIB,
then there exists a (uv, k, A)-SCBIB.

Proof By Lemma 2.6 we need only to construct a (uv, k,ug, A)-SCGD.
According to the assumption (1), let F; be the family of starter blocks
of a (v, K,g,\)-SCGD. Let B = {by,b2,--,bp} be a starter block of F;.
By hypothesis, we have a (n, h, k,1)-GDM, D = (d;;), over Z, U {z}. Let
n= %’:—I)ll Denote D(B) = {By, B2, ", Bn}, where

Bj = {b, -+ d,-,-v (mod uv)| b; € B, d,'j € Zy,i € In}, 1<j<n

As B ranges over i, we obtain a family £, = (Jg¢ 7z D(B) of starter blocks.

We claim that £, is the set of base blocks of a (uv, k, ug, A)-SCGD. Let
H = {0,w,2w,--,(ug — 1)w}, where w = v/g. It is readily checked that
every integer of Z,, \ H appears exactly A times as a difference in A€;. This
is straightforward since every nonzero integer b of Z,, \ H can be written
asb=sv+rwith0<s<u—land1<r<v-1(ie,b=r (modv)).
As for super-simplicity, using a similar way shown in the proof of Theorem
2.4, one can prove that the conditions (i)-(iii) mentioned in Theorem 2.1
are satisfied. 0

We give an example to illustrate the above construction.
Example 2.13 There ezists a (195,4,6)-SCBIB.
Proof We can write 195 = 3-5-13. Let K = {5}, v = 65, g = 5 and
X = 6. We first construct a (5-13,5, 5,6)-SCGD. Take F = {2¢{0,1,2,5,7},

2i{0, 1,10, 15,22}, 2¢{0,5,22,34,43}| 0 < i < 5}. It is readily checked that
F is a set of base blocks of a (65, 5, 5,6)-SCGD.
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Let h=5,u=3and k= 4. A (5,3,4,1)-GDM over Z3U{z} was shown
in Example 2.9. By Theorem 2.12, we obtain a (195,4, 15,6)-SCGD.

To construct a (195, 4,6)-SCBIB, by Lemma 2.6 or Theorem 2.12, we
need only to construct a (15,4, 6)-SCBIB over Z;5. The desired base blocks
are listed bellow.

2¢{0,1,2,6},0 < i < 3, {0,1,4,10}, {0,1,9,13}, {0,2,5,8}. 0

3 (v,3,))-SCBIBs

Clearly, a (v,3,1)-SCBIB is just a simple (v,3,))-CBIB. It is easy to see
that the following is the necessary condition of a (v, 3, \)-SCBIB:

Av—1)=0 (mod6), v>A+2.

The existence of (v,3, A)-CBIBs has been determined by Colbourn and
Colbourn in {17]. It should be mentioned that the cyclic designs constructed
in [17] may contain repeated blocks. However, some of them can be modified
to be a simple cyclic design. In this section, we concentrate our attention
to the existence of (v,3,1)-SCBIBs. By modifying the construction for
Mendelsohn triple system given by Hoffman and Linder in [25] and the
constructions for cyclic triple systems given by Colbourn and Colbourn in
[17], we determine the spectrum of (v, 3, A)-SCBIBs with A = 2,3 and v—2.
For A = 4, some partial results are also provided.

3.1 The case: A\ =2

When A = 2, the necessary condition of a (v,3,)-SCBIB becomes v = 1
(mod 3) and v > 4.

It was shown in [17] that there does not exist any (v, 3,2)-CBIB for
v=10 (mod 12). Thus we have the following.

Lemma 3.1 There is no (v,3,2)-SCBIB for anyv =10 (mod 12).

So we need only to consider the case v = 1,4,7 (mod 12). When
v=1,7 (mod12) (i.e, v=1 (mod 6)), we have the following result.

Lemma 3.2 There erists a (v,3,2)-SCBIB for any v = 1,7 (mod 12)
(i.e., =1 (mod 6)) andv > 7.

Proof Suppose v=6t+1 and ¢ > 1. Let
B;={0,i,t +2i}, 1<i<t,
Bypi={0,t+2i - 1,2t +i} 1 <i<t.

It is readily checked that B;, Bs,: -, B, are the desired base blocks.
0
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When v =4 (mod 12), we have the following result.

Lemma 3.3 There ezists a (v,3,2)-SCBIB for anyv =4 (mod 12) and
v>4.

Proof Suppose v =12t+4 and t > 0. Let
B; = {0,2i,3t+i+1}, Biyi = {0, 3t—’l:+1,3t+1:+1}, 1<iLy,
Boiyi = {0, 2t —2i+ 1,6t —i++ 2}, B3y = {0, a4+i+1,6t—
i+2}, 1<i<t,
Bsty1 = {0, 3t+1,61+ 2}.
It is readily checked that B;, Ba, - - -, B4t 41 are the required base blocks.
0

3.2 The case: A=3

When X = 3, the necessary condition of a (v,3,A)-SCBIB becomes v =1
(mod 2) and v > 5. We can show that this condition is also sufficient. The
proof is obtained by modifying the construction for cyclic triple systems
given by Colbourn and Colbourn in [17].

Theorem 3.4 There ezists a (v,3,3)-SCBIB if and only ifv =1 (mod 2)
and v > 5.

Proof Let v=2t+1,t > 2. Whenv#0 (mod 3), let
B;=1{0,i,2i}, 1<i<t.

Forv=0 (mod 3), let

Bi={0,i,2i}, 1<i<t, i # %l,%—;-l,t,
t—1
-B‘_E.l={01_3—':t}:
2t+1
BL‘;& ={0$_3_1t}$
2t+1

B, ={0,1,=5~}.

It is readily checked that B, Bs,---,B; are the required base blocks.
]
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3.3 The case: A =4

When X = 4, the necessary condition of a (v, 3, A)-SCBIB becomes v = 1
(mod3)and v > 7. Forv =1 (mod 6) or v =10 (mod 12), we shall
give the construction of (v, 3,4)-SCBIBs in the following.

Lemma 3.5 There ezists a (v,3,4)-SCBIB for anyv=1 (mod 6).

Proof There is a (v,3,1)-CBIB from [18]. Let B be the base blocks of
such a design. Let A = {{0,%,2i}|¢ =1,...,v—1}. Then AUB forms a
(v,3,4)-SCBIB. ]

Lemma 3.6 There erists a (v,3,4)-SCBIB for any v=10 (mod 12).

Proof Let v =12t 4 10, t > 0. The required base blocks are listed below

(which are modified from a construction of [19] .
Bi={0,2i—1,3t+i+3}, By ={0,2i,5t+i+5},1<i<t,
Boeyi = {0,2i—1,3t+i+2}, Bseys = {0,2i,5t+i+4},1<i<t,

B‘“'H = {0,21:, t+1+ 1}, BSt+i = {0, 21— 1,5t+1+ 5},
1<:<¢,

Bgiyi = {0,2i,3t +i4 2}, Briyi = {0, 2t —1,5t+1i+ 3},
1<i<t,

BSH-I = {0, 2t + 1,4t + 3}, BSt+2 = {0, 2t + 1, 4 + 4},

Bgy3 = {0, 2t 41,6t + 4}, Bgiyq4 = {0, 2t 4+ 2,5t + 4},
Bgiys = {0,3t + 1,7t + 5}, Bgiye = {0,4t + 2,8t + 5}. 0

3.4 The case: A=v—2

When A = v—2, the necessary condition of a (v, 3, A\)-SCBIB becomes v # 0
(mod 3), and v > 5. We shall show that this condition is also sufficient.
Specifically, we have the following.

Theorem 3.7 There ezists a (v,3,v — 2)-SCBIB if and only if v £ 0
(mod 3) and v > 4.

Proof We need only to prove the sufficiency. Let B be the set of all 3-
subsets of Z,. Clearly, |B| = v(v — 1)(v — 2)/6. We shall show that (Z,, B)
is the required (v,3,v — 2)-SCBIB. For any B € B, let dev B = {B;|0 <
i <v—1}, where B; = {b+i (modv)| b€ B},0<4i<wv—1. Note
that v£0 (mod 3), it is not difficult to check that for any i # 7, we have
B; # B;, and for any B’ € B\ dev B, we have dev BNdev B’ = §. From
this, B can be divided into (v — 1)(v — 2)/6 parallel classes. Choose one
block from each parallel class, we get (v — 1)(v —2)/6 blocks, which are the
desired base blocks. 0
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4 (v,k,)\)-SCBIBs with 4 <k <6

In this section, we consider the existence of (v, k, A\)-SCBIBs, mostly for
integers v such that any of its prime factor is congruent to 1 modulo k{(k—1),
where k = 4,5and 2 < A < 4ork=6and A\ = 2. Some of them are
constructed from known (v, k, 1)-CBIBs.

The following result was proved by Gronau et al in [27].

Lemma 4.1 Suppose that B = {Bi,- -+, B} is the set of base blocks of a
(v, k,1)-CBIB design. Then BU(—B) is the set of base blocks of a (v, k,2)-
SCBIB.

It has been known that there exists a (¢, k,1)-CBIBwithg=1 (mod &k
(k —1)) a prime number and k = 4, 5, 6 except when ¢.= 61 and k = 6 (see
[11] and [12]).

Let F = {11:{0,1,2,4, 7,25}, 11°{0,4, 14,27,34,46}|i = 0, 1}. It is easy
to check that F is a set of base blocks of a (61, 6,2)-SCBIB.

So we have the following theorem.

Theorem 4.2 Letp=1 (mod k(k — 1)) be a prime number. Then there
erists a (p, k,2)-SCBIB for k = 4,5 and 6.

The following is obvious.

Lemma 4.3 Suppose that B = {B,,---,B,} is the set of base blocks of a
(v,k,1)-CBIB. If there erists a subset M of Z, such that for any a,b€ M,
a # b, aBUbB generates a (v, k,2)-SCBIB. Then there is a (v, k,A)-SCBIB
with 2 < A < |M.

Proof For each ), 2 < A < |M|, let M; be a subset of size A of M. Denote

by
T= | a8
a€EM;

Clearly, 7 is the set of base blocks of a (v, k, A)-CBIB. We shall show
that the cyclic design is also super-simple. In fact, for any two elements
a,b € M,, by hypothesis, a3UbB generates a (v, k, 2)-SCBIB. By Theorem
2.1 all pairs listed in VaBBU VbB are distinct. Consequently, all pairs listed

inVT = |J VaB arealso distinct. By Theorem 2.1 we get our conclusion.
a€EM;
0

Now, we focus our attention to the existence of (g, k, A)-SCBIB with ¢

a prime number and k = 4,5, where 2 < A < 4. We shall show that such a
SCBIB always exists.
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Let ¢ = ef +1 be a prime power and w be a primitive element of GF(q).
Denote by H® the unique subgroup of order f of the cyclic multiplicative
group GF(q) \ {0}, i.e., H® = {w* :i=0,1,---, f — 1}. The cosets HE,
Hf, ..., H:_, are defined by

Hf =w'H®, i=0,1,--,e—1.

For k =4,5,let g =1 (mod k(k — 1)) be a prime number. For a k-
subset B = {b1,bs,---,bx} of Zy, weset A*B={b/ —b':1<i<j<k}.
Chen and Zhu [11] showed that for any prime number g =1 (mod k(k —
1)), there exists an element x € Z; such that B = {0,1,z,---,z*~2} and
A*B is a system of representatives for the cosets of H¢ with e = % kz_ L,
Consequently, B = {sB : s € S} is the set of base blocks of a (g, k,1)-CBIB,
where S is a system of the representatives for the cosets of the factor group
He®/{1,-1} so that H® = S o {1, -1} (see the proof of Theorem 2 in [29]).

Clearly, for any c € Z, \ {0}, cB is also the set base blocks of a (g, k, 1)-
CBIB. By Lemma 4.1 cBU (—cB) = {esB : s € H§} is the set of base
blocks of a (g,k,2)-SCBIB. We wish to find an element ¢ € Z, so that
BU(cB) and —BU (cB) can both generate a (g, k, 2)-SCBIB. Consequently,
B U (—B) U (cB) generates a (g, k,3)-SCBIB and BU (—B) U (cB) U (—cB)
generates a (g, k,4)-SCBIB. These hold if and only if ¢ satisfies the following
condition:

(i) V(BU (-B))nV(cBU (—cB)) = 0.

Note that VBU V(—B) = {sVB: s € H§}, VeBUV(—cB) = ¢{sVB :
s € H§}. Condition (i) is equivalent to the condition (csVB)N(s'VB) = 0
for any s,s’ € Hg, i.e.,

(ii) (esVB)NVB = { for any s € H§.

We shall show that such an element c always exists in Z,.

When k = 4, we have B = {0,1,z,z%} and VB = {{1,z}, {-1,z -1},
{-=z,1-z}, {1,2%}, {-1,2% - 1}, {-2%,1 - 2?}, {x,2?}, {-=,2° — z},
{-z%,z - 2%}, {z— 1,22 — 1}, {1 — 2,22 — 7}, {1 — 22,2 — 22}}.

Note that e = 6 and A*B = {1,z,2%,z—1,z(z—1),(z+1)(zr—1)} isa
system of representatives for the cosets of H®. Since 1 € HS, we may assume
that z € Hf, z—1 € Hf, z+1 € HE,, where i, j, m # 0 are distinct. Without
loss of generality, we may further assume that {i,2i,5,i + j,m + i} =
{1,2,3,4,5} (mod 6). So we have i # 0,3, j # 0,%i,2i (mod 6) and
m#0,4,i—3,2i—j (mod 6).

Let c € H3. Suppose = € HY, i # 0,3, then cs € HS and csz € HE,,
for any s € H§. Note that —1 € HE, it is easy to see that cs # +1, +z, +2
and csz # +1,+z, 22, which implies that for ¢ € HS, cs{1,z} ¢ {{1,z},
{-1,z — 1}, {-=,1 -z}, {1,2%}, {-1,2% - 1}, {-=2%,1 — 2%}, {z,22)},
{-z,2? — z}, {~2%,z — z%}}.
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Ifes =z—1, thencsz = z(z—1) # 22 —1;ifcs =22 —1 and csz = -1,
then we have z(z + 1) = 1, thus ¢s = —z € Hf ;, which implies i = 3, a
contradiction. So we have cs{1,z} # {z — 1,22 — 1}.

If es = 1 — z, then csz = —z(z — 1) # 2% — 1; if s = 22 — z, then
csz = x(x® — x) = 22(z — 1) # 1 — z since 22 # —1. So we have cs{1,z} #
{1 —=z,z% — z}.

If es = 1 — 2, then csz = z(1 — 22) # z — 22 since z # =+1; if
cs = z —z? and csz = 1 — 22, then we have 22 = z + 1, which implies
¢s = —1, a contradiction. So we have cs{1,z} # {1 — 22,z — z?}.

From above, we have shown that ¢s{1,z} ¢ VB. In a similar way, one
can check that any other element in ¢csVB does not belong to VB. Thus
condition (ii) holds.

Whenk =5, wehavee =10, B = {0,1,z,2%,23}and VB= | {{b

{a,b,c}CB

—a,c—a},{a—b,c—b},{a—c,b—c}}.

Since A*B = {1,z,2%,2%,z—1,z(z—1),z*(z—1),22 -1, z(z% - 1), 23 -
1} is a system of the representatives for the cosets of H1, without loss of
generality, we may assume that z € H/, z -1 € H}°, z+1 € HY
and z2 +z + 1 € H} such that {4,2i,34,5,i+ 5,2i + 5,7 + m,i + 5 +
m,j+1} = {1,2,3,4,5,6,7,8,9} (mod 10). So we have i # 0,5, j #
0,%i,+2i,3i (mod 10), m # 0,44, +5,2i,i — 4,2 — 4,3 — j (mod 10)
and ! #0,%,7,2i,m,i+m,i~ 5,2i — 5,3i —j (mod 10).

Let ¢ € H}°. With a similar way as above one can check that condition
(ii) holds. So we have the following.

Theorem 4.4 Suppose k = 4,5. Then for any prime number ¢ = 1
(mod k(k — 1)), there exists a (g, k,\)-SCBIB with A = 2,3, 4.

For k = 4,5,6, by Lemma 2.3 there exists a (g, k,1)-DM over Z, with
any prime number ¢ =1 (mod k(k — 1)). Combining Theorem 4.2 and
Theorem 4.4 with Theorem 2.4, we have the following.

Corollary 4.5 Suppose k = 4,5 and A = 2,3,4. There exists a (v,k, A)-
SCBIB for each integer v of which all prime factors congruent to 1 modulo

k(k — 1).

Corollary 4.6 There ezists a (v,6,2)-SCBIB for each integer v of which
all prime factors are congruent to 1 modulo 30.

5 Applications to OOCs

We summarize the new resulting OOCs obtained from SCBIBs constructed
in the previous sections as follows.
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Theorem 5.1 There erists an optimal (v,3,2)-00C for each v % 0
(mod 3) and v > 4.

Proof Combining Theorem 3.7 with Theorem 1.3. o

Remark: For a given value of v, the above construction gives an OOC
with 5";1%&:21 codewords which is the largest number of codewords for all
known OOCs. To obtain more codewords, we need either to choose a larger
p or to choose a smaller k. To improve above result, one need to consider
(v,4,3)-00C because we always have p < k — 1.

Theorem 5.2 For k = 4,5, there exists an (v, k,2)-00C with : ',::} code-
words, where v is a product of primes congruent to 1 modulo k(k — 1).

Proof Combining Corollary 4.5 with Theorem 1.3. o

Remark: The OOCs in the above theorem has more codewords than those
OOCs constructed in (21, 22, 23, 30]. Although a (v, 3,2)-O0C has more
codewords than a (v,4,2)-O0C in general, a (v,4,2)-O0C has the advan-
tage that the difference between k and p is larger. This property will benefit
to applications by reducing possible errors.

Theorem 5.3 There ezists an (v,6,2)-00C with %' codewords, where v
s a product of primes congruent to 1 modulo 30.

Proof Combining Corollary 4.6 with Theorem 1.3. 1]

In [14], by using so-called »-simple matrices, several recursive construc-
tions were given.

Let G be an Abelian group of size v. Let r be a positive integer. An
s X t matrix A = (a;;) over G is called r-simple, if the difference of any
two column vectors of A contains any element in G at most » — 1 times.
Modifying some constructions for OOCs in [14], we have the following.

Theorem 5.4 Suppose there ezxists a (v,k,)\)-SCBIB. If there exists an
k x N r-simple matriz over Z,, then there exists an (ng,k,2)-00C with
NT codewords, where T = i‘J(z:—B

Proof By Theorem 1.3 there exists a (v, k,2)-O0C with T codewords.
The conclusion followed from Theorem 4 in [14]. 1]

In particular, we have the following.

Theorem 5.5 Suppose there erists a (v, k, A)-SCBIB. Letu = p7*p}? - - - p}*
be a positive integer, where p;, 1 < i < t, are primes not less than k. Then
there ezists an (uv, k,2)-00C with Tu? codewords, where T = %L’%i}

Proof The conclusion followed from Theorem 1.3 and Corollary 3 in [14].
1]
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Combining Theorem 5.5 with Corollary 4.5 and Corollary 4.6 respec-
tively, we have the following.

Corollary 5.6 Suppose k = 4,5. Letv be a product of primes all congruent
to 1 modulo k(k—1). Then for any odd integer u of which all prime factors

are not less then k, there exists an (uq, k,2)-00C with %’%ﬁ codewords.

Corollary 5.7 Let v be a product of primes congruent to 1 modulo 30.
Then for any odd integer u of which all prime factors are not less then 6,

there ezists an (ug, 6,2)-00C with gu_—l_ls_pf_ codewords.

It is easy to see that a 3-(v, k, 1) strictly cyclic design is just a (v, k, z%g)-
SCBIB. On the other hand, when A = z;_g, a (v,k,A)-SCBIB is also a
3-(v, k, 1) strictly cyclic design. So we have the following.

Theorem 5.8 There exists a 3-(v, k, 1) strictly cyclic design if and only if

there ezists a super-simple (v,k, 3=%) cyclic design.
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