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Abstract. Consider a complete graph of multiplicity 2, where between every pair of vertices
there is one red and one blue edge. Can the edge set of such a graph be decomposed into
isomorphic copies of a 2-coloured path of length 2k that contains & red and & blue edges? A
necessary condition for this to be true is n(n — 1) = 0 mod 2k. We show that this is sufficient
fork < 3.

keywords: graph decompositions

1 Introduction

Henry Dudeney (1857-1930), creator of many mathematical puzzles, posed in [3] what
became known as the “Nine Prisoners Problem.” Given nine prisoners, the problem
was to arrange a schedule so that for six days, the prisoners, chained in three distinct
lines, each of three prisoners, may take their exercise in the prison yard so that on no
two days is the same pair chained together. This problem is an example of what is
known as a graph decomposition.

A graph G admits an H-decomposition for some subgraph H, if the edge set of G
can be partitioned into edge-disjoint subgraphs each isomorphic to H. We say that G
is H-decomposable, or decomposable by H.

To move the “Nine Prisoners Problem” into the language of graph theory, the fol-
lowing definitions must first be introduced. A path of length & is a sequence of k + 1
distinct vertices, v1,V2,. . .,Uk+1, joined by k edges, v1vq, vavs, . . ., Vrvk4+1. We denote
it by Py and will usually write it as [v1, v2, V3, ..., Uk+1]. A complete graph on n
vertices, denoted K,, is the graph in which every pair of vertices is joined by a single
edge. A complete graph on n vertices of multiplicity m, denoted mK ,,, is a multigraph
in which every pair of vertices is joined by m edges.

So, in graph theoretical terms, a solution to the “Nine Prisoners Problem” produces
a Py-decomposition of Kg. Of course, there is an added concern; the paths obtained by
the decomposition must be such that they can be partitioned into 6 parts, where each
vertex of K'g occurs in each part exactly once. This condition is known as resolvability.
It is mentioned here for completeness, but is not of concern to this paper.

The “Nine Prisoners Problem” can be considered more generally as: For what val-
ues of k, m, and n does a resolvable Pr-decomposition of m K, exist? This question
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was brought to the fore in [S]. Fork = 2, m = 1 and n = 9 (the conditions of
Dudeney’s original problem) it was shown in [2] that there are 332 non-isomorphic
solutions. The more general case, only fixing k = 2, was solved in [6].

Theorem 1 The graph mK,, has a resolvable Py-decomposition if and only if n = 0
mod 3andm(n — 1) =0 mod 4.

The general solution was finally given in [1].

Theorem 2 For k 2 2 the graph mK ,, has a resolvable Py-decomposition if and only
ifn=0mod k+ 1 andm(k + 1)(n — 1) = 0 mod 2k.

However, the condition of resolvability may be dropped altogether, leaving the
question: For what values of k, m, and n does a Pj-decomposition of mK,, exist?
For k < 8 this was completely solved in [7]. It was answered in [9], with the following
theorem.

Theorem 3 The complete muitigraph mK,, is decomposable into paths of length k if
andonly ifn > k andmn{n — 1) = 0 mod 2k.

A thorough discussion of path decompositions, resolvable and otherwise, is avail-
able in [4]. The goal of this paper is to partially answer the following question posed
by M. L. Yu in the same source.

Colour the edges of Py red and blue so that there are k edges of each
colour, and colour the edges of 2K ,, red and blue so that there is both a red
and a blue copy of K. If n(n —1) = 0 mod 2k, is there a decomposition
of the coloured complete graph into copies of the coloured path?

The condition n(n — 1) = 0 mod 2k reflects that the number of edges of 2K,
should be divisible by the number of edges in each path. As well, Theorem 3 will see
frequent use, though without providing a proof.

Throughout this paper, whenever 2K, is discussed, it is with the assumption that
between every pair of vertices the two edges have different colours, nominally one
red and one blue. A 2-coloured path of length 2k on the vertices vy, va, ..., Vo,
Vak+1 is said to be colour-complementary if for 1 < i < 2k, the edges [v;, vi1] and
[vak—it+1,V2k—i42] are coloured differently.

Most of the constructions used in this paper involve labeling the vertices of the
graph G being decomposed with the elements of a group. Then, given a permutation
o of the elements of the group, we can apply the permutation to the vertices of some
subgraph H, to obtain a new subgraph o(H) as follows. The vertices of o(H) are
o(V(H)) and [u, ] is an edge in H if and only if [o(u), o(v)] is an edge of o(H). For
example, applying the permutation o = (1 2 3) to the path [1, 2, 3], we obtain
the path [2, 3, 1]. Often, we will repeatedly apply a permutation to a subgraph. In this
context, this refers to applying the permutation o to obtain the subgraphs H, o(H),
o%(H), ..., o'~} (H) where o(H) is the identity. In the previous example, we may
apply the permutation o twice to obtain the path o2([1, 2, 3]) = [3,1, 2].

280



Sometimes a vertex of a graph is labeled co. This is a fixed point; applying a
permutation does not alter it. So, if the permutation (1 2 3) is applied to the path
1, 00, 2], the resulting path is {2, oo, 3].

Many decompositions consist of a subgraph and those that result from repeatedly
applying a permutation to it. For example, label the vertices of K4 by 0, 1, 2 and
co. Repeatedly applying the permutation = (0 1 2) to the path [0, 1, oo] will
produce the paths [1, 2, o] and [2, 0, o0}, the three of which form a P,-decomposition
of K4.

Throughout this paper, coloured paths of a particular type will be written as [v 1, va,
3, . . ., Yax) with the colouring assumed to be written from left to right.

In the following sections, paths forming a decomposition are listed by length and
type. By type we refer to the colour pattern of the edges. For instance, if the path [a,
b, c, d, €] is of type RBRB, the edges [a, b] and [c, d] are coloured red, while [b, c] and
[d, €] are coloured blue.

As well, it should be noted that only non-isomorphic types are listed. So, for each
type listed, it is not possible to obtain another type in the list by the process of “flip-
ping” the path or by switching the colours. The former means that both RRBBBR and
RBBBRR represent the same type, and the latter that both RRBBBR and BBRRRB are

the same type.

2 Some Preliminary results

Both of the proofs of the following theorems describe constructions for decomposing
particular complete graphs of multiplicity 2 into colour-complementary Pgy.

Theorem 4 The graph 2K o411 is decomposable into isomorphic copies of any fixed
colour—complementary path of length 2k, for all positive integers  and k.

PROOF. Let the vertices of 2Ka4,+1 be labeled with the elements of Zakr41. We
will define r paths to which the permutation (0 1 2 --- 2kr) will be succes-
sively applied. This construction will be dependent on the parity of k.

If k& is even, the paths are

(-5 —jk—1+%5 541, —jk—2+%,..., -8, —jk+2,-2,—jk+1,-1,
-jk, 0, jk, 1, jk— 1,2, jk—2,3,...,.5k— §+2,5 -1,k — £ + 1, §], where
1€j<n

If k is odd, the paths are

[—ik+ 551, -85, —jk—1+ 550, -k 41, —jk+2,-2,—jk+1,-1,
~3k, 0,3k, 1, 5k — 1,2, 5k — 2,..., 551 — 1, jk — 522 + 1, 521, jk — £31), where
1<j<r.

The basic idea behind this construction is that edges of all lengths are used exactly
twice, and in particular, if e and f are two edges equidistant from the beginning and end
of a path, then e and f have the same length. Since the paths are colour complementary,
e and f are coloured differently. Therefore all lengths of both colours are represented.
By applying the permutation, all edges of these lengths are used. Il
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Theorem 5 The graph 2Kk, is decomposable into isomorphic copies of any fixed
colour-complementary path of length 2k for all positive integers k, and r > 1.

PROOF. Label 2kr—1 of the vertices of 2K o, with the elements of Zax,_1 and the

remaining vertex 0o. Successively apply the permutation (0 1 2 --- 2kr —2)to
the given base paths. Once agam, there will be two cases dependmg on the parity of k.
If k is even, the paths are [— £, —jk+ 5 -5+1, —jk+%-1,...,-3,—jk+3,
-2,—jk+2,-1,—3k+1,0, jk - 11_7k 22_71: 33 k:——--i-l,2 1,
jk— %, §].for1 < j < r,and the path [- &2, — & _ k42 1,—§+1 w—k+2,
~3,—k+1,~2,~k, ~1,00,1, k.2, k— 1,3, k~ 2, . g—1k+2,2,2+1]
If k is odd, the paths are [—jk + &£1, ———,—Jk+£g—1- 1,-k141,..., -2

—-jk+2, -1, —jk+ 1,0, jk—1,1,jk-2,2,..., 5L — 1, jk - —+—+1 k—-—l
jk— &), for 1 < j < r, and the path [~ &1, k48 _ kil 4 %3—1

—-k+2,-3,—k+1,-2,-k,—-1,00,1,k,2,k -~ 1,3, k- 2,..., k#+1,&;i-1,
52, 5.

Again, these paths are constructed so that edges equidistant from the endpoints of
the path have the same length, and hence receive different colours. [l

We will use the following simple lemma, which relates path decompositions and
colour-complementary path decompositions.

Lemma 6 Splitting Lemma
If G is a graph that admits a Pyr~decomposition, then the coloured multigraph 2G
admits a colour-complementary Poy-decomposition.

PROOF. For every path in the Py;—decomposition of G, we obtain two colour—
complementary paths in 2G, in the following manner. If the uncoloured path is [v;,
V2, U3, ..., U2k, ¥2k41), form the first colour—complementary path by colouring the
edges from left to right according to the given colour-complementary Py The second
colour-complementary path is formed by taking the same vertices in reverse order and
again colouring from left to right. Thus, each edge is “split” into two edges, and each
uncoloured path in the decomposition of G gives two colour-complementary paths in
the decomposition of 2G. Ml

3 Paths of length 2 and 4

Up to isomorphism, there is only one 2-coloured path of length 2, and that is the path
with one red edge and one blue edge. Clearly, n(n — 1) = 0 mod 2 is a necessary
condition for the desired decomposition of 2K ,. But this is equivalentton = 0 mod 2
orn = 1 mod 2, or that all values of » must be considered. We denote this path by
RB. Certainly, it is colour complementary, and so we may use Theorems 4 and 5, and
we immediately obtain the following result.

Corollary 7 The complete graph 2K , is decomposable into 2-coloured paths of length
2foralln = 3.
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Concerning paths of length 4, we see that we have three types of paths to con-
sider. We must investigate two different colour-complementary paths, which we de-
note by RRBB and RBRB, and the 2-coloured path RBBR. The necessary condition,
n(n — 1) = 0 mod 4, results in the requirement that » = 0,1 mod 4. For the colour~
complementary paths RRBB and RBRB, Theorems 4 and 5 take care of all possible
cases, so we need only consider the path RBBR.

Lemma 8 The graph 2K 4, is decomposable into paths of type RBBR for all v 2 2.

PROOF. Label 4r—1 of the vertices of 2K 4, with the elements of Z4,._1, with the fi-
nal vertex being labeled co. Then successively apply the permutation
0 1 2 .- 4r-2)tother—1paths[2—24,0,25-1,1,2j],forall2<j <,
and the path [0, oo, 1, 2, 3]. H

Lemma 9 The graph 2K 41 is decomposable into paths of type RBBR for all r 2 1.

PROOF. Label the vertices of 2K 4,41 with the elements of Z4,43. Successively
apply the permutation (0 1 2 --- 4r)tother paths [1—24,0,27,1, 25 + 1], for
all<ji<r M

We obtain the following theorem.

Theorem 10 The graph 2K, is decomposable into a given 2-coloured path of length
difandonlyifn 2 5andn(n—1) =0 mod 4.

4 Paths of length 6.

Here, we have seven different path types to consider. They are RRRBBB, RBRBRB,
RRBRBB, RBBRRB, RRBBBR, RBRBBR and RRBBRB. This time, the necessary
condition n(n — 1) = 0 mod 6 implies that » = 0,1,3,4 mod 6. For the remain-
ing constructions, we define the length of an edge [a, b] in K, whose vertices are the

elements of Z,, is |a — b|. Thus edge lengths are 1, 2, .. ., and g .

The colour—complementary paths RRRBBB and RBRBRB

Here, from Theorems 4 and 5, we immediately obtain the necessary decompositions of
2K and 2K, 41

Lemma 11 The graph 2K ¢, 3 is decomposabie into paths of type RRRBBB and paths
of type RBRBRB for allr 2 1.

PROOF. Label the 67 + 3 vertices of 2K¢,+3 with the elements of Zg,4+3. Suc-
cessively apply the permutation (0 1 2 --- 67+ 2) to the r paths [-3j, —1,
-35-1,0,35+1,1, 35], for1 < j < r. This will use all edges of 2K 613 except
those of length 1.

To finish, successively apply the permutation (0 3 6 .- 6r)
(1 4 7 -~ 6r+1)(2 5 8 --- 6r+2)tothepath|0,1,2,3,4,5,6. H
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Lemma 12 The graph 2K, 1.4 is decomposable into paths of type RRRBBB and paths
of type RBRBRB for allr 2 1.

PROOF. Label 67+ 3 vertices of 2K, 4 with the elements of Zg3; the remaining
element will be labeled oo. Then successively apply the permutation
012 ... 6r+2)tother — 1 paths [-37, =1, =35 — 1,0, 37 + 1, 1, 33),
for2 < j < r, and the path {-2, 5, —1, 00, 1, 5, 2.

The edges remaining will be those of lengths 1 and 2. These are used by succes-

sively applying the permutaton (0 3 6 .-+ 6r)(1 4 7 --- 6r+1)
(2 5 8 --- 6r+2)tothe twopaths [0, 1, 2, 3, 4, 5, 6] and [0, 2, 4, 6, 8, 10,
12. 1

The colour-complementary path RRBRBB

For decompositions into paths of type RRBRBB, we can use Theorems 4 and 5 for
graphs 2K, and 2K, 4.

Lemma 13 The graph 2K, .3 is decomposable into paths of type RRBRBB for all
r21.

PROOF. For 2K, we need only examine the underlying graph K . By Theorem 3,
Ky is decomposable into paths of length 6. By Lemma 6, the result follows.

For r 2 2, label the vertices of 2K 6r+3 With the elements of Zg,.,.3. Then succes-
sively apply the permutation (0 1 2 --- 6r+2)tother — 1 paths [3 — 37, —1,
2-35,0,35-2,1,3j-3),for2<j<r

To obtain the remaining edges of 2K g3, successively apply the permutation
0 36 .- 6r)1 4 7 -+ 6r+1)(2 5 8 --- 6r+2) to the four
paths [-3, -3r - 2,-1,0,3r,1,1—3r),[-2,-3r—1,0,1,3r +1,2,1 - 37, [-1,
—3r,1,2,3r+2,3,2-3r]and [0,1,2,3r +2,3r+3,3,3r + 4. B

Lemma 14 The graph 2K,y 4 is decomposable into paths of type RRBRBB for all
r21.

PROOF. For 2K, label 9 of the vertices with the elements of Zg, and the remain-
ing vertex co. Then successively apply the permutation (0 3 6)(1 4 7)(2 5 8)
to the paths [0, 1, 2, 00, 5, 4, 3], [1, 5,0, 00, 3, 8, 4] and [2, 0, 7, 00, 4, 6, 8). The fol-
lowing paths use the remaining edges of 2K10 [6, 0, 8, 2,4, 7, 3], (3,7, 4, 2, 8, 0, 6],
[3,6,5.8,1,4,0],[0,4,1,8,5,6,3],[0,3,2,5,7,1,6] and [6, 1, 7, 5, 2, 3, 0].

For 2Kgr44, withr 2 2, label 67+3 of the vertices with the elements of Z, 6r+3,and

the remaining vertex co. Successively apply the permutation (0 1 2 --- 6r+2)
to the paths [2 — 34,-1,1 - 35,0,3j — 1,1,3j — 2],for2 < j < r, and [-2, —3r —
2,-1,00,1,3r + 2,2, and successively apply the permutation (0 3 6 --- 6r)
(1 47 -+ 6r+1)(2 5 8 -+ 6r+2)tothepaths[0,1,2,3,5,7,9 and

[9.7,5,3,2,1,0. 1
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The colour-complementary path RBBRRB

Once again, we may use the constructions of Theorems 4 and 5 when considering
2K, and 2K¢,+1. We may also use the construction of Lemma 14 when considering
2Kgr44. This leaves the case 2K, 4+3-

Lemma 15 The graph 2Kg,+3 is decomposable into paths of type RBBRRB for all
r21

PROOF. We know that K¢ admits a Ps—decomposition (by Theorem 3). Using
Lemma 6, we have the desired decomposition of 2/(g.

Consider 2K,+3, with 7 2 2, and label the vertices with the elements of Zg-43.
Then successively apply the permutation (0 1 2 .- 6r+2)tothe r — 1 paths
[-34,-1,-35—1,0,37 +1,1,35], for 2 < j < r, and successively apply the permu-
tation(0 3 6 --- 6r)(1 4 7 --- 6r+1)2 5 8 --- 6r+2)tothe
four paths [0, 1, 2, 4,5, 6, 7], [-3, -1, —4,0,4,1, 3],[-2,0, -3, 1, 5,2, 3] and [-1,
1,-2,2,6,3,5. 1

The path RRBBBR
Lemma 16 The graph 2K, is decomposable into paths of type RRBBBR for allt 2 2.

PROOF. Label 67 — 1 of the vertices of 2K, with the elements of Zg,.—.1. Label the
remaining vertex co. Successively apply the permutation (0 1 2 --- 6r—2)to
the r — 1 paths [—1, 2 — 35,0,3;5 — 1,2, 35, 1], for 2 < j < r and to the path [-1, -2,
,2,1,3,5. 1

Lemma 17 The graph 2Kg,+1 is decomposable into paths of type RRBBBR for all
r21.

PROOF. Label the 6r + 1 vertices of 2K g1 with the elements of Zg,+1. Succes-
sively apply the permutation (0 1 2 --- 6r) tothe r paths [~1, =35 + 1,0, 35,
2,3j+1,1,for1<j<r. 0l

Lemma 18 The graph 2Kg,.3 is decomposable into paths of type RRBBBR for all
r21.

PROOF. Let the vertices of 2Kg,43 be labeled with the elements of Zg,43. Then
successively apply the permutation (0 1 2 - 6r + 2) to the r paths [—1, —3j,
0,37 +1,2,3/+2,1),forl < j < r, and the permutation (0 3 6 --- 6r)
(1 4 7 .-~ 6r+1)(2 5 8 --- 6r+2)tothepath[0,1,2,3,4,5,6].

Lemma 19 The graph 2Kg,.4 is decomposable into paths of type RRBBBR for all
rz1,

PROOF. Let 6r + 3 of the vertices of 2K¢r..4 be labeled with the elements of
Zgr+3 — the final vertex being labeled co. Then, successively apply the permutation

0 1 2 ... 6r+2)tother —1paths[-1,-3j+2,0,35—1,2,35,1],for2 <
j < r and the path [-37, 0, 00, 1, 3r + 2, 2, 1 — 3r]. Also, successively apply the per-
mutation(0 3 6 --- 6r)(1 4 7 --- 6r+1)(2 5 8 --- 6r+2)to

the paths [0, 1,2, 3, 4, 5, 6] and [0, 2, 4,6, 8,10,12]. H
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The paths RBRBBR and RRBBRB

Lemma 20 The graph 2K, is decomposable into paths of type RBRBBR and paths of
type RRBBRB for all t 2 2.

PROOF. Label 6r — 1 vertices of 2K, with the elements of Zg,-_;. Label the re-
maining vertex oo, a fixed point. Successively apply the permutation
©12 ... 6r—2)tother —1paths [-1,1—7~—24,0,7+2j—1,1, 3,
2j—1),for2 < j <randthepath[-1,-r—1,0,7+1,1,00,2]. l

Lemma 21 The graph 2K, is decomposable into paths of type RBRBBR and paths
of type RRBBRB for aliT 2 1.

PROOF. For 2K, label the vertices with the elements of Z; and successively apply
thepermutation(0 1 2 3 4 5 6)tothepath[6,0,4,2,3,1,5].

For r 2 2, label the 6r + 1 vertices of 2K¢,41 with the elements of Zg,1. Suc-
cessively apply the permutation (0 1 2 --- 6r) to the r paths [-1, -2 — r, 0,
2j+7,L,j+1,2i+1],for1<j<r. M

Lemma 22 The graph 2Kg,3 is decomposable into paths of types RBRBBR and paths
of type RRBBRB for allr 2 1.

PROOF. For 2K, label the vertices with the elements of Zg. Then the following
2-coloured paths make up a decomposition. [8,0, 7, 1, 6, 2, 5], [5, 3, 4,8,1,0, 2], [2,
7,3,6,4,5,8),[1,8,4,3,5,2,6],[4,6,3,7,2,0,1],[6,1,7,0, 8, 5,4],[8,2, 1, 3,0,
4,7,[7,5,6,8,3,2,4),[4,1,5,0,6,7,8,(3,8,6,5,7,4,0], [6,0,5, 1,4, 2, 3], [0, 3,

1,2,8,7,6].
For r 2 2, label the vertices of 2Kg,43 with the elements of Zg,4+3. Successively
apply the permutation (0 1 2 .-- 6r+2) to the paths [-1, —3r + 35 — 4, 0,

3r—-3j+4,1,3r—3j+3,6r—65+5],for1<j<r-1.

In addition, to use all the edges of lengths 1 and 2, we need the 27 + 1 paths: [0, 1,
2,3,4,5,6],[6,7,8,9,10,11,12),...,[6r —6,6r — 5,6r —4,6r — 3,6r — 2,6r — 1,
6r], [6r,6r+1,6r+2,0,2,4,6],[6,8,10,12,14,16,18)... ., [6r -9, 6r — 7,6r — 5,
6r—3,6r—1,6r+1,0,and[4,3,2,1,0,6r+1,6r — 1], [6r — 1,6r — 3,6r —5,
6r—7,6r—9,6r—11,6r—13|,...,[14,12,10, 8, 6, 4, 2}, {2, 0, 6r + 2, 6r + 1, 61,
6r—1,6r—2],...,and[10,9,8,7,6,5,4].

Finally, to use the edges of lengths 3 and 4, we use the 2r + 1 paths [0, 4, 1, 5, 2,
6,3,[3,7,4,8,5,9,6],...,[6r —3,6r+1,6r — 2,6r + 2, 6r — 1,0, 67], [6r, 1,
6r+1,2,6r+2,3,0,and [5,1,4,0,3,6r+2,2],[2,6r+1,1,6r,0,6r—1,6r+2],
[6r+2,6r —2,6r+1,6r —3,6r,6r—4,6r-1)],...,[11,7,10,6, 9, 5, 8], and [8,
4,7,3,6,2,5. 1

Lemma 23 The graph 2K g,..4 is decomposable into paths of type RBRBBR and paths
of type RRBBRB for all v 2 1.

PROOF. For 2Ky, label nine of the vertices with the elements of Zg and the re-
maining vertex co. Successively apply the permutation (0 1 2 ... 8)to the 2-
coloured path [5, 0, o0, 2, 6, 8, 1]. Also, take the paths [0, 3, 2, 5, 4, 7, 6], [6,0,8,2,1,
4,3),(3,6,5,8,7,1,0],[4,5,2,3,0,1,7],[7.8,5,6,3,4,1] and [1, 2, 8,0, 6, 7, 4].
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For r 2 2, label 67 + 3 of the vertices of 2Kg,4 with the elements of Zs¢3, and
the remaining vertex oo. Successively apply the permutation (0 1 2 --- 6r+2)
tothe r — 1 paths [-1, —3r +35 — 4,0,3r — 35+ 4,1, -3r + 35 - 1, —6r + 65 - 3],
for1 < j < r — 1 and the path [—4, 0, 0, 2, 6, 9, 12].

Finally, we also need the 2r + 1 paths: [0, 1,2, 3,4, 5, 6], [6, 7, 8,9,10,11,12],.. .,
(6r — 6, 67 — 5,6r — 4, 6r — 3,6r — 2,6r — 1,67], [6r,6r +1,6r+2,0,2,4, 6, 6,
8,10,12,14,16,18},...,[6r — 9,6r — 7,6r — 5,6r — 3,6r — 1,6r + 1,0 and [4, 3,
2,1,0,6r +1,6r —1],[6r—1,6r—3,6r—5,6r—7,6r—9,6r—11,6r—13],...,
[14, 12-,10, 8,6,4,2],[2,0,6r +2,6r+1,6r,6r —1,6r —2],...,and [10,9,8,7,6,
5,4].

Combining the results of this section, we obtain the following theorem.

Theorem 24 The complete graph 2K, is decomposable into 2-coloured paths of length
6 ifandonly ifn > 6 andn(n — 1) = 0 mod 6.

5 Conclusions
Combining the results of Sections 2, 3, and 4, we obtain the following theorem.

Theorem 25 The complete graph 2K ,, is decomposable into 2-coloured paths of length
2k, k £ 3, ifand only if n > 2k and n(n — 1) = 0 mod 2k.

Theorem 25 seems to imply that 2-coloured path decompositions will exist for all
possible k. It is not surprising that this would be true for large k, as in [8], a theorem is
given proving the asymptotic existence of many graph decompositions, and this result
is also applicable in this situation. However, as the number of non-isomorphic types
of path of length 8 is 23, and only 8 of these 23 is colour—complementary, extending
Theorem 25 in this manner does not seem reasonable.

Further, when k = 3, itis clear from the previous lemmas that decompositions were
much easier to formulate when the paths were colour-complementary. It would seem
that focusing on colour-complementary paths would allow extensions of these results
to larger k.
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