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Abstract

The Randié index of an organic molecule whose molecular graph
is G is the sum of the weights (d(u)d(v))'% of all edges uv of G,
where d(u) denotes the degree of the vertex u of the molecular graph
G. Among all trees with n vertices and k pendant vertices, the ex-
tremal trees with the minimum, the second minimum and the third
minimum Randié¢ index were characterized by Hansen, Li and Wu
et al., respectively. In this paper, we further investigate some small
Randié¢ index properties and give other elements of small Randié

index ordering of trees with k pendant vertices.

1 Introduction

Mathematical descriptors of molecular structure, such as various topolog-
ical indices, have been widely used in structure-property-activity studies
(see [1, 2, 6]). The connectivity index or Randié¢ index is one of the most
useful molecular-graph-based structure-descriptors (see [3]). The Randié

index of an organic molecule whose molecular graph is G is defined (see

ARS COMBINATORIA 103(2012), pp. 289-304



[4, 5]) as
R(G) =) (d(u)d(v))~¥,

where d(u) denotes the degree of the vertex u of the molecular graph G,
the summation goes over all pairs of adjacent vertices of G. The graph in-
variant B(G) was put forward by the chemist Milan Randié in 1975, aimed
to be a measure of the branching of the carbon atom skeleton of organic
molecules (see [5]). In Randié’s study of alkanes, he noticed that there is
a good correlation between R(G) and several physicochemical properties
of alkanes: boiling points, parameters in the Antoine equation for vapor
pressure, surface areas, etc (see [5]). And he showed that if alkanes are or-
dered so that their R(G)-value decreases then the extent of their branching
increases (see [5]). There are many publications to study the trees with
extremal Randi¢ index and the bounds in some graph sets (see [7]).

In this paper, we are interested in the small Randié¢ index ordering
of trees. First we provide a survey of some known results concerning our
results. Let T be a tree of order n. Yu (see [8]) gave a sharp upper bound

of
n+2v2-3
2 .

R(T) <

In[9], trees with large general Randi¢ index were considered. For a tree T

of order n with k pendant vertices, the sharp upper bound on Randié index

in the case 3 < k < n—2,n > 3k — 2 was given by Zhang, Lu and Tian

(see [10]). In order to illustrate some more results on the minimal Randié
index, we need some notations as follows.

Let K3 k(p1,p2,--- ,Ps), (s < k) be a tree created from the star Ky

of k + 1 vertices by attaching paths of lengths p;, ps2,-++,ps to s pendant

vertices of Kk, respectively(see Fig. 1(a)). And let K3y s be a tree
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constructed from a path of length n — k — 1 by adding s pendant edges and
k — s pendant edges to two ends of the path, respectively (see Fig. 1(b)).
Writing F7 for a tree set, and every tree in F} is obtained from a path of
length n — k by adding k¥ — 2 pendant edges to one end of the path and
adding a pendant edge to one 2-degree vertex of the path not adjacent to
its ends, respectively (see Fig. 1(c)). Denote

Sti_s = {Kik(pr,p2,--,ps): P >0, i, pi=n—k-1},

Snk = U§=1 S?.k—s’

Unp ={K'_,:5=2,...,|5]}

Tax = {T: T is a tree with n vertices and k pendant vertices }.

Clea'rl}’1 'Sn,kyz’{n,k Cc Tn,k-

(X DF )

(a) K1,k(p1,P2,* 1 Ps) €S5x_s (b) K3p—s € Unp
() TeF%
Fig. 1

The trees with the minimum and the second minimum Randié index
in Tpx were given by Hansen et al. (see(11]) and Li et al. (see [7, 12]),

respectively. A tree T € 7, has the minimum Randi¢ index if and only

291



if T € ST _, and its Randi¢ index

1 1 1
ﬁ(k+ﬁ—1)+ﬁ-—l.

And a tree T € T, i has the second minimum Randié index if and only if

R(T) = 3(n— k) +

T € 83 and its Randié index
RT)=s(n—K)+ -~ (h+v3—-2)+v3— 2
-1 = ..

The tree with the third minimum Randié index in 7, n,k Was determined
by Wu and Zhang (see [13]). And a tree T € T, & has the third minimum
Randi¢ index if and only if T = K3, _, and its Randié¢ index

1 1 1 2 1
R(T)=§(n—k)+_‘/k—‘__l(k+7§—2)+%+%

In this paper, we are interested in the ordering of trees with respect

_3
-

to Randi¢ index. Furthermore, we investigate some small Randié¢ index
properties and give other elements of small Randié index ordering of trees

with k pendant vertices.

2 Notations and Lemmas

Let G(V, E) be a graph with vertex set V and edge set E. Suppose that
z € V(G), S C V(G). Writing Ng(z) for the neighborhood of z, denote
Ng(S) = U,es Ne(v) and Vi(G) = {v : v € V(G),d(v) =| Ng(v) |= i}.
The maximum degree of G is denoted by A(G). Let T be a tree. For
z,y € V(T), we use T'—=z or T —zy to denote a graph which arises from the
tree T by deleting the vertei z € V(T) or the edge zy € E(T). Similarly,
T + zy is a graph that arises from T by adding an edge zy ¢ E(T). A
vertex x € V(T') is called a pendant vertex if z € Vi(T). An edge in E(T) is
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called a pendant edge if one end of the edge isin V1(T"). Let P = vov; -+ - v,
be a path in T with d(v;) = - -+ = d(vs—1) = 2 (unless s = 1). If d(v) =1,
d(vs) > 3 or d(v,) =1, d(vo) = 3, then we call P a pendant chain of T'; if
d(w), d(vs) = 3, then P is called a non-pendant chain of T'. Set
P(T) = {P: P is a pendant chain of length at least 2 in T},
P(T) = {P: P is a non-pendant chain in T}.

We first show the following lemma.

Lemma 1.

(i) Let F(z,b) = f(z,b) — f(z + 1,b), where f(z,b) = VT + J=. If
z > 0 and b < 0, then the function F(z,b) is monotonously increasing in
z.

(ii) Let G(z,c) = 7= — 7;_%7 If z > 3 and ¢ > 3, then the function
G(z, c) is monotonously decreasing in z.

(iii) Let H(z) = vz —1 — /. If z > 3, then the function H(z) is
monotonously increasing in x.

Proof. By derivation to functions F(z,b), G(z,c) and H(z) in z, we

obtain
1 b 1 b
Fa’: !b = - - +
(,5) 20z 2@ 2/E+1l oz +1)°

O SN SN P S T
T 2%z Vz+l 22 Sz +1)3
> 0

when £ >0 and b < 0.
CLae) = —— -

RN e
_ l 1 _ 1
2\VE-1° /5

< 0
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when 2 > 3 and ¢ > 3.

, 1 1
H(z) = 2 z—l_m
1 1 1
- 5( :z:—l—\/_i)
> 0

when z > 3.

Therefore the functions F(z, b) = f(z,b)— f(z+1,b), G(z,c) and H(z)
are monotonously increasing, monotonously decreasing and monotonously
increasing respectively in z. n

Lemma 2 [13]. For any T1,T; € Sn,, suppose that T} € S7,_; and
T € S;."k_j, i<j<k.

(i) If i = j then R(T1) = R(T2);

(ii) If ¢ < j then R(Th) < R(T2).

In order to characterize the trees with the fourth minimum Randié
index, we first characterize a extremal property of trees in 7,k \ (ST ,_, U
Str—2 Y {KZx_2})-

Lemma 3. Let T € Tﬂ,k\(s?,k—lUsg,k—zu{Kg,k—z})i 4<k<n-—-4.
If RT) = min{R(T) : T € Tnx\ (STr—1 US3ro U {KZk-2})}, then
P(T) # 0.

Proof. By contradiction. Choose a tree T' € Ty, i such that R(T) =
min{R(T) : T € Tox \ (SPx_y USEs o U{KE_o})}. If P(T) = 0, then
T € 53 _5 by the choice of T and Lemma 2. And it is easy to obtain that
R(T) = }(n—k)+ ¢ (k+ 3 —3) + % — 2. Clearly, for any Ty € 7},
we can get R(Tp) = %(n-k)+7,:?i-(k+71§—2) +72§+%3-+71=2= -2
and To € F C Tnk \ (ST -1 USS 4o U{KZ,_,}). Considering the value
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R(T) — R(Tp), we have

R@T)-R(Ty) = (VE- k—1)+(%‘1)(‘3\/i" kl—l)
- -7

3 1

> (F) G m

When 4 < k < 829, by means of mathematical programming, one

easily calculates that R(T') — R(Tp) > 0.0024.
When k& > 830, by Lemma 1(ii), function G(k,3) is monotonously

decreasing in k. Thus

\Y%

R(T) - R(To)

w

2

() Grn) -
(

2
)G(830 3)+\/'—%

Sl-
Sl

> 0

Thus R(T) > R(To), a contradiction. Therefore P (T) #0. ]
Lemma 4 [13]. Let T € T, ;. If |P(T)| = s (s > 2), then there exists
T € T with |P(T)| = s — 1 such that R(T) < R(T).

3 Trees with Small Randi¢ Index

Clearly, to determine a tree with the fourth minimum Randi¢ index in
T nk is equivalent to determine a tree with the minimum Randié index in
Tnk \ (STh1 US4 o U{KZ,_,}). Note that T, = {Pn}s Topn-1 =
{Kin-1}y Tnn—2 =Unn_2, and Tp 3 = ST, U SF, USF,. Therefore we

just need to show the cases 4 < k<n-3andn>7.
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Theorem 1.  Suppose that T € Tn ke \ (ST 41 US 2 U{KZ_,})
(4 <k <n-38,n>7) with the minimum Randi¢ index. Let FJ*, 7 <
m < 10 and F§,n > 11 be the trees shown in Fig. 2.

(i)Ifk=4and'n.=7,thenT’é’FJandR(T):x/_+-1-+71=+L2,

(ii) If k = 5 and n = 8, then T & F§ and R(T) = § + S£/246,

(i) If k=6 and n =9, then T = F§ and R(T) = 3+ﬁ,

(1v)Ifk=7andn=10,thenT%F01°andR(T)=§+7§+71§+\/—11_6;

(v)If4<k<n-4,n>8, thenT € F} and

R(T)= 1 (n— k) + 72— (k+ )+i+i+i—2;

vEk-1 o V6 V3 V2
(vi)If k=n-3,n>11, then T = F? and

_1__(n+_1__5)+_1_+i+i
V-4 V3 V2 V3 VE

o1 e

Fl F§ F?

K {7

FJo kg

R(T) =

Fig. 2

Proof. In [14], it is obtained that all different trees in 7, with
(n,k) = (7,4), (8,5), (9,6), and (10, 7) up to isomorphism. And there are
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4 trees, 6 trees, 9 trees and 12 trees for (n,k) = (7,4), (8,5), (9,6) and
(10,7) respectively. An examination by direct calculation, we can prove
and obtain (i) to (iv). Next we prove (v) and (vi).

(v) For convenience, denote

1 1 1 2 1 1
k)y=z(n-k)+ k+ —=-2)+—=+—+—F5-2
ork) = =R+ s (b4 75 -2) + 5+ 5+ 5
It is easy to obtain that
1
-1L,k-1)—-¢(nk)=F(k—-2,—=—-1
#(n )= 6, k) = Pk =2, 2 =1)
and for every tree T € F
1 1 1 9.

R(T)=%(n—k)+ﬁ(k+ﬁ—2)+%+%+ﬁ—

Choose a tree T' € T i \(ST;_;US7 x_2U{K3_,}) such that R(T) =
min{R(T) : T € Tnx \ (ST4_1US3k—s U{K5, o})}. By Lemma 3 and
Lemma 4, P(T) # 0 and |P(T)| < 1.

We now prove the conclusion by induction on k. When k = 4, we have
A(T) = 3. Otherwise T' € Sp 4 and ﬁ(T) = §, a contradiction. Thus,
|V3(T)| = 2 and [P(T)| = 1. By the choice of T', we have |P(T)| = 1. And
it is easy to check that the length of this non-pendant chain is at least 2.
Therefore T € F7}.

Assume that & > 5 and the result holds for £ — 1. Next, choose a
vertex u € Np(V;) such that d(u) is the maximum and 3 < d(u) < k- 1.
Let d(u) = ¢, Nr(u) N Vi(T) = {vr,-- w} (r 2 1), Nr(u)\W(T) =
{z1,,Ze—r} and d(z;) = dj 1 < j<t—r), thent—7r 21 (T ¢
Kyn-1), dj > 2 (1 £ j <t—r). If possible, choosing the vertex u
satisfying r > ﬂ.}l. In particular, T % K75 when k = 6. Otherwise,
choose Tp € Fg C Tnux \ (STs U S34 U {KZ,}), by direct calculation,
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R(T)—R(Tp) > 0.001, a contradiction. SetT=T—-v,. ThusT=T-uv €
Tn-1k-1\(STx 1, U82 PPy’ {Kg;_a}) and R(T) > ¢(n—1,k—1) by the

hypothesis of induction. Therefore

- e e
2 R(T)+f = f“ (7 7=3)
2 #ln- 1)+f = e (7 v=)
= $(n,k)+ F(k— 2\/_ 1) - F(t - 1\/%—1)
()
> ¢(n,k)+F(k—2,%—1)—F(t—1,\/i§—1)
2 ¢(n,k),

since k —1 >t and F(z, 7’; — 1) is monotonously increasing in z according
to Lemma 1(i). R(T') = ¢(n, k) if and only if all inequalities in the above
argument are equalities. Thus we have R(T) = ¢(n —1,k—1), k—1=t¢,
t —r =1 and d; = 2. By the induction hypothesis, T € F31, |P(T)| =
|P(T)| = 1 and the length of this non-pendant chain is at least 2. Therefore
T € F} and the proof of Theorem 1(v) is completed.

(vi)k=n—3. For T € Tpnn-3\(STn_gaUSE .5 U{K3, 5}), let
u € Np(V1) with d(u) = maz{d(v) : v € Np(V1)}. Since n > 11, d(u) <
k —1. If d(u) = k — 1, then there are only two trees up to isomorphism,
ie, F,FT' € Tnpn-3\ (STn-qVU S35 U{K3, s}) (see Fig. 2, Fig. 3).
By direct calculation,

1 1

SWHUIIE SIS S
RUFP) = Zmgnt —==5)+ 25+~ —

and R(FT*) > R(F§).
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12 k3

Fr

Fig. 3

Ifdu) < k-2 then T € T3\ (ST, qUSE, s U{KZ, s}V
{F§, FP}) and R(T) 2 o=(n + 75 — 6) + 7z + §, equality holds if and
only if T = K7, _. As an analogue to 7} (4 < k < n — 4), we can obtain

R(KZ._¢) = TT}T—sa(n + \—}—21 -6)+ % + £, and similar to the above proof
of Theorem 1(v), we can prove the result. Next, considering the value

R(K3pn-¢) — R(FT)-

R(K3n-¢) — R(F7)

1 1 1 3 1 1
= =t B0t FT3C =t 50
1 1 1
V2 VB /6

2TETVE VR
1 1
> n—5—v'n—4+\/—ﬁ(\/§ 1)
L3 11 1
2 V3 V6 V8

Since H(n — 4) is monotonously increasing in n by Lemma 1(iii).
Clearly, ﬁ(% —1) and ﬁ('\%’i — 1) are monotonously increasing

in n. Thus,
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( H(7> + i~ 1= -1
H(S) + 7(7 1) - (L - 1)
431 _ L, if12<n<14
RS o)=R(E) 2§ b V2 SHEIA by
)lmfﬁ l)"m(?ﬁ‘)
H(25) + 7z(55 - 1)
\+%_%_71§—71;§, if n > 29;
>0 for n > 11.
Hence the proof of Theorem 1(vi) is completed. n

And it is of particular interest to determine the ordering of trees with
respect to Randié index. An examination of all 12 trees of order 10 with
k = 7 pendant vertices up to isomorphism (see [14]), obtaining that the

tree T5 with the fifth minimum Randi¢ index in 7107 (see Fig. 4).

-k K oK
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e A

T1o n Tio

Fig. 4

Similarly, an examination of all trees of order 10 with k£ = 4, 5,6 pen-
dant vertices up to isomorphism (see [14]), finding that the structural prop-

erties of these trees with the fifth minimum Randié index differ significantly

(see Fig. 5).

N
a SN

n=10,k=4 n=10,k=5 n=10,k=6

A

n=10,k=7
Fig. 5
This implies it is a non-trivial task to characterize other elements of
this ordering. Particularly, in the case when k = n—3 and n > 11, searching
for graphically feasible combinations of n;, na and n3 pendant vertices
adjacent to only three non-pendant vertices of a tree T, respectively, where
n1 +nz +ns = k, there is the same story about the structural properties of
trees with the sixth minimum Randié index. In view of this, for k=n—3

and n > 11, we determine the fifth minimum Randié index.
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Theorem 2. Let T€Tpi. fk=n—3,n>11 and R(T) is the
fifth minimum Randié¢ index, then T2 KT, _; and

1 1 1 3
———”m(n+ﬁ—6)+%+§

Proof. Similar to the above proof of Lemma 3, we can verify R(FJ*)—

R(T) =

R(KZ%,_g) > 0, where FT* is the graph shown in Fig. 3, that is,

R(FT) - R(Ké‘ n-6)

R SEPANE S SR S 2

¢— f ERRAE R
1 3
-t 750 RS

1

= \/M—\/n———g+(\/ 5)(%—1)

L (L gy, 1,23
\/—f TV
Loy, Ll,23
n—4\/§ \/— V3 2

For 11 < n < 2630, by means of mathematical programming, one easily
calculates that R(FT') — R(KZ,_g) > 0.009, and for n > 2630, we also
have R(FT') — R(K%,_g) > 0. By the proof of Theorem 1(vi), we have
T € Trnes\(SFn_aUSEn_sU{KEn_sJU(FE, F'}) and R(T) 2 g (nt
75~ 6) + T}’s‘ + %, equality holds if and only if T = K7, _4. Hence it is
immediate that R(K%, _g) has the property of the fifth minimum Randié

index when k& = n — 3 by Theorem 1(vi). =
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