Vertex-magic total labeling of the union of suns

M. Tariq Rahim¹, Slamin²

School of Mathematical Sciences Government College University 68-B New Muslim Town, Lahore, Pakistan Tariqsms@gmail.com

Mathematics Education Study Program,
Universitas Jember,
JI.Kalimantan 37 Jember, Indonesia
slamin@unej.ac.id

Abstract. Let G be a graph with vertex-set V = V(G) and edge-set E = E(G) and let e = |E(G)| and v = |V(G)|. A one-to-one map λ from $V \cup E$ onto the integers $\{1, 2, ..., v + e\}$ is called *vertex-magic total labeling* if there is a constant k so that for every vertex x,

$$\lambda(x) + \sum \lambda(xy) = k$$

where the sum is over all edges xy, where y is adjacent to x. Let us call the sum of labels at vertex x the weight $w_{\lambda}(x)$ of the vertex under labeling λ ; we require $w_{\lambda}(x) = k$ for all x. The constant k is called the magic constant for λ .

A sun S_n is a cycle on n vertices C_n , for $n \geq 3$, with an edge terminating in a vertex of degree 1 attached to each vertex. In this paper, we present the vertex-magic total labeling of the union of suns, including the union of m non-isomorphic suns for any positive integer m > 3, proving the conjecture given in [6].

1 Introduction

In this paper all graphs are finite, simple and undirected. The graph G has vertex-set V(G) and edge-set E(G) and we let e = |E(G)| and v = |V(G)|. A general reference for graph-theoretic ideas is in [8].

MacDougall et al. [4] introduced the notion of a vertex-magic total labeling. This is an assignment of the integers from 1 to v + e to the vertices and edges of G so that at each vertex the vertex label and the labels on the edges incident at that vertex add to a constant. More formally, a one-to-one

map λ from $V \cup E$ onto the integers $\{1, 2, \dots, v + e\}$ is a vertex-magic total labeling if there is a constant k so that for every vertex x,

$$\lambda(x) + \sum \lambda(xy) = k$$

where the sum is over all edges xy, where y is adjacent to x. Let us call the sum of labels at vertex x the weight $\omega_{\lambda}(x)$ of the vertex x; we require $w_{\lambda}(x) = k$ for all x. The constant k is called the magic constant for λ .

If a regular graph G possesses a vertex-magic total labeling λ , we can create a new labeling λ' from λ by setting

$$\lambda'(x) = v + e + 1 - \lambda(x)$$

for every vertex x, and

$$\lambda'(xy) = v + e + 1 - \lambda(xy)$$

for every edge xy. Clearly the new labeling λ' is also a one-to-one map from the set $V \cup E$ to $\{1, 2, \dots, v + e\}$, and we call this new labeling as the dual of the previous labeling. If r is the degree of each vertex of G, then

$$k' = (r+1)(v+e+1) - k$$

is the new magic constant.

Since the introduction of this notion, there have been several results on vertex-magic total labeling of particular classes of graphs. For example, MacDougall et al. [4] proved that cycle C_n for $n \geq 3$, path P_n for $n \geq 3$, complete graph K_n for odd n and complete bipartite graph $K_{n,n}$ for n > 1, have vertex-magic total labeling. Baca, Miller and Slamin [1] proved that for $n \geq 3$, $1 \leq m \leq \lfloor \frac{n-1}{2} \rfloor$, every generalized Petersen graph P(n,m) has vertex-magic total labeling with magic constants k = 9n + 2, k = 10n + 2, and k = 11n + 2. A complete survey on the vertex-magic total labeling of graphs can be found in [2].

Most of the known results are concerning the vertex-magic total labeling of connected graphs. For the case of disconnected graphs, Wallis [7] proved the following theorem.

Theorem 1. Suppose G is a regular graph of degree r which has a vertex-magic total labeling.

- (i) If r is even, then nG has a vertex-magic total labeling when n is odd.
- (ii) If r is odd, then nG has a vertex-magic total labeling for every positive integer n.

The result above concerns the vertex-magic total labeling of disconnected graphs whose components are regular and isomorphic graphs. For the case of disconnected graphs whose components are not regular graphs, Gray et al. [3] proved that the n copies of the star on 3 vertices $nK_{1,2}$ has a vertex-magic total labeling. Slamin et al. [6] proved that for $t \geq 3$ and $n \geq 1$, the n copies of sun nS_t has a vertex-magic total labeling with the magic constant k = 6nt + 1. These two results are concerning on the vertex-magic total labeling of n copies of graphs where all components are isomorphic.

For the case of disconnected graphs whose components are not regular and are not isomorphic, Slamin *et al.* [6] posed a conjecture that there is a vertex-magic total labeling of the disjoint union of n non-isomorphic suns, for any positive integer $n \geq 3$.

In this paper we prove the conjecture as described in the following section.

2 Main Result

Before presenting the main result of this paper, we give the definition of sun as follows.

A sun S_n is a graph with a cycle C_n having an edge terminating in a vertex of degree 1 attached to each vertex of the cycle. The sun S_n consists of the vertex set $V(S_n) = \{v_i|1 \le i \le n\} \bigcup \{a_i|1 \le i \le n\}$ and edge set $E(S_n) = \{v_iv_{i+1}|1 \le i \le n\} \bigcup \{v_ia_i|1 \le i \le n\}$, where i+1 is taken modulo n.

Theorem 2. If $t_i \geq 3$ for every $i = 1, 2, \dots, n$ and $n \geq 1$ the n disjoint copies of suns $S_{t_1} \bigcup S_{t_2} \bigcup \cdots \bigcup S_{t_n}$ has a vertex-magic total labeling with magic constant $6 \sum_{k=1}^{n} t_k + 1$.

Proof. We label the vertices and edges of the graph in the following way:

$$\lambda(v_i^{t_j}) = 2\sum_{k=1}^{j-1} t_k + 2i \; \; ; \; i = 1, 2, \cdots t_j \; \; and \; \; j = 1, 2, \cdots, n$$

$$\lambda(a_i^{t_j}) = \begin{cases} 4 \sum_{k=1}^n t_k - 2 \sum_{k=1}^j t_k + 2 & \text{for } i = 1\\ 2 \sum_{k=1}^n t_k + 2 \sum_{k=j}^n t_k - 2(i-2) & \text{for } i = 2, 3, \dots, t_j \end{cases}$$

$$\lambda(v_i^{t_j}v_{i+1}^{t_j}) = \begin{cases} 2\sum\limits_{k=1}^n t_k - 2\sum\limits_{k=1}^j t_k + 1 & \text{for } i = t_j \\ 2\sum\limits_{k=1}^n t_k - 2\sum\limits_{k=1}^{j-1} t_k - 2i + 1 & \text{for } i = 1, 2, \cdots, t_j - 1 \end{cases}$$

$$\lambda(v_i^{t_j}a_i^{t_j}) = \begin{cases} 2\sum_{k=1}^n t_k + 2\sum_{k=1}^j t_k - 1 & \text{for } i = 1\\ 2\sum_{k=1}^n t_k + 2\sum_{k=1}^{j-1} t_k + 2i - 3 & \text{for } i = 2, 3, \dots, t_j \end{cases}$$

It is easy to verify that the labeling λ is a bijection from the set $V(S_{t_1} \cup S_{t_2} \cup \cdots \cup S_{t_n}) \cup E(S_{t_1} \cup S_{t_2} \cup \cdots \cup S_{t_n})$ onto the set $\{1, 2, \cdots, 4 \sum_{i=1}^{n} t_k\}$.

Let us denote the weights of the vertices $v_i^{t_j}$ of S_{t_i} under the labeling λ by

$$\omega_{\lambda}(v_{i}^{t_{j}}) = \lambda(v_{i}^{t_{j}}) + \lambda(v_{i}^{t_{j}}v_{i+1}^{t_{j}}) + \lambda(v_{i}^{t_{j}}a_{i}^{t_{j}}) + \lambda(v_{i-1}^{t_{j}}v_{i}^{t_{j}})$$

and the weights of the vertices $a_i^{t_j}$ by

$$\omega_{\lambda}(a_i^{t_j}) = \lambda(a_i^{t_j}) + \lambda(v_i^{t_j} a_i^{t_j})$$

Then for all $j = 1, 2, \dots, n$ and $i = 1, 2, \dots, t_j$ the weights of the vertices $v_i^{t_j}$ can be determined as follows:

$$\begin{split} &-\text{for }i=1\text{ we have}\\ &\omega_{\lambda}(v_{1}^{t_{j}})=\lambda(v_{1}^{t_{j}})+\lambda(v_{1}^{t_{j}}v_{2}^{t_{j}})+\lambda(v_{1}^{t_{j}}a_{1}^{t_{j}})+\lambda(v_{t_{j}}^{t_{j}}v_{1}^{t_{j}})\\ &=2\sum\limits_{k=1}^{j-1}t_{k}+2+2\sum\limits_{k=1}^{n}t_{k}-2\sum\limits_{k=1}^{j-1}t_{k}-2+1+2\sum\limits_{k=1}^{n}t_{k}+2\sum\limits_{k=1}^{j}t_{k}-1+\\ &2\sum\limits_{k=1}^{n}t_{k}-2\sum\limits_{k=1}^{j}t_{k}+1\\ &=6\sum\limits_{k=1}^{n}t_{k}+1; \end{split}$$

- for
$$i = 2, 3, ..., t_j - 1$$
 we have
$$\omega_{\lambda}(v_i^{t_j}) = \lambda(v_i^{t_j}) + \lambda(v_{i-1}^{t_j}v_i^{t_j}) + \lambda(v_i^{t_j}v_{i+1}^{t_j}) + \lambda(v_i^{t_j}a_i^{t_j})$$
$$= 2\sum_{k=1}^{j-1} t_k + 2i + 2\sum_{k=1}^{n} t_k - 2\sum_{k=1}^{j-1} t_k - 2i + 1 + 2\sum_{k=1}^{n} t_k - 2\sum_{k=1}^{j-1} t_k - 2(i - 1)$$

1) + 1 + 2
$$\sum_{k=1}^{n} t_k + 2 \sum_{k=1}^{j-1} t_k + 2i - 3$$

= 6 $\sum_{k=1}^{n} t_k + 1$;

- for $i = t_j$ we have

$$\omega_{\lambda}(v_{i}^{t_{j}}) = 2\sum_{k=1}^{j-1} t_{k} + 2t_{j} + 2\sum_{k=1}^{n} t_{k} - 2\sum_{k=1}^{j} t_{k} + 1 + 2\sum_{k=1}^{n} t_{k} - 2\sum_{k=1}^{j-1} t_{k} - 2\sum_{k=1}^{j} t_{k} + 1 + 2\sum_{k=1}^{n} t_{k} - 2\sum_{k=1}^{j-1} t_{k} - 2\sum_{k=1}^{j} t_{k} + 2t_{j} - 3$$

$$= 6\sum_{k=1}^{n} t_{k} + 1;$$

- for
$$i=1$$
 the weights of the vertices $a_1^{t_j}$ are given by $\omega_{\lambda}(a_1^{t_j}) = \lambda(a_1^{t_j}) + \lambda(v_1^{t_j}a_1^{t_j})$
 $= 4 \sum_{k=1}^n t_k - 2 \sum_{k=1}^j t_j + 2 + 2 \sum_{k=1}^n t_k + 2 \sum_{k=1}^j t_k - 1$
 $= 6 \sum_{k=1}^n t_k + 1;$

- for
$$i = 2, 3, \dots, t_j$$
 the weights of the vertices $a_i^{t_j}$ are given by $\omega_{\lambda}(a_i^{t_j}) = \lambda(a_i^{t_j}) + \lambda(v_i^{t_j}a_i^{t_j})$

$$= 2 \sum_{k=1}^n t_k + 2 \sum_{k=j}^n t_k - 2i + 4 + 2 \sum_{k=1}^n t_k + 2 \sum_{k=1}^{j-1} t_k + 2i - 3$$

$$= 6 \sum_{k=1}^n t_k + 1.$$

Example: In the following figure vertex-magic total labeling of $S_4 \cup S_5 \cup S_6$ is given with our formula.

Fig. 1. Vertex-magic total labeling of $S_4 \cup S_5 \cup S_6$ with magic constant k = 91

Acknowledgment: The authors are indebted to the anonymous referee for his/her valuable suggestions and remarks.

References

- M. Baca, M. Miller and Slamin, Vertex-magic total labeling of generalized Petersen graphs, Int. J. of computer mathematics, 79, Issue 12 (2002), 1259-1264.
- Joseph A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics., 5 (2005)#DS6.
- I.D. Gray, J. MacDougall, J.P. McSorley and W.D. Wallis, Vertex-magic labeling of trees and forests, Discrete Mathematics, 261 (2003), 285-298.
- 4. J. MacDougall, M. Miller, Slamin and W.D. Wallis, Vertex-magic total labelings, *Utilitas Math*, 61 (2002), 3-21.
- Slamin and M. Miller, On two conjectures concerning vertex- magic total labelings of generalized Petersen graphs, Bulletin of ICA, 32 (2001), 9-16.
- Slamin, A.C. Prihandoko, T.B. Setiawan, V. Rosita and B. Shaleh, Vertexmagic total labelings of disconnected graphs, *Journal of Prime Research in Mathematics*, to appear.
- 7. W.D. Wallis, Magic Graphs, Birkhäuser Boston, (2001).
- 8. D.B. West, An introduction to Graph Theory, Prentice-Hall (1996).