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Abstract

A spectrally arbitrary pattern A is a sign pattern of order n such
that every monic real polynomial of degree n can be achieved as the
characteristic polynomial of a matrix with sign pattern A. A sign
pattern A is minimally spectrally arbitrary if it is spectrally arbitrary
but is not spectrally arbitrary if any nonzero entry (or entries) of A is
replaced by zero. In this paper, we introduce some new sign patterns
which are minimally spectrally arbitrary for all orders n > 7.
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1 Introduction

A sign pattern matriz (or sign pattern) is a matrix whose entries come
from the set {+,—,0}. If A = [a;;] is a sign pattern of order n, the sign
pattern class (or qualitative class) of A, denoted by Q(A), is the set of all
real matrices B = [b;;] of order n with sign b;; = a;; for all i and j.

A sign pattern A = [a;;] is a superpatiern of a sign pattern A = [a;]
if @;; = a;; whenever a;; # 0. Similarly, A is a subpattern of A if Gi; =0
whenever a;; = 0. Note that each sign pattern is a superpattern and a
subpattern of itself. If A is a subpattern of A and A # A, then Ais a
proper subpattern of A.
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A nilpotent realization of a sign pattern A of order n is a real matrix
B € Q(A), all of whose eigenvalues are zero. If A has a nilpotent realization,
then we also say that A is potentially nilpotent (PN). A spectrally arbitrary
pattern (SAP) is a sign pattern A of order n such that every monic real
polynomial of degree n can be achieved as the characteristic polynomial
of some matrix B € Q(A). A sign pattern A is a minimally spectrally
arbitrary pattern (MSAP) if it is spectrally arbitrary but is not spectrally
arbitrary if any nonzero entry (or entries) of A is replaced by zero. Note
that each spectrally arbitrary sign pattern must be PN. For sign pattern A
of order n, A is sign nonsingular if every matrix B € Q(A) is nonsingular,
and A is sign singular if each matrix B € Q(A) is singular.

The question of the existence of a SAP arose in [1], where a general
method (based on the Implicit Function Theorem) was given to prove that
a sign pattern and all of its superpatterns are SAPs. The first SAP of
order n for each n > 2 was provided in {2]. Later, some papers [3, 4, 5]
introduce some sign patterns which are SAPs for all orders n > 2. In this
paper, we introduce some new sign patterns which are MSAPs for all orders
n > 7. This work is mainly motivated by the inertial and spectral problems
considered in [1] (see section 3 for more details) and, more generally, by
the inverse eigenvalue problem for matrices over the real field.

2 Some preliminaries

The following lemma describes the Nilpotent-Jacobian method (N-J
method) for proving that a sign pattern and all of its superpattern are
SAPs, which is stated as Observations 10 and 15 in [1] and is proved using
the Implicit Function Theorem. Our work will rely on it largely.

Lemma 2.1 ([1]) Let A be a sign pattern of order n, and suppose that
there erists some nilpotent realization B € Q(A) with at least n nonzero
entries, say b; j,,...,bi,j,. Let X be the matriz obtained by replacing these
entries in B by variables x1,...,z,. If the Jacobian of the coefficients of
the characteristic polynomial of X with respect to the variables x,,...,z,
is nonzero at (21,...,%n) = (biyj,,. .., binj.), then every superpattern of A
is spectrally arbitrary.
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In this paper, we shall study the sign patterns of order n > 7 defined as

[ - + 0 0 - v wov wer 0 77
b 0 T T |
B 0 0 + .
B3 : .+
A=| P @
Br—s 0 O | I S :
Br-a Pn—2 0 O 0 0 + :
0 Pnz 0 O 0 0 0 + O
0 0 - : 0 o +
' 0 0 0 0_

where the entries a,y,n € {+,—} and §; € {+,-} for i =1,2,...,n— 2.
We shall demonstrate three patterns of form (2.1) are MSAPs, and the
other sign patterns of form (2.1) are not SAPs. For convenience, suppose
that B = [b;;] € Q(A) has been scaled such that b3 = —1, bji41 =1
for i =1,2,...,n — 1 (otherwise they can be adjusted to be 1 by suitable
similarities), and has the following form.

[ —1 1 0 0 ¢ cer eev e 0 b
d; 0 1 1 S )
d2 0 0 1 :
d3 1
B=| i L ey

dn_5 0 o e see e O 1 : :

dp_g dno O 0 0 0 1 :
0 dpn-z 0 0 0 0 0 1 0
0 0 heh ene ese eee ees 0 a 1
c 0 har dee are ses  ene 0 0 0_

Lemma 2.2 Let fg()\) = det(Al — B). Then
(1) fB(A) = A"+ A+ foXm 2 oo fo 1A+ fn, where
fl =1l-a,
fo=—a—d; —bc,
fa=abc+ady —ds (If n="7, then f3 = abc+ ad; — d2 — ds),
fi =adi—2 _di—l; fori=4,5,...,n—5 (nZ 9):
fr-a =adn_6 —dn2 —dn—s (n > 8),
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Jo-3=—dno2+ady_ o2 —dn_3s—dsy+ad,_s,
Jn—2 =bedp—2 — dne3 + adn_3 + adn_2 + ad,—4,
fn-1=bedn_3 — abed, 3 + adp 3,
fn=—c—abcd,_3.

(2) For arbitrary given d;,

a(fl;f29f3a” X} n-l,fn)

— p2,3
a(a)bac)d2a""dn—2) =be #0
Proof (1)
A1 -1 0 o 0 -b
-dy A -1 0 0
—ds 0 A -1
—dn_4 —dn_z 0 0 A -1
0 —dp-3 0 0 0 A -1 0
0 0 e 0 A=a -1
—c 0 0 0 A

n

By adding A times of the ith row to the (i+1)th row, fori =1,2,...,n-3,
and expanding along the third column in order, we have

A+1 -1 0 —b
_| ™+ - 22:4 did" 3t —d, 3 —dn2X -1 —bA"®
o) = 0 ' 0 A-a -1
—c 0 0 A

= c[~1+ b(A — a)(dn-3 + dn—2)) — BA"3(A = @)] + A(A - a)[(A
+1)(=dn-3 — dn-2)) + lambda3(A + 1) - 75 d;Av=3)

= A"+ (1= a)A""! — (@ + be + dy)A"2 4 abeAn—3 — 375 g, An—1—
+a 3P A2~ —dp_p X+ (adn—2~dn_2—dn—3~dn—g+adn_5)A®
+(bedn—2 + adn_2 — dn—3 + adn_3 + adn—4) A% + (bed,—_3 — abedy, o
-I-adﬂ_s)A — ¢ — abed,—3.

So result (1) is right.
(2) For arbitrary given d;,

a(fl,f2:f37-'°1fn—1’fn) =
d(a,b,c,ds,...,dn-3)
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-1 0 0
-1 —c =b
be+ dy ac ab
ds 0 0
dn-7
dn—6 . .
dn_s+dn-2 0 0
dn—g+dn_3+dn_2 cdp-2 bd,—2
dn-3 — bedn 2 cdp—3 — acdn_a bdn—3 —abd,_2
—bcd"_g —acdn_s -1- a,bdn_3
0 v ot een -e O 0 0
0 . . .
-1
a -1
a -1 . : 0
a -1 0 0 -1
TR 0 a -1 -1 a-1
0 0 0 0 a a—-1 a+bc
0 0 0 0 0 bc+a -—abe
0 O 0 0 0 =—abe 0

By adding a times of the ith row to the (i+1)throw, fori=2,3,...,n—1,
and expanding along the first row, we have

—c =b 0 0
a(f11f2’f3"")fn—-1:fn) — Cdn—z bdn—2 -1 be _'b203
6(a, b, c, d2, ven ,dn_g) - Cdn_3 bdn..g be 0| :
0 -1 0 0

Thus result (2) follows. O

Lemma 2.3 ([3]) For n > 2, an irreducible spectrally arbitrary sign pat-
tern of order n has at least 2n — 1 nonzero entries.

Lemma 2.4 Let A be a sign pattern of order n > 7 having the form (2.1).
If A is a SAP, then A is a MSAP.

Proof Suppose T = [t;;] is a subpattern of A, and T is a SAP. Then
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(1) ta—1,n—1 # 0. Otherwise, the trace of T is negative.

(2) tn,1 #0and t;;41 # 0 fori = 2,3,...,n—3. Otherwise, sign pattern
T is sign singular.

() tin # 0, thz2 # 0, t12 # 0, thgn-1 # 0, and t,_1, # 0.
Otherwise, sign pattern T is sign nonsingular or sign singular.

(4) Since T is a SAP, there exists a real matrix B € Q(T) which is
nilpotent. Suppose B has the form (2.2). Thenfrom fy = fo=...= f, =0
as in Lemma 2.2, we can conclude that

a=1,

be = —d1 - 1,

di=-1,fori=2,3,...,n—86,

faca=-1—dy.5~dn_2=0,

Sz =dn-5s—dn_g—dn_3=0,

fn—2 =dp-q— didp—2 = 0,

fn—l =dydn_o + dp2 —didn_3 = 0,
n=—c—bed,_3=0.

(4a) d; #0, for i = 2,3,...,n — 6, since d; = —1.

(4b) dy # 0. Otherwise, fn—2 =dp—q =0 and fo_; =dp_2 = 0, and so
dn_4 =0 and d,_2 = 0. Then the number of nonzero entries of T is less
than 2n — 1, and we know T is not a SAP by Lemma 2.3.

(4¢) dy—q # 0. Otherwise, fn—2 = —d1dp—2 =0, and dp_s =0 by Case
(4b). Then fn~1 = —d1d,—3 = 0, which is contrary to tn-2,2 # 0 in Case
3, or d; # 0 in Case (4b).

(4d) dn—3 # 0. Otherwise, fn—1 = —didp-3 = 0, which is contrary to
tn-2,2 # 0 in Case 3, or d; # 0 in Case (4b).

(4e) dp—s # 0. Otherwise, fn—g = =1 —d,_» =0, and so d,_p = —1.
Then from f;-2 = dp—4 —didn_2 =0, we have d,_4 = —d;. From fn_3 =
—dn—4—dn_3 =0, we havedn,_3 = dy. So fn_; = didn—g+dy_3—did,_3 =
—(d? +dy +1) =0, and which contradicts the fact that d is real.

Thus, there are no proper subpatterns of A which are SAPs. O
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3 Main results

Let A;, A2 and A3 be sign patterns of order n (n > 7) as follows.

...0+0
S+ 4o

+oo00

co :

f r 1 + o
| © r @ +0 + 0O 0 O
o
=3 S t+o o S+ +o
+oo0co0 +o0c 0
oo oo
+ (=] + (==}
oo + oo oo + (==
oo
o 4+ © (=N =] o+ o oo
o +
+o0o © ++oo0 +o o© + | oo
[ | | oo | [ | | oo | te
L — 1 _+
It 1 L
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Then A; (¢ = 1,2,3) has the form (2.1). We shall show that sign patterns
Aj, Az and Az are MSAPs, and the other sign patterns of form (2.1) are
not SAPs.

Lemma 3.1 Let sign pattern A of order n > 7 have form (2.1). Then A
is potentially nilpotent if and only if A is one of the sign patierns A, As
and As.

Proof Necessity. Suppose sign pattern A of form (2.1) is potentially
nilpotent. Then there exists a real matrix B € Q(A) which is nilpotent. We
may suppose that B has the form (2.2). From fy = fo=--- = f, =0 asin
Lemma 2.2, since there are n equations and n+1 unknowns, we can express
the other n unknowns by d;. So we can conclude that a =1 > 0, d; =
. 0 ifd; >0
-1<0fori=2,3,...,mn—6,dp—5 = —E%_Lﬁg{ ;0 ifdi <0’ dn3=
<0 ifdy >-1 d? ditdi41

‘ﬁ{ >0 ifd <1 %=t = ~@rr <O duos = —TEHEGE <
0,c=-1<0, andb=d1+1{ zg ﬁiz_}
a,b,c,dy,...,dn_o corresponding to dj < —1, —1 < d; < 0 and d; > 0, we
know that A must be one of the sign patterns A;, A and As.

Sufficiency. Let B € Q(A) have form (2.2). If (a,b,¢,dy,ds,...,dn—2) =
(1,-1,-1,-2,ds,...,dn—¢,-3,-4,1,2) withd; = -1fori = 2,...,n -6,
then B € Q(A,) is nilpotent. If (a,b,¢,dy,dy,...,dn-2) = (1,1/2,-1,-1/2,
da,...,dn_6,—3,-1,-2,2) with d; = -1 for i = 2,...,n — 6, then B €
Q(A2) is nilpotent. If (a,b,¢,d1,ds,...,dn2) = (1,2,-1,1,ds,...,dn_s,
—-3/4,-1/4,-1/2,-1/4) with d; = —1fori =2,...,n—6, then B € Q(A3)
is nilpotent. O

. From the signs of

Lemma 3.2 Sign patterns A;, A2 and A3 are MSAPs, and every super-
pattern of them is a SAP.

Proof By Lemmas 2.2(2), 2.1 and 2.4, the result is clear. O

Combining Lemmas 3.1 and 3.2, we have the following.

Theorem 3.3 Let sign pattern A of order n > 7 have form (2.1). Then
A is a SAP if and only if A is one of the sign patterns A;, A2 and As.
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