A class of minimally spectrally arbitrary sign patterns*

Xi Li, Yanling Shao, Yubin Gao Department of Mathematics, North University of China Taiyuan, Shanxi 030051, P.R. China

Abstract

A spectrally arbitrary pattern A is a sign pattern of order n such that every monic real polynomial of degree n can be achieved as the characteristic polynomial of a matrix with sign pattern A. A sign pattern A is minimally spectrally arbitrary if it is spectrally arbitrary but is not spectrally arbitrary if any nonzero entry (or entries) of A is replaced by zero. In this paper, we introduce some new sign patterns which are minimally spectrally arbitrary for all orders $n \geq 7$.

AMS classification: 15A18, 05C50 Keywords: Sign pattern; Potentially nilpotent; Spectrally arbitrary pattern.

1 Introduction

A sign pattern matrix (or sign pattern) is a matrix whose entries come from the set $\{+, -, 0\}$. If $A = [a_{ij}]$ is a sign pattern of order n, the sign pattern class (or qualitative class) of A, denoted by Q(A), is the set of all real matrices $B = [b_{ij}]$ of order n with sign $b_{ij} = a_{ij}$ for all i and j.

A sign pattern $\check{A} = [\check{a}_{ij}]$ is a superpattern of a sign pattern $A = [a_{ij}]$ if $\check{a}_{ij} = a_{ij}$ whenever $a_{ij} \neq 0$. Similarly, \check{A} is a subpattern of A if $\check{a}_{ij} = 0$ whenever $a_{ij} = 0$. Note that each sign pattern is a superpattern and a subpattern of itself. If \check{A} is a subpattern of A and $\check{A} \neq A$, then \check{A} is a proper subpattern of A.

^{*}Research supported by NNSF of China (No. 10571163) and NSF of Shanxi (No. 20041010)

[†]Corresponding author. E-mail addresses: ylshao@nuc.edu.cn (Y. Shao), xixi-20020@163.com (X. Li), ybgao@nuc.edu.cn (Y. Gao).

A nilpotent realization of a sign pattern A of order n is a real matrix $B \in Q(A)$, all of whose eigenvalues are zero. If A has a nilpotent realization, then we also say that A is potentially nilpotent (PN). A spectrally arbitrary pattern (SAP) is a sign pattern A of order n such that every monic real polynomial of degree n can be achieved as the characteristic polynomial of some matrix $B \in Q(A)$. A sign pattern A is a minimally spectrally arbitrary pattern (MSAP) if it is spectrally arbitrary but is not spectrally arbitrary if any nonzero entry (or entries) of A is replaced by zero. Note that each spectrally arbitrary sign pattern must be PN. For sign pattern A of order n, A is sign nonsingular if every matrix $B \in Q(A)$ is nonsingular, and A is sign singular if each matrix $B \in Q(A)$ is singular.

The question of the existence of a SAP arose in [1], where a general method (based on the Implicit Function Theorem) was given to prove that a sign pattern and all of its superpatterns are SAPs. The first SAP of order n for each $n \geq 2$ was provided in [2]. Later, some papers [3, 4, 5] introduce some sign patterns which are SAPs for all orders $n \geq 2$. In this paper, we introduce some new sign patterns which are MSAPs for all orders $n \geq 7$. This work is mainly motivated by the inertial and spectral problems considered in [1] (see section 3 for more details) and, more generally, by the inverse eigenvalue problem for matrices over the real field.

2 Some preliminaries

The following lemma describes the Nilpotent-Jacobian method (N-J method) for proving that a sign pattern and all of its superpattern are SAPs, which is stated as Observations 10 and 15 in [1] and is proved using the Implicit Function Theorem. Our work will rely on it largely.

Lemma 2.1 ([1]) Let A be a sign pattern of order n, and suppose that there exists some nilpotent realization $B \in Q(A)$ with at least n nonzero entries, say $b_{i_1j_1}, \ldots, b_{i_nj_n}$. Let X be the matrix obtained by replacing these entries in B by variables x_1, \ldots, x_n . If the Jacobian of the coefficients of the characteristic polynomial of X with respect to the variables x_1, \ldots, x_n is nonzero at $(x_1, \ldots, x_n) = (b_{i_1j_1}, \ldots, b_{i_nj_n})$, then every superpattern of A is spectrally arbitrary.

In this paper, we shall study the sign patterns of order $n \geq 7$ defined as

$$A = \begin{bmatrix} - & + & 0 & 0 & \cdots & \cdots & \cdots & 0 & \eta \\ \beta_1 & 0 & + & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\ \beta_2 & 0 & 0 & + & \ddots & & & \vdots \\ \beta_3 & \vdots & & \ddots & + & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & \ddots & \ddots & & \vdots \\ \beta_{n-5} & 0 & \cdots & \cdots & 0 & 0 & + & \ddots & \vdots \\ \beta_{n-4} & \beta_{n-2} & 0 & 0 & \cdots & 0 & 0 & + & \ddots & \vdots \\ 0 & \beta_{n-3} & 0 & 0 & \cdots & 0 & 0 & 0 & + & 0 \\ 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & \alpha & + \\ \gamma & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 0 \end{bmatrix}, (2.1)$$

where the entries $\alpha, \gamma, \eta \in \{+, -\}$ and $\beta_i \in \{+, -\}$ for $i = 1, 2, \ldots, n-2$. We shall demonstrate three patterns of form (2.1) are MSAPs, and the other sign patterns of form (2.1) are not SAPs. For convenience, suppose that $B = [b_{ij}] \in Q(A)$ has been scaled such that $b_{11} = -1$, $b_{i,i+1} = 1$ for $i = 1, 2, \ldots, n-1$ (otherwise they can be adjusted to be 1 by suitable similarities), and has the following form.

Lemma 2.2 Let
$$f_B(\lambda) = \det(\lambda I - B)$$
. Then

(1) $f_B(\lambda) = \lambda^n + f_1 \lambda^{n-1} + f_2 \lambda^{n-2} + \dots + f_{n-1} \lambda + f_n$, where

 $f_1 = 1 - a$,

 $f_2 = -a - d_1 - bc$,

 $f_3 = abc + ad_1 - d_2$ (If $n = 7$, then $f_3 = abc + ad_1 - d_2 - d_5$),

 $f_i = ad_{i-2} - d_{i-1}$, for $i = 4, 5, \dots, n-5$ $(n \ge 9)$,

 $f_{n-4} = ad_{n-6} - d_{n-2} - d_{n-5}$ $(n \ge 8)$,

$$f_{n-3} = -d_{n-2} + ad_{n-2} - d_{n-3} - d_{n-4} + ad_{n-5},$$

$$f_{n-2} = bcd_{n-2} - d_{n-3} + ad_{n-3} + ad_{n-2} + ad_{n-4},$$

$$f_{n-1} = bcd_{n-3} - abcd_{n-2} + ad_{n-3},$$

$$f_n = -c - abcd_{n-3}.$$

(2) For arbitrary given d_1 ,

$$\frac{\partial(f_1, f_2, f_3, \dots, f_{n-1}, f_n)}{\partial(a, b, c, d_2, \dots, d_{n-2})} = b^2 c^3 \neq 0.$$

Proof (1)

$$f_B(\lambda) = \begin{vmatrix} \lambda + 1 & -1 & 0 & 0 & \cdots & \cdots & 0 & -b \\ -d_1 & \lambda & -1 & 0 & \cdots & \cdots & \cdots & 0 \\ -d_2 & 0 & \lambda & -1 & \ddots & & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & & \vdots \\ -d_{n-5} & 0 & \cdots & 0 & \lambda & -1 & \ddots & \vdots \\ -d_{n-4} & -d_{n-2} & 0 & \cdots & 0 & \lambda & -1 & \ddots & \vdots \\ 0 & -d_{n-3} & 0 & \cdots & 0 & 0 & \lambda & -1 & 0 \\ 0 & 0 & \cdots & \cdots & \cdots & 0 & \lambda -a & -1 \\ -c & 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & \lambda \end{vmatrix}_n$$

By adding λ times of the *i*th row to the (i+1)th row, for $i=1,2,\ldots,n-3$, and expanding along the third column in order, we have

$$f_B(\lambda) = \begin{vmatrix} \lambda + 1 & -1 & 0 & -b \\ \lambda^{n-3}(\lambda+1) - \sum_{i=1}^{n-4} d_i \lambda^{n-3-i} & -d_{n-3} - d_{n-2}\lambda & -1 & -b\lambda^{n-3} \\ 0 & 0 & \lambda - a & -1 \\ -c & 0 & 0 & \lambda \end{vmatrix}$$

$$\begin{split} &= c[-1 + b(\lambda - a)(d_{n-3} + d_{n-2}\lambda) - b\lambda^{n-3}(\lambda - a)] + \lambda(\lambda - a)[(\lambda + 1)(-d_{n-3} - d_{n-2}\lambda) + lambda^{n-3}(\lambda + 1) - \sum_{i=1}^{n-4} d_i\lambda^{n-3-i}] \\ &= \lambda^n + (1-a)\lambda^{n-1} - (a+bc+d_1)\lambda^{n-2} + abc\lambda^{n-3} - \sum_{i=2}^{n-5} d_i\lambda^{n-1-i} \\ &+ a\sum_{i=1}^{n-6} d_i\lambda^{n-2-i} - d_{n-2}\lambda^4 + (ad_{n-2} - d_{n-2} - d_{n-3} - d_{n-4} + ad_{n-5})\lambda^3 \\ &+ (bcd_{n-2} + ad_{n-2} - d_{n-3} + ad_{n-3} + ad_{n-4})\lambda^2 + (bcd_{n-3} - abcd_{n-2} + ad_{n-3})\lambda - c - abcd_{n-3}. \end{split}$$

So result (1) is right.

(2) For arbitrary given d_1 ,

$$\frac{\partial(f_1, f_2, f_3, \dots, f_{n-1}, f_n)}{\partial(a, b, c, d_2, \dots, d_{n-2})} =$$

$$\begin{vmatrix} -1 & 0 & 0 & 0 \\ -1 & -c & -b \\ bc + d_1 & ac & ab \\ d_2 & 0 & 0 \\ \vdots & \vdots & \vdots \\ d_{n-7} & \vdots & \vdots \\ d_{n-6} & \vdots & \vdots \\ d_{n-5} + d_{n-2} & 0 & 0 \\ d_{n-4} + d_{n-3} + d_{n-2} & cd_{n-2} & bd_{n-2} \\ d_{n-3} - bcd_{n-2} & cd_{n-3} - acd_{n-2} & bd_{n-3} - abd_{n-2} \\ -bcd_{n-3} & -acd_{n-3} & -1 - abd_{n-3} \\ 0 & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & -1 & \ddots & \vdots & \vdots \\ a & -1 &$$

By adding a times of the *i*th row to the (i+1)th row, for $i=2,3,\ldots,n-1$, and expanding along the first row, we have

$$\frac{\partial(f_1, f_2, f_3, \dots, f_{n-1}, f_n)}{\partial(a, b, c, d_2, \dots, d_{n-2})} = - \begin{vmatrix} -c & -b & 0 & 0 \\ cd_{n-2} & bd_{n-2} & -1 & bc \\ cd_{n-3} & bd_{n-3} & bc & 0 \\ 0 & -1 & 0 & 0 \end{vmatrix} = b^2c^3.$$

Thus result (2) follows. □

Lemma 2.3 ([3]) For $n \geq 2$, an irreducible spectrally arbitrary sign pattern of order n has at least 2n-1 nonzero entries.

Lemma 2.4 Let A be a sign pattern of order $n \ge 7$ having the form (2.1). If A is a SAP, then A is a MSAP.

Proof Suppose $T = [t_{ij}]$ is a subpattern of A, and T is a SAP. Then

- (1) $t_{n-1,n-1} \neq 0$. Otherwise, the trace of T is negative.
- (2) $t_{n,1} \neq 0$ and $t_{i,i+1} \neq 0$ for i = 2, 3, ..., n-3. Otherwise, sign pattern T is sign singular.
- (3) $t_{1,n} \neq 0$, $t_{n-2,2} \neq 0$, $t_{1,2} \neq 0$, $t_{n-2,n-1} \neq 0$, and $t_{n-1,n} \neq 0$. Otherwise, sign pattern T is sign nonsingular or sign singular.
- (4) Since T is a SAP, there exists a real matrix $B \in Q(T)$ which is nilpotent. Suppose B has the form (2.2). Then from $f_1 = f_2 = \ldots = f_n = 0$ as in Lemma 2.2, we can conclude that

$$a = 1,$$

$$bc = -d_1 - 1,$$

$$d_i = -1, \text{ for } i = 2, 3, \dots, n - 6,$$

$$f_{n-4} = -1 - d_{n-5} - d_{n-2} = 0,$$

$$f_{n-3} = d_{n-5} - d_{n-4} - d_{n-3} = 0,$$

$$f_{n-2} = d_{n-4} - d_1 d_{n-2} = 0,$$

$$f_{n-1} = d_1 d_{n-2} + d_{n-2} - d_1 d_{n-3} = 0,$$

$$f_n = -c - bc d_{n-3} = 0.$$

- (4a) $d_i \neq 0$, for i = 2, 3, ..., n 6, since $d_i = -1$.
- (4b) $d_1 \neq 0$. Otherwise, $f_{n-2} = d_{n-4} = 0$ and $f_{n-1} = d_{n-2} = 0$, and so $d_{n-4} = 0$ and $d_{n-2} = 0$. Then the number of nonzero entries of T is less than 2n-1, and we know T is not a SAP by Lemma 2.3.
- (4c) $d_{n-4} \neq 0$. Otherwise, $f_{n-2} = -d_1 d_{n-2} = 0$, and $d_{n-2} = 0$ by Case (4b). Then $f_{n-1} = -d_1 d_{n-3} = 0$, which is contrary to $t_{n-2,2} \neq 0$ in Case 3, or $d_1 \neq 0$ in Case (4b).
- (4d) $d_{n-2} \neq 0$. Otherwise, $f_{n-1} = -d_1d_{n-3} = 0$, which is contrary to $t_{n-2,2} \neq 0$ in Case 3, or $d_1 \neq 0$ in Case (4b).
- (4e) $d_{n-5} \neq 0$. Otherwise, $f_{n-4} = -1 d_{n-2} = 0$, and so $d_{n-2} = -1$. Then from $f_{n-2} = d_{n-4} d_1 d_{n-2} = 0$, we have $d_{n-4} = -d_1$. From $f_{n-3} = -d_{n-4} d_{n-3} = 0$, we have $d_{n-3} = d_1$. So $f_{n-1} = d_1 d_{n-2} + d_{n-2} d_1 d_{n-3} = -(d_1^2 + d_1 + 1) = 0$, and which contradicts the fact that d_1 is real.

Thus, there are no proper subpatterns of A which are SAPs. \square

3 Main results

Let A_1 , A_2 and A_3 be sign patterns of order $n \ (n \geq 7)$ as follows.

Then A_i (i = 1, 2, 3) has the form (2.1). We shall show that sign patterns A_1 , A_2 and A_3 are MSAPs, and the other sign patterns of form (2.1) are not SAPs.

Lemma 3.1 Let sign pattern A of order $n \geq 7$ have form (2.1). Then A is potentially nilpotent if and only if A is one of the sign patterns A_1 , A_2 and A3.

Proof Necessity. Suppose sign pattern A of form (2.1) is potentially nilpotent. Then there exists a real matrix $B \in Q(A)$ which is nilpotent. We may suppose that B has the form (2.2). From $f_1 = f_2 = \cdots = f_n = 0$ as in Lemma 2.2, since there are n equations and n+1 unknowns, we can express the other n unknowns by d_1 . So we can conclude that a=1>0, $d_i=-1<0$ for $i=2,3,\ldots,n-6$, $d_{n-2}=-\frac{d_1}{(d_1+1)^2} \begin{cases} <0 & \text{if } d_1>0\\ >0 & \text{if } d_1<0 \end{cases}$, $d_{n-3}=-\frac{1}{d_1+1} \begin{cases} <0 & \text{if } d_1>-1\\ >0 & \text{if } d_1<-1 \end{cases}$, $d_{n-4}=-\frac{d_1^2}{(d_1+1)^2}<0$, $d_{n-5}=-\frac{d_1^2+d_1+1}{(d_1+1)^2}<0$, $d_{n-5}=-\frac{d_1^2$

 $a, b, c, d_2, \ldots, d_{n-2}$ corresponding to $d_1 < -1, -1 < d_1 < 0$ and $d_1 > 0$, we know that A must be one of the sign patterns A_1 , A_2 and A_3 .

Sufficiency. Let $B \in Q(A)$ have form (2.2). If $(a, b, c, d_1, d_2, \dots, d_{n-2}) =$ $(1,-1,-1,-2,d_2,\ldots,d_{n-6},-3,-4,1,2)$ with $d_i=-1$ for $i=2,\ldots,n-6$, then $B \in Q(A_1)$ is nilpotent. If $(a, b, c, d_1, d_2, \dots, d_{n-2}) = (1, 1/2, -1, -1/2,$ $d_2, \ldots, d_{n-6}, -3, -1, -2, 2$) with $d_i = -1$ for $i = 2, \ldots, n-6$, then $B \in$ $Q(A_2)$ is nilpotent. If $(a, b, c, d_1, d_2, \dots, d_{n-2}) = (1, 2, -1, 1, d_2, \dots, d_{n-6}, d_n)$ -3/4, -1/4, -1/2, -1/4) with $d_i = -1$ for i = 2, ..., n-6, then $B \in Q(A_3)$ is nilpotent.

Lemma 3.2 Sign patterns A_1 , A_2 and A_3 are MSAPs, and every superpattern of them is a SAP.

Proof By Lemmas 2.2(2), 2.1 and 2.4, the result is clear.

Combining Lemmas 3.1 and 3.2, we have the following.

Theorem 3.3 Let sign pattern A of order $n \geq 7$ have form (2.1). Then A is a SAP if and only if A is one of the sign patterns A_1 , A_2 and A_3 .

Acknowledgements

The authors would like to thank the referee for many valuable suggestions on an earlier version of this paper.

References

- J.H. Drew, C.R. Johnson, D.D. Olesky, and P. van den Driessche, Spectrally arbitrary patterns, *Linear Algebra Appl.*, 308(2000), 121– 137.
- [2] J.J. McDonald, D.D. Olesky, M.J. Tsatsomeros, and P. van den Driessche, On the spectra of striped sign patterns, *Linear Multilinear Algebra*, 51:1(2003), 39-48.
- [3] M.S. Cavers, and K.N. Vander Meulen, Spectrally and inertially arbitrary sign patterns, *Linear Algebra Appl.*, 394(2005), 53–72.
- [4] T. Britz, J.J. McDonald, D.D. Olesky, and P. van den Driessche, Minimal spectrally arbitrary sign patterns, SIAM J. Matrix Anal. Appl., 26:1(2004), 257-271.
- [5] M.S. Cavers, I.-J. Kim, B.L. Shader, and K.N. Vander Meulen, On determining minimal spectrally arbitrary patterns, *Elec. J. Linear Algebra*, 13(2005), 240-248.