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ABSTRACT

This paper introduces the concepts of forcing m-convexity number and
forcing clique number of a graph. We show that the forcing m-convexity
numbers of some cartesian product and composition of graphs are related
to the forcing clique numbers of the graphs. We also show that the forcing
m-convexity number of the composition G[K,), where G is a connected
graph with no extreme vertex, is equal to the forcing m-convexity number
of G.
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1 Introduction

Given a connected graph G and two vertices z and v in V(G), any chordless
path connecting « and v is called a u-v m-path (monophonic or induced
path). The set Jg[u,v] denotes the closed interval consisting of u, v and
all vertices lying on some u-v m-path in G. For a set S of vertices of G,
the m-closure of S is the set Jg[S] = UuvesJc[u,v]. A subset C of V(G)
is m-convex if Jg[u,v] C C for every pair of vertices u,v € C. The m-
convexity number con,(G) of G is the maximum cardinality among the
proper m-convex sets of G. An m-convex set S of G with |S| = conm(G)
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is called a maximum m-convex set. A subset T' of a maximum m-convex
set S of G is called an m-forcing subset of S if S is the unique maximum
m-convex set containing T'. The m-forcing convexity number fconm,(S) of
a maximum m-convex set S of G is the minimum cardinality among the
m-forcing subsets of S. The m-forcing convexity number of G is given by

feon,(G) = min{ fcon,(S) : S is a maximum m-convex set of G}.

The following remarks are easy.

Remark 1.1 Let G be a connected graph. If S is a mazimum m-convez
set in G, then S is a forcing m-subset for itself. In particular, fcon,(G) <
con, (G).

Remark 1.2 Let G be a connected graph. If G has a unique maximum
m-convez set S, then the empty set () is an m-forcing subset for S. In this
case, feon,(G) =0.

The next results are easy. These are the analogues of the ones obtained
by Chartrand and Zhang in [1].

Theorem 1.3 Let G be a connected graph. Then fcon,(G) = 0 if and only
if G has a unique mazimum m-convez set S. Moreover, fecon,(G) > 1 if
and only if G does not have a unique mazimum m-convez set and if there
erists a vertex in G that is contained in a unique mazximum m-conver set.

Definition 1.4 Let K, be a mazimum cliqgue (complete subgraph) of a
graph G. A set S C V(K,) is a forcing c-subset for K, if K, is the only
mazimum cliqgue of G containing S. The forcing clique number of K, is
given by

fen(K,) = min {|S] : S is a forcing c-subset for K,}.
The forcing cligue number of G is given by
fen(G) = min {fen(K,) : K, is a mazimum cligue of G}.

Remark 1.5 Let G be a graph. Then fcn(G) = 0 if and only if G has a
unique mazimum clique.

Remark 1.6 Let G be a graph. If the mazimum m-convez sets of G are
cliques, then fecong(K,) = fen(K,) for every mazimum clique K, of G;
hence, fecon,(G) = fen(G).
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2 Forcing m-Convexity Number of the Carte-
sian Product G x H

Let C C V(G) x V(H). The G-projection and H-projection of C are,
respectively, the sets

Co = {u € V(G) : (u,v) € C for some v € V(H)}

and
Cy = {v e V(H): (u,v) € C for some u € V(G)}.

Our first result in this section characterizes the cliques in the cartesian
product of graphs. Here, w(G) denotes the clique number of G (the order
of a maximum clique or complete subgraph of G).

Theorem 2.1 Let G and H be connected graphs. A subset C of V(G x H)
induces a complete graph (clique) in G x H if and only if C = S x {b} or
C = {a} x R, where a € V(G), b€ V(H), and (S) and (R) are cliques in
G and H, respectively. In particular, w(G x H) = maz {w(G),w(H)}.

Proof. Suppose (C) is complete and let p = (z,y) and ¢ = (a,b) be
elements of C. Then either za € E(G) and y = b or z = o and yb € E(H).
Suppose za € F(G) and y = b. Pick any r = (2,w) € C different from p
and g (if such element exists). Suppose w # y. Since pr € E(G x H), it
follows that = = 2 and wy € E(H). Also, since gr € E(G x H) and w # b,
a = z and wb € E(H). This implies that a = z, contrary to our assumption
that xa € E(G). Therefore, w = y = b. Hence, by the adjacency in G x H,
we have zw,aw € E(G). This implies that C = § x {b}, where (5) is a
clique of G.

If we assume that z = a and yb € E(H), then a similar argument can
be used to show that C = {a} x R, where (R) is a clique of H.

The converse is obvious. a

The next result is due to Paluga and Canoy.

Theorem 2.2 (3] Let G and H be connected noncomplete graphs. Then a
proper subset C of V(G x H) is m-convex in Gx H if and only if C = Sx R,
where S C V(G), R C V(H), and one of {(S) and (R) is complete and the
other is K.

By Theorem 2.1, the following remark is immediate.

Remark 2.3 Let G and H be connected graphs. Then a proper subset C of
V(G x H) is m-convez in G x H if and only if (C) is complete.
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The next result gives the forcing m-convexity number of the cartesian
product of two connected non-complete graphs.

Theorem 2.4 Let G and H be connected non-complete graphs with
w(G) # w(H). Then

fen(G), i w(G)>w(H)

feonm(G x H) = {
fen(H), if w(H)>w(G).

Proof. Suppose w(G) > w(H) and C is a maximum m-convex set of
G x H with feon,(Gx H) = feon,(C). Then (C) is complete by Theorem
2.2; hence fconm(G x H) = feonm(C) = fen({C)). Also, C = S x {b},
where (S) is a maximum clique in G and b € V(H), by Theorem 2.2.
Now, let R be a forcing c-subset of (C) such that fcon,(C) = |R|. Then
Rg = {z € S:(z,b) € R} is a forcing c-subset of (S). It follows that

feonn (G x H) = |R| = |Rg| 2 fen((S)) 2 fen(G).

Next, let (S’) be a maximum clique of G and P a forcing c-subset of
(8’) such that fen(G) = fen((S’)) = |P|. Then C’' = S’ x {b} induces a
maximum clique of G x H by Theorem 2.1. Thus, C’ is a maximum m-
comvex set of G x H by Theorem 2.2. Moreover, @ = P x {b} is a forcing
c-subset of C’. Consequently, fcon,(G x H) < feonn(C') < |Q| =|P| =

fer(G).
Therefore, feon, (G x H) = fen(G). Using a similar argument we can
show that fconm (G x H) = fen(H) if w(H) > w(G). 0

Theorem 2.5 Let G and H be connected noncomplete graphs with
w(G) = w(H). Then feon,(G x H) = 1 if and only if one of the fol-
lowing conditions hold:

(a) There exists x € V(G) that is not in any maezimum cliqgue of G and
fen(H) < 1.

(b) There exists y € V(H) that is not in any mazimum clique of H and
fen(G) < 1.

Proof. Suppose fcon,(G x H) = 1. Let C be a maximum m-convex
set with feon,(G x H) = feon,(C) = fen({(C)) = 1. Then there exists
(z,y) € C that is not in any other maximum clique of G x H. By Theorem
2.2,C = {z} x Ror C = S x {y}, where (R) and (S) are maximum cliques
of H and G, respectively. If C = {z} x R, then y € R. Since {(z,y)}, is a
forcing c-subset of C, {y} is a forcing c-subset of (R). Hence, fen((R)) =1
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or fen({(R)) = 0. This implies that fconn(H) < 1. Suppose now that
z € 8 for some maximum clique {S’) of G. Then (z,y) € 8’ x {y},
contrary to our assumption that C is the only maximum m-convex set
containing (z,y). It follows that z is not in any maximum clique of G.
Therefore, condition (a) holds. A similar argument will show that (b) holds
ifC=58x{y}

Conversely, suppose that condition (a) holds. Let (R) be a maximum
clique of H such that fen(H) = fen({R)}). Since fen(H) =0 or fen(H) =
1, it follows that there exists y € R such that y is not in any other maximum
clique of H. Hence, C = {z} x R is the only maximum clique of G x H
containing (z,y). It follows that fen({C)) = 1. Therefore, fcon,(GxH) =
1, by Remark 2.3. Similarly, the assumption that condition (b) holds will
yield the same conclusion. O

3 Forcing m-Convexity Number of the Com-
position of Graphs

Recall that a vertex v of G is an extreme vertez if the set Ng(v) (consisting
of the neighbors of v or vertices of G adjacent to v) induces a complete
subgraph of G. Throughout this section, Ext(G) denotes the set of extreme
vertices of G.

To achieve one of our goals in this section, we need the following result.

Lemma 3.1 Let G be a connected graph and a € V(G). Then (Ng(a)) is
complete if and only if (Ng(k,|((a,%))) is complete for every z € V(K,)

Proof. The assertion is clear for |[V(G)| < 2 and n < 2. So assume that
[V(G)| = 3 and n > 3. Suppose (Ng(a)) is complete in G and let =z €
V(Kn). Let (b,y),(c,2) € (Ngix,j((a,2))). Then (a,2)(b,y), (a,z)(c, 2) €
E(G[Ky)). Hence, by definition, ab € E(G) or @ = b and ac € E(G) or
a =c. Now, ifa = bor a = c, then d(b,c) < d(b,a) +d(a,c) < 1, i.e., either
d(b,c) = 0 or d(b,c) = 1. In either case, (b,y) and (¢, z) are adjacent in
G[K,)- On the other hand, if ab,ac € E(G) (b # c), the completeness of
Ng¢(a) implies that bc € E(G). It follows that (b,y) and (c, 2) are adjacent
in G[K,). Accordingly, (Ngixk,|((a,7))) is complete.

Now assume that (Ngik,)((e,z))) is complete in G[Kp,] for every
z € V(K,). Let b,c € Ng(a), b # ¢, and y,z € V(K,). It follows that
(5,1), (¢,2) € V(GIK.]). Since ab,ac € B(G), (a,2)(b,y) and (a,)(c, )
are edges in G[K,) for z € V(K,) and hence, (b,v), (¢, z) € Ng|x,((a,T)).
Moreover, since (Ngix,((a, z))) is complete, (b,y)(c, 2) € E(G[Ky]). Thus,
either bc € E(G) or b = ¢. By choice, b # c, hence bec € E(G). It follows
that (Ng(a)) is complete. a
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The next result is immediate from the above lemma.

Corollary 3.2 If G is a connected graph, then
Ezt(G[K,)) = Ext(G) x V(K,).

The authors earlier obtained the following result.

Theorem 3.3 [2] Let G be a connected graph with k extreme vertices.
Then feon,(G) =k —1.

Theorem 3.4 IfG is a connected graph containing an extreme vertez, then
feonm (G[KL]) = n|Ext(G)| - 1.

Proof. By Corollary 3.2, the graph G[K,] has |Ext(G[K,])| = n|Ezt(G))
extreme vertices, It follows from Theorem 3.3 that

feonm(GKy]) = |Ezt(GKa])| -1
= n|Ezt(G)| - 1.

We now consider the case Ext(G) = @. The following result from (3]
comes in handy.

Theorem 3.5 (3] Let G be a connected graph of order p > 4. If G has
no exireme vertez, then conm(G[K,]) = ncon,(G). In particular, a sub-
set C of V(G[K,]) is a mazimum m-convez set of G[K,] if and only if
C =S x V(K,) for some mazimum m-convez set S of G.

We also need the following resulits.

Lemma 3.6 Let G be a connected graph of order p > 4 with no extreme
vertez, and C a mazimum m-convez set of G[K,]. Then Q C C is a forcing
m-subset of C if and only if Q¢ is a forcing m-subset of Cg.

Proof. Suppose @ C C is a forcing m-subset of C. By Theorem 3.5,
C = Cg x V(K,) and Cg is a maximum m-convex set of G. Suppose
further that Q¢ is not a forcing m-subset of Cz. Then there exists a
maximum m-convex set S # Cg such that Qg C S. It follows that @ is
contained in the maximum m-convex set S x V(K,). This contradicts the
assumption that @ is a forcing m-subset of C. Therefore, Q¢ is a forcing
m-subset of Cg.

326



Assume that Qg is a forcing m-subset of Cg. Then there exists no max-
imum m-convex set S # Cg such that Q¢ C S. Hence, C = Cg x V(K,)
is the only maximum m-convex set in G[K,] containing Q. Therefore, Q is
a forcing m-subset of C. O

Lemma 3.7 Let G be a connected graph of order p > 4 with no extreme
vertices, and C a mazimum m-convez set of G[K,]). Then Q C C is a
minimum forcing m-subset of C if and only if Q¢ is a minimum forcing
m-subset of Ca and |Q| = |Qa|.

Proof. Suppose @ C C is a minimum forcing m-subset of C. By Lemma
3.6, Q¢ is a forcing m-subset of Cg. It follows that if w € V(K,), @* =
Q¢ x {w} is a forcing m-subset of C = Cg x V(K,). Clearly, |Q*| = |Q¢| <
|Q|- Since Q is a minimum forcing m-subset of C, |Q*| = |Qc| = |Q|-

Now, suppose that Q¢ is not a minimum forcing m-subset of Cg. Then
there exists R C Cg such that R is a forcing m-subset of Cg and |R| < |Q¢|-
Let z € V(K,). Then R x {z} is a forcing m-subset of Cg x V(K,) = C.
Moreover, |R x {z}| = |R| < |Q¢| = |Q|- This contradicts the minimality
of Q. Therefore, Q¢ is a minimum forcing m-subset of Cg.

Conversely, suppose Q¢ is a minimum forcing m-subset of C¢ and |Q| =
|Qc|- By Lemma 3.6, Q is a forcing m-subset of C = Cg xV(K,). Suppose
Q is not a minimum forcing m-subset of C. Then there exists @* C C such
that fcon,(C) = |Q*| < |Q|- Hence, Q¢ is a forcing m-subset of Cg and
|Q*| = |1Q%|- It follows that |Q%| < |Qgl, contrary to our assumption
that Q¢ is a minimum forcing m-subset of Cg. Therefore @ is a minimum
forcing m-subset of C. ]

Theorem 3.8 Let G be a connected graph with no extreme vertezr. Then
feong (G[Ky]) = feonn(G).

Proof. Let C be a maximum m-convex set of G[Ky] such that
feonm (G[Ky]) = feonm(C)

and let Q be a forcing m-subset of C such that fcon,(C) = |Q|. Then Q¢
is 2 minimum forcing m-subset of Cg and, by Theorem 3.7,

feonm (G[Kx]) = |Q] = |Q¢| = feonm(Ce) 2 feonm(G).

On the other hand, if S is a maximum m-convex set of G[K}] such that
feonm(G) = feconm(S) and R is a minimum forcing m-subset of S such
that fcon,(S) = |R|, then @' = R x {z} is a minimum forcing m-subset
of § x V(K,) = C by Theorem 3.7. It follows that

feonn, (GKy,)) < feon,(C) =|Q'| = |R| = feonm(S) = feonm(G).
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Therefore, fcon,, (G[Ky]) = feonm(G). (]

Our next goal is to determine fcon,,(G[H]), where G is a connected
graph and H is a connected non-complete graph. The following results will
be useful.

Theorem 3.9 (3] Let G be a connected graph of order n > 1 and H a
connected non-complete graph. Then C is a proper m-convez set of G[H)|
if and only if C induces a complete subgraph of G[H].

Theorem 3.10 [3] Let G be a connected graph of order n > 1 and H a
connected non-complete graph. Then con,(G[H]) = w(G[H]).

The preceding two results, however, do not describe nor give the
possible forms of the maximum cliques of G[H]. The next results describe
the cliques of the composition of two graphs.

Theorem 3.11 Let G and H be graphs. A subset C of V(G[H]) induces
a cliqgue of G[H] if and only if C = Uses({s} x T), where (S) is a clique
of G and (Ty) is a cliqgue of H for every s € S.

Proof. Suppose C induces a clique of G[H]. Clearly, C = Uses({s} x Ts),
where § C V(G) and T, C V(H) for every s € S. If S is a singleton,
then (S) is a clique of G. Suppose S is not a singleton. Let u,v € S
with v # v and a,b € V(H) such that (u,a),(v,b) € C. Since (C) is a
clique, (u,a)(v,b) € E(G[H]). By the adjacency in G[H], it follows that
wv € E(G). Thus, (S) is a clique of G.

Next, let s € S. If T, is a singleton set, then it induces a clique of
H. Suppose it is not a singleton. Let t,t3 € T,. Then (s,t1),(s,t2) € C;
hence (s,t1)(s,t2) € E(G[H]). By the adjacency in G[H], it follows that
tits € E(H). Thus, (Ts) is a clique of G.

For the converse, suppose C = U,es({s} x T;), where (5) is a clique of
G and (T) is a clique of H for every s € S. Let (a,b) and (z,y) be distinct
elements of C. If a = z, then b,y € T,. By assumption, by € E(H).
Thus, by the adjacency in G[H], it follows that (a,b)(z,y) € E(G[H]). If
a # z, then az € E(G) by assumption that (S} is a clique of G. Hence,
(a,b)(z,y) € E(G[H]). Therefore, (C) is a clique of G[H]. O

Theorem 38.12 Let G and H be graphs. A subset C of V(G[H]) is a
mazimum cliqgue of G[H] if and only if C = Uses({s} x Ts), where (S) is a
mazimum clique of G and (T}) is a mazimum clique of H for every s € S.
In particular, w(G[H]) = w(G)w(H).
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Proof. Let C be a maximum clique of G[H]. Then C = Uses({s} x Ts),
where (S) is a clique of G and (T) is a clique of H for every s € S,
by Theorem 3.11. Let s; and s’ be two distinct elements of S. Suppose
|Ts,| # |Tst|, say |Ts,| > |Ts|. Consider the set C* = Ugyy({s} x T5) U
({s'} x Ts,). Then C* induces a clique of G[H] by Theorem 3.11. This,
however, contradicts the maximality of C because |C*| > |C|. Therefore,
|Ts,| = |Ts|- Hence, for s € S, we have |[C| = |5||Ts| < w(G)w(H).

' Now, let S’ and T" induce maximum cliques of G and H, respectively.
Then clearly, S’ x T’ induces a clique of G[H]. Since (C) is a maximum
clique of G[H], it follows that |C| > |S' x T'| = w(G)w(H). Therefore,
w(G[H)) = |C| = w(G)w(H). Consequently, S induces a maximum clique
of G and T, induces a maximum clique of H for each s € S.

The converse also follows from Theorem 3.11. a

The following is a quick consequence of Theorem 3.10 and Theorem
3.12.

Corollary 3.13 Let G be a connected graph of order n > 1 and H a
connected non-complete graph. Then conm(G{H]) = w(G)w(H).

Theorem 3.14 Let G be a connected graph of order n > 1 and H a
connected non-complete graph with fen(H) = 0. Then fecon,(G[H]) =
fen(G[H]) = fen(G).

Proof. Let C be a maximum m-convex set of G[H] such that fcon,(G[H])
feony,(C). Then C = Uses({s} x Ts), where (S) is a maximum clique of
G and (T,) is a maximum clique of H for every s € S, by Theorem 3.12.
Since fen(H) = 0, H has a unique maximum clique, say T. It follows that
T=T,foralls€ Sand C = § xT. Let Q be a forcing m-subset of
C such that fcon,(C) = |Q|- Then, clearly, Q¢ is a forcing c-subset of
S. Hence, Q* = Qg x {t}, where t € T, is a forcing m-subset of C, and
|Q*| = |Qc| < |Q|. By our assumption of Q, we must have |Q| = |Qg|-
Thus fcon(G[H]) = |Qcl > fen(G).

On the other hand, if S is maximum clique of G and R is a forcing
c-subset of S such that fen(G) = fen((S)) = |R|, then W = R x {t},
where t € T, is a forcing m-subset of C = S x T'. Hence, fen(G) = |R| =
|W| > feonm(C) = fconm,(G[H]). Therefore, fconm(G[H]) = fen(G). By
Remark 1.6, we have the desired result.

Theorem 3.15 Let G be a connected graph of order n > 1 and H a
connected non-complete graph with fen(H) #0. Then

feonm(G[H]) = fen(G[H]) < w(G)fen(H).
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Proof. Let (S) and (T) be maximum cliques of G and H, respectively,
such that fen(H) = fen((T)). For each s € S, define T, = T. Then
C = Uges({s} x T;) is a maximum clique (hence, a maximum m-convex
set) of G[H] by Theorem 3.12.

Next, let V' be a forcing c-subset of T' such that fen((T)) = |V|. By
assumption, V # @. Consider theset Q =S xV. Then Qg =S5,Qyg =V
and @ C C. Suppose Q@ C C*, where C* is a maximum clique of G[H]|
different from C. By Theorem 3.12, C* = Upeg/({p} x T,), where S’ and
T, (p € S') induce maximum cliques of G and H, respectively. Hence,
QG =85=5and V C W =U,esT,. Since C* # C, there existsanz € S
such that T, # T. Suppose V ¢ T’ Then there exists y € V' such that
ye T Hence, (z,y) ¢ {z} xTL. Since (z,y) € {p} x T, for all p € §’\ {z},
it follows that (z,y) ¢ C*, contrary to the fact that Q C C*. Therefore,
V C T.. This is not possible because V' is a minimum c-forcing subset of
T. Hence, C is the only maximum clique in G[H] containing Q , i.e., Q is
a forcing subset of C. Therefore,

feonm(G[H]) < feon(C) < |Q| = |S||V] = w(G) fen(H).
This completes the proof. O

Example 3.16 Consider the composition G[H], where G and H are paths
with V(G) = {a,b, ¢} and V(H) = {z,y, 2}, respectively.

G: o——m0—o0 H: o——0—o0
a b c x Y z
(a,z) (b,z) (c,x)
Q N o)
(a’ y) ) (c: y)
e’ o o)
(a,2) (b,2) (¢,2)
G[H]
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The set A = {(a,z), (b,7),(a,¥),(b,y)} is a maximum m-convex set
and the set B = {(a,),(a,y)} is a forcing m-subset of A. Observe that
no singleton is a forcing m-subset of any maximum m-convex set since
each singleton is contained in at least two maximum m-convex sets. Thus,
feon,(G[H]) = 2. On the other hand, w(G)fen(H) = 2(1) = 2. This
shows that the upper bound given in Theorem 3.15 is sharp. We leave to
interested readers to verify whether or not equality in Theorem 3.15 does
hold.
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