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Abstract

For any given k-uniform list assignment L, a graph G is equitably
k-choosable, if and only if G is L-colorable and each color appears
on at most [ng)-!] vertices. A graph G is equitable k-colorable if G
has a proper vertex coloring with & colors such that the size of the
color classes differ by at most 1. In this paper, we prove that every
planar graph G without 6- and 7-cycles is equitably k-colorable and
equitably k-choosable where k > max{A(G), 6}.

Keywords: Equitable choosability; Planar graph; Degenerate
MSC(2000): 05C15

1 Introduction

The terminology and notation used but undefined in this paper can be
found in [1]. Let G = (V, E) be a graph. We use V(G), E(G), F(G), A(G)
and §(G) to denote the vertex set, edge set, face set, maximum degree, and
minimum degree of G, respectively. Let dg(z) or simply d(z), denote the
degree of a vertex (face) = in G. A vertex (face) « is called a k-verter (k-
face), kt-vertex (k*-face), k™ -vertex or k~~-vertex, if d(x) = k, d(z) >
k,2 <d(z) <korl <d(z) <k Weuse (d,ds, - ,d) to denote a
face f if di,dz, - ,d, are the degree of vertices incident to the face f. Let
5(f) denote the minimal degree of vertices incident to f. A graph G is
k-degenerate if every subgraph has a vertex of degree at most k.

A graph G = (V, E) is said to be equitably k-colorable if the vertex set
V(G) can be partitioned into k¥ independent subsets Vi, V3, ---, Vi such
that ||Vi] — |V;]| €1 (1 <i,j < k). The equitable chromatic number of
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G, denoted by x.(G), is the smallest integer k such that G is equitably
k-colorable. The equitable chromatic threshold of G, denoted by x2(G), is
the smallest integer & such that G is equitably i-colorable (! > k). It is
obvious that x.(G) < x%(G) for any graph G. They might not be equal.
For example, if Kon41,2n+1 (1 is a positive integer) is a complete bipartite
graph, then Xe(Kan+t1,2n+41) = 2, Xe(K2n+1,2n41) =20 + 2.

In many application of graph coloring, it is desirable that the color
classes are not too large. For example, when using a coloring model to
find an optimal final exam schedule, one would like to have approximately
equal number of final exams in each time slot because the whole exam pe-
riod should be as short as possible and the number of classrooms available
is limited. Recently, Pemmaraju [13] and Janson and Rucinski [6]) used eq-
uitable colorings to derive deviation bounds for sums of dependent random
variables that exhibit limited dependence. In all of these applications, the
fewer colors we use, the better the deviation bound is. Equitable coloring
has a well-known property that restricts the size of each color class by its
definition.

In 1970, Hajnal and Szemerédi proved that x(G) < A(G) + 1 for any
graph G [5]. This bound is sharp as shows the example of Kony12n41-
In 1973, Meyer introduced the notion of equitable coloring and made the
following conjecture [11]:

Conjecture 1 IfG is a connected graph which is neither a complete graph
nor odd cycle, then x.(G) < A(G).

In 1994, Chen et al. put forth the following conjecture [2]:

Conjecture 2 For any connected graph G, if it is different from a com-
plete graph, a complete bipartite graph and an odd cycle, then x:(G) <
A(G).

Chen et al. proved the conjecture for graphs with A(G) < 3 or A(G) >
Mgll or a tree [2, 3]. Yap and Zhang proved that the conjecture holds
for outer planar graphs and planar graphs with A(G) > 13 [17, 18]. Lih
and Wu verified x}(G) < A(G) for bipartite graphs other than a complete
bipartite graph [9]. Wang et al. proved the conjecture for line graphs [16].
It follows from [8] that the conjecture hold for d-degenerate graphs with
maximum degree A(G) > 14d + 1.

For a graph G and a list assignment L assigned to each vertex v € V(G)
a set L(v) of acceptable colors, a L-coloring of G is a proper vertex coloring
such that for every v € V(G) the color on v belongs to L(v). A list
assignment L for G is k-uniform if |L(v)| = k for all v € V(G). A graph
G is equitably k-choosble if, for any k-uniform list assignment L, G is
L-colorable and each color appears on at most [ ngn] vertices.
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In 2003, Kostochka, Pelsmajer and West investigated the equitable list
coloring of graphs. They proposed the following conjecture[7].

Conjecture 3 Every graph G is equitably k-choosable whenever k > A(G).

Conjecture 4 If G is a connected graph with mazimum degree at least
3, then G is equitably A(G)-choosable, unless G is a complete graph or is
K. i for some odd k.

It has been proved that Conjecture 3 holds for graphs with A(G) < 3
independently in [12, 14]. Kostochka, Pelsmajer and West proved that a
graph G is equitably k-choosable if either G # Ky, Kk (with & odd
in the later case) and k& > max{A, ]ﬂz_G_ll}, or G is a connected inteval
graph and k > A(G) or G is a 2-degenerate graph and k& > max{A(G), 5}
[7]. Pelsmajer proved that every graph is equitably k-choosable for any
k> —A—(-w + 2 [12]. There are several results for planar graphs
without short cycles [10, 19].

In this paper, we show that every planar graph G without 6- and
7-cycles is equitably k-colorable and equitably k-choosable where k >
max{A(G), 6}.

2 Planar graphs without 6- and 7-cycles
First let us introduce some important lemma.

Lemma 2.1 ([{]) Every planar graph without 6-cycles is 3-degenerate.

Corollary 2.2 If G is a planar graph without 6- and 7-cycles, then §(G) <
3.

Lemma 2.3 ([5]) Every graph has an equitable k-coloring whenever k >
A(G) +1.

Lemma 2.4 ([19]) Let S = {v1,v2, - , v} be a set of k different vertices
in G such that G — S has an equitable k-coloring, if [Ng(vi) — S| < k—1
for1 <i<k, then G has an equitable k-coloring.

Lemma 2.5 ([12, 14]) Every graph G with mazimum degree A(G) < 3 is
equitably k-choosable whenever k > A(G) + 1.

Lemma 2.6 (7)) Let G be a graph with a k-uniform list assignment L.
Let S = {v1,v2,--- ,vr}, where {vy,v2, -, v} are distinct vertices in G.
If G— S has an equitable L-coloring and |Ng(v;) — S| < k—i for1 <i <k,
then G has an equitable L-coloring.
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Each configuration in Figure 1 and Figure 2 represents subgraphs for
which: (1)hollow vertices may be not distinct while solid vertices are dis-
tinct. (2)the degree of the solid vertex is fixed, and (3)except for special
pointed, the degree of a hollow vertex may be any integer from [d, A(G)],
where d is the number of edges incident to the hollow vertex in the config-
uration. (4) the order of the vertices on the boundary of a 4-face can be
exchanged if the vertices are not common vertices of the 4-face and other
face.

Proof. Let G be a minimal counterexample on the number of vertices.
Then G without 6- and 7-cycles does not contain H; ~ Hgz in Figure 1.

For G contains no structures H; ~ Hj, we can obtain the following
property.

Claim 1 Any two of (3,3,5%)-faces can not simultaneously appear in
G except that the structure G; (in Figure 2).

We call a face a special face if it belongs to (3,3,5%)-faces. In the
following, we call a 3-vertex a special 3-vertez if it is incident to a special
face, otherwise, it is called a simple 3-vertez. For convenience, let n3(v),
ma(v) and my(v) denote the number of simple 3-vertices adjacent to v, the
number of 3-faces incident to v and the number of 4-faces incident to v
for each v € V(G) respectively. Let n;(f) denote the number of i-vertices
incident to f.

Since G contains no structures Hy and Hg, we can conclude the following
properties.

Claim 2 For each v € V(G) with d(v) > 4, if v is adjacent to a 3-
vertex which is adjacent to two 3~ -vertices, then it is not adjacent to
other 3-vertex.

Claim 3 For any v € V(G), v is adjacent to at most one simple 3-vertex
which is adjacent to other 3= ~-vertex.

By Euler’s formula [V |- |E|+|F| = 2and 3, .y (g) 4(¥) = Y ser(c) 4(S)
2|E|, we have

3" (Bdw)-10)+ > (2d(f) - 10) = —10(|V| - |E| + |F|) = ~20.

veV(G) fEF(G)

Define an initial charge function w on V(G) U F(G) by setting w(v) =
3d(v) — 10 if v € V(G) and w(f) = 2d(f) — 10 if f € F(G), so that
2 zev(cur(c) W(z) = =20.
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We divide the proof into the following four cases by Corollary 2.2.

Case 1 §(G) =

For G contains no structure Hg. G has the following properties.

Claim 1.1 All 3-faces in G are (3,3,5%)-, (3,4%,4%)- or (4,41, 4%)-
faces.

Now redistribute the charge according to the following discharging rules.

R1 Transfer charge 1 from each 5*-vertex to every adjacent simple 3-
vertex v which is adjacent to exactly two 3~ -vertices.

R2 Transfer charge % from each 4*-vertex to every adjacent simple
3-vertex v which is adjacent to exactly one 3™~ -vertex.

R3 Transfer charge % from each 4*-vertex to every adjacent simple
3-vertex v which is not adjaucent to any 3~ -vertex.

R4 Transfer cha.rge from each 8*-face f to every adjacent 3-face and
4-face via each common edge

R5 If f is a 4-face incident to v, then v gives f charge 2 if d(v) > 6

RG6 If f is a 3-face incident to a vertex v, then v gives f charge 3 5 if
d('u) 4 and f is a (37,4,4)-face, § if d(v) =4 and f is a (37,4,5%)-face,
2if d(v) = 4andflsa(4 4,4%)- or (4,5,5%)-face, I 1fd(v)—5andfls
a (3~,3%,5)-face, § if d(v) = 5 and f is an other face, % if d(v) = 6, 2 if
dv) > 1.

Let the new charge of each element z be w'(z) for each z € V(G)UF(G).
Particularly, we use w! denotes the total new charge of all the special 3-
vertices and all the special faces in G.

Case 1.1 §(G) = 3 and there are at least two 3-vertices in G.

Now let us check the charge of each element z € V(G) U F(G).

Suppose d(v) = 3. Then w(v) = —1. Since G contains no structure
H,, v is adjacent to at least one 5-vertex or is adjacent to at least two
4*-vertex. If v is a simple 3-vertex, we have w’(v) = —1+1 = 0 by R1,
w/(v) = =14+ % x2 =0 by R2 or w'(v) = —1+1 x 3 = 0 by R3. Otherwise,
we have w'(v) = w(v) = —1.

Suppose d(v) = 4. Then w(v) =2 and m3(v) < 3.

Case 1.1.1 m3(v) = 3, then n3(v) £ 1 for G contains no structure Hg.
If m3(v) = 3, ng(v) = 1 and v is incident to two 3-faces each of which is
incident to the 3-vertex, then we have w'(v) > 2— 8 x2—31 =0 for G
contains no structures Hg, Hip and by R6, R3. If mz(v) = 3, n3(v) =1
and v is incident to only one 3-face which is incident to a 3-vertex, then we
have w'(v) > 2— % — 1 = 2 > 0 for G contains no structures Hy;, Hy2 and
by R6, R2. If ms(v) = 3, n3(v) =0, then we have w'(v) >2~-2x3=0
by R6.

Case 1.1.2 mg(v) = 2, then ng(v) < 1 for G contains no structure Hg.
If mg(v) = 2, ng(v) = 1 and v is incident to two 3-faces each of which is
incident to the 3-vertex, then we have w'(v) > 2— 2 x2—1 =0 for G
contains no structure Hi3 and by R6, R3. If ms(v) =2, ng(v) =1land v is
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incident to only one 3-face which is incident to the 3-vertex, then we have
w'(v) >2— 2 — 2~ L1 =0 for G contains no structures Hy4, His and by

R6, R2. If m3(v) = 2, n3(v) =1 and v is not incident to any 3-face which
is incident to a 3-vertex, then we have w/(v) > 2 — ~§- x2—1=1>0for
G contains no structure H7 and by R6, R2. If ma(v) = 2, nz(v) =0, then
wehavew'(v)>2—§ x 2 =2 >0 by R6.

Case 1.1.3 m3(v) =1, then nz(v) £ 2 for G contains no structure Hs.
If ma(v) = 1, n3(v) =2, thenwehavew’(v) >2-2%2-1-1=3>0for
G contains no structure Hg and by R6, R2, R3 and Claim 3. If mg(v) =1,
n3(v) < 1, then w'(v) > 2 - — 1 =0 by R6 and R2.

Case 1.1.4 m3(v) = 0, then ng(v) < 4. Sow'(v) > 2-1-3ix3=1>0
by R2, R3 and Claim 3.

Suppose d(v) = 5. Then w'(v) =5, ma(v) < 3.

Case 1.2.1 mz(v) = 3, then nz(v) < 1 for G contains no structures
Hye ~ Hys. If ma(v) =3, nzg(v) =1and v is mmdent to two 3-faces each

of which is incident to the 3-vertex, then w'(v) >5—-% x2—-Z -1 =0by
R6 and R3. If ma(v) = 3, nzg(v) =l and v is 1n01dent to only one 3-face
which is incident to the 3-vertex, then w'(v) 25— I —Ix2— 3 = >0

by R6 and R2. If m3(v) =3, ng(v) =land v is not mcndent to any 3-face
which is incident to a 3-vertex, then w'(v) >5-Z x3-1= - >0 by R6
and R1. If ma(v) = 3, na(v) =0, thenwehavew(v) >5-1 x3=-2- >0
by R6.

Case 1.2.2 m3(v) = 2, then na(v) < 4. Sow'(v) > 5—Ix2—-$x3-1
0 by R6, R3, R2 and Claim 4.

Case 1.2.3 m3(v) < 1, then n3(v) < 5. Sow'(v) >5- 1 — 3 x4—

> 0 by R6, R3, R2 and Claim 4.

Suppose d(v) = 6. Then w(v) = 8, ma(v) < 4.

If ma(v) = 4, then my(v) = 0 ng(v) < 3 for G contains no structure
Hy. So w'(v) > 8- % x4—3x3 =0 for G contains no structure
Hyy and by R6, R3. If ma(v) = 3, then my(v) < 1, n3(v) < 4. So

w'(v) >8-1 x3—§—lx4 = 2 > 0 by R6, R5 and R3. Ifmg('u) =2, then
my(v) <2, ns(v) < 5. We have'w’(v) >8-Ix2-2x2-1x4-3=5>0
by R6, R5, R3 and R2. If m3(v) <1, then m4('u) < 6, na(v) <6. We have

'(v)>8—§-§-x6-——x5—%= 75 > 0 by R6, R5, R3 and R2.

Suppose d(v) = 7. Then w(v) = 11 m3(v) <5.

If ma(v) = 5, then my(v) = 0, ns(v) < 3 for G contains no structure
Hy3. We have u" (v) =11 -2 x5~ % x 3 =0 for G contains no structure
Hy, and by R6, R3. If ma(v) = 4, then my(v) < 1, ng(v) < 4 for G
contains no structure Hoz. Sow'(v) >11—-2x4-2-2x3-3=2>0
by R6, R5, R3 and R2. If m3(v) = 3 then my(v) < 2, nzg(v) < 5. So

w'(v) >11-2x3-2%x2-1x4-1=25 >0by R6, R5, R3 and R2. If
mg(v) = 2, then my(v) < 2, n3(v) < 6 So w’(v) >11-2x2—2x2-1x6 =
3L > 0 by R6, R5 and R3. If ma(v) < 1, then mqy(v) < 7, n3(v) < 7. So

[
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w'(v) >11-2-2x7—-1x7=2>0Dby R6, R5 and R3.

Suppose d(v) = 8. Then w(v) = 14, ms(v) < 6.

If ma(v) = 6, then my(v) = 0, nz(v) < 4 for G contains no structure
Hy. Sow'(v) 214—-2%x6—%x3—1=1>0by R6, R3, R2 and Claim
3. If ma(v) = 5, then my(v) = 0, n3z(v) < 4 for G contains no structure
Hys. So w'(v) >14-2x5—-4x3—1=2>0Dby R6, R3 and R2. If
ma(v) =4, then m4(v) < 2, n3(v) < 5 for G contains no structure Hpa. So

w'(v) > 14-2x4-%x2-1x5=3> 0by R6, RS5, R3 Ifm3('u) 3, then
my(v) < 2, n3(v) < 8. We have w'(v) >14-2x3-2x2-1x8=4>0
by R6, R5, R3. If m3(v) < 2, then my4(v) < 8, na(v) < 8. We have

w'(v) >14-2x2—2x8—1 x8=2>0by RG, R5, R3.

Suppose d(v) > 9. Then w(v) = 3d(v) — 10. Smce ng(v) < ma(v) +
d(v) — $m3(v), we have

na(v) < d(u) — 3ms(v).

And since m4(v) < d(v) — §m3(v), we have w'(v) > 3d('v) —-10- 2m3 (v) -
? X m4(v) —1-%(na(v)- 1) > 3d(v)-10—- 2m3(v) —2 x (d(v) - $ms(v)) -
3 — 3(d(v) - -mg('u) —1) = 2d(v) — ma(v) — & by R6 R5, R2 R3 and
Cla.lm 4. And since 3

mz(v) < =d(v).

We have w'(v) > 2d(v) - & > 8 > 0.

Suppose d(f) = 3. Then w(f) = —4, n3(f) < 2 by Claim 1.1.

Case 1.3.1 n3(f) 2, then ny4(f) =0, f is a special face (3, 3,5%)-face.

Case 1. 3 1.1 f is not adjacent to any special 3-face, we have w/(f) >
—4 + i= —-— by R6.

Case 1. 3 1.2 f is adjacent to a special 3-faces, i.e. the cluster G; in
Figure 2 for G contains no structures Ho and Hj. If G; is neither adJa.cent
to a 3-face nor adjacent to a d-face, then we have w'(G1) 2 -4 x 2+ § x
2+ 32 x4=-3>by R6 and R4. If G, is adjacent to a 3-face and Tot
a.dJacent to a 4—-face we consider cluster G in Flgure 2 for G contains no
structure Hys, we have w'(G3) > ~4x3+2x4 + X2= ——- by R6 and
R4. If G, is adjacent to a 4-face and not adjacent to a 3-face, we consider
cluster G3 in Figure 2 for G contains no structure Hog and Hs7, we have
w'(G3) > —4x2-2+2x2+%x3+3 x4=—~1by R6, R5 and R4. If G,
is not only adjacent to a 3-face but also adjacent to a 4-face, we consider
cluster G4 in Figure 2 for G contains no structures Hos and Hag, we have
w(Gg) > -4x3-2+2x4+2%x3+3x2=-§ R6, R5 and R4.

Case 1.3.2 n3(f) =1 and f is a (3,4, 4)-, (3,4,5)-face, then f is not
adjacent to any 3-face for G contalns no structures H13, H14 and st So

w'(f) 2 —4+2x2+3x2=1>0o0rv'(f) >—4+g+i+3x2=L%>0
by R5 and R4
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Case 1.3.3 n3(f) = 1 and f is a (3,4,6)-face. For G contains no
structure Hag, f is adjacent to at most two 3-faces. If f is not adjacent
to any 3-face, then f is adjacent to at most one 4-face for G contains no
7-cycle. We have w'(f) = —4+ +3 + X 2= 12 >0by R6, R4. If f is
adjacent to a 3-face, then f is not adJacent to any 4-face for G contains no
structures Ho; and Hzp. We have w'(f) > —4+ + + 2x2= 1 >0
by R6, R4. If f is adjacent to two 3-faces, i.e. G5 and Ge in Flgure
2 for G contains no structures Hog, Ha; and Hszp. For G contains no
6-cycle, Gs and Gsg a.re not adjacent to any 4-face or 5-face. We have
w'(Gs) > —4x3+ +-x2+7x3+—x5 & >0, w'(Gs) >
—4x3+1 + x3+4’+g+ ><5— >0byR6andR4

Case 1 34 n3( =1, f isa (3 4 7+) face. For G contains no structure
Hyg, f is adjacent to at most two 3-faces.

Case 1.3.4.1 f is not adjacent to any 3-face, we have w'(f) > —4+2 +
2+ X2= l>0byR6 and RA.

Case 1.3.4.2 fisa(3,4,7%)-face and is ad_]acent to one 3-face If fisnot
adjacent to any 4-face, then we have w'(f) > —4+2+2+2x2=1>0by
R6 and R4. Otherwise, we consider G7 and Gg (in anure 2) for G contams
no structures ng, H27, H33 and H34. We have w (G7) > —4x2-—- 2+6 X2+
2x2+3x3+ x4=2>0,u'(Gg) > —4x2— 2+8+2x3+2 +4x4 =1>0
by R6 and R4.

Case 1.3.4.3 f is a (3,4, 7%)-face and adjacent to two 3-faces, then we
need to consider the following three structures Go, G0 in Figure 2 for G
contains no structures Hgg, H3; and H3z. We have w’ (Go) 2 —4 x 3 + X
2+2x2+ x2+ X5 = > 0, w'(G1o) 2 4><3+ x2+2><3+ +4 ><5 =
2 >ObyR6andR4

Case 1.3.5n3(f) =1, fisa(3,5,5%)-or (3, 6 6+)-face Iff is adjacent
to at most two 3-faces, we have w’(f) > 4+ £ X 2+ s = 4 > 0 by R6
and R4. If f is adjacent to three 3-facesi.e. Gq; and G12 in Flgure 2 for G
contams no structures H3s and Hgg, then w/(Gyy) > —4 >< 4+ X 4+2 x 3+
—x2+ x4=1>0, w'(Gr2) > —4x4+7% x5+2x3+ + ><4 >0
by R6 and R4

Case 1.3.6 n3(f) = 1, f is a (3,7, 7%)-face, we have w'(f) > —4+2x
2 =0 by R6.

Case 1.3.7 n3(f) = 0, f is a (4,4,4)-face, then f is not adjacent to
any 3-face for G does not contain structure Hz;. If f is not adjacent to
any 4-face, then we have vw'(f) = —4 + % x 3+ % x 3 = % > 0 by R6
and R4. Otherwise, we con51der G‘13 for G contains no structure Hazg, so

w'(Grs) > —4—-2+2x3+2x2+3 x5=13 >0by R6, R5 and R4.

Case 1.3.8 ng(f) 0, fxs a (4,4, 5) or (4 4, 6) face If f is adjacent to
at most one 3-face, we have w'(f) > -—4+ X 2+ + x 2 =0 by R6 and
R4. If f is adjacent to two 3-faces i.e. G’14, Gis and Gl6 in Figure 2 for G
contains no structures Hag, Hyg and Hyy, we have w'(G1q) > —4x3+ 3% x2+
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§x3+ x4+8x5 =1 >0, w’(Gl5) > —4x3+7x2+4x3+ x2+3x5 =
>0, w’(G15)>—4x3+ x2+Ix2+2x4+3x5=11 >0byR6
a.nd R4.

Case 1.3.9 n3(f) =0, f is a (4,4,7%)-face, then we have w'(f) >
-4+2x%x2+2+3 =% >0by R6 and R4.

Case 1.3.10 n3( f) = 0, f is a (4,5,5)-face. If f is adjacent to at most
one 3-face, we have w'(f) > —4+%x2+§+%x2= 1 > 0by R6 and R4.
If f is adjacent to two 3-faces i.e. G17 or Gy in Flgure 2 for G conta.ms no
structuresH42andH43 Wehavew'(G17)>—4x3+ x2+2x3+Ixd+
2x5=2>0,0orw(Gs) > -4x3+Ix2+Ix5+% x2+"‘3x5—ﬁilsi
by R6 and R4.

Case 1.3.11 ng(f) = 0, f is a (4 5,6%)- or (4,6%,6%)-face, then we

have w'(f) > -4+ + 1+ 2% +—-——>0byR6andR4
Case1312n3(f)—0 flsa(5'*‘ 5%,5%)-face, then we have w'(f) >
—4+Ix3+%=1>0by R6and R4.

Suppose d( f) =4. Then w(f) = —2. If f is not adjacent to any 3-face,
then all faces which are adjacent to f are 8%-faces for G contains no 6-
and 7-cycles. So w/(f) > -2+ % Xx4=1>0Dby R4. If f is adjacent to
only one 3-face, then other faces which are adjacent to f are 8*-faces for
G contains no 6- and 7-cycles. So w'(f) > -2+ 3 x3 =% > 0by R4.
If f is adjacent to two 3-face, then f is adjacent to at least one 61-vertex
and other adjacent faces are 8+-faces for G contains no structure Hy4 and
contains no 6- and 7-cycles. So w/(f) > —2+2+3x2=1>0by R5 and
R4..

Suppose d(f) = 5. Then w'(f) = w(f) =0.

Suppose d(f) > 8. Then w'(f) 2 w(f)—§xd(f) = 2d(f)-10-3d(f) =
2d(f)—10>2 x8—-10=0 by R4.

From the above discussion, If there is at least two 3-vertices in G,
we can obtain that if z is neither a special 3-vertex nor a special face,
then w'(z) > 0 for each :x: e V(@)U F(G'). Furthermore, we have w! >
-1 x 2 — min{-%,-%,-3,-1} = -2 by Claim 2. So we can obtain
Zeevicure) W' () = —3 > —20,a contradmtlon

Case 1.2 §(G) = 3 and there is only one 3-vertex in G.

There is no special 3-face and special 3-vertex in G. The discussion is
similar to Case 1.1, it is clear that we only need to check the charge of
3-face in Case 1.3.3 and Case 1.3.4 of Case 1.1, i.e. (3,4,6)- and (3,4,7%)-
faces such that they are adjacent to two 3-faces each of which is incident
to the 3-vertex. For G contains no structure Hys, we only consider the
structure Gg, w'(G19) = —4 X 2+ 2 x 2 = —4 by R6. So we can obtain
2 rev(e)ur(c) W' (T) = —4 > —20, a contradiction.

Case 2 §(G) = 2 and there are at most two 2-vertices in G.
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The discharging rules are the same as Case 1 except for the two cases.
(1). A 4-face have a common 2-vertex with a 3-face, (2). Two 4-faces have
a common 2-vertex. Under these situation, transfer charge from its com-
mon incident vertices to only the 3-face in the first situation and transfer
charge from its common incident vertices to only one of them in the second
situation. Clearly, we can guarantee the new charge of each vertex of G
is larger than or equal to zero. For convenience, let w}; (w};) denote the
total new charge of one 2-vertex (two 2-vertices) and the faces which are
incident to the 2-vertex (the two 2-vertices).

Case 2.1 There exists one 2-vertex in G.

Case 2.1.1 The 2-vertex is incident to at most one 3-face and one 4-face
simultaneously. Furthermore, for G contains no structure Hys and Hyg, we
can obtain that the 3-face and 4-face is (2,3,7%)- and (2,3,6%,7*) respec-
tively; the 3-face and 4-face is (2,4%,7%)- and (2,4%,6%,7T) respectively;
the 3-face and 4-face is (2,5%,5%)- and (2,3%,5%, 5’*‘) face respectlvely So
wh > —4-4-— 2+2+-=—%,wtl >-3-2-2+2+3+3=-24,
wy > ~3-2-— 2+ x2—— by R6 and RA.

Case 2.1.2 The 2-vertex is mmdent a 3-face and not incident to a 4-face,
then the 3-face is (2, 3*,5%)- or (2 qt 4“') face for G contains no structure
Hg. We have w'(t1) > —4—4+ % = —- orw/(tl) > -4-4+3x2=-5
by R6.

Case 2.1.3 The 2-vertex is incident a 4-face and not incident to a 3-
face, we consider the situation such that the 2-vertex is a common vertex of
two 4-faces, then the two 4-faces are adjacent to at least two 8+_face for G

contains no 6- and 7-cycles. We have witl) > -2—-2—4 +3x2=-8by
R4 We can obtain that 'wt1 > mm{ 22, —18._5 _5}ie wj >—%,50
w'(z) 2 —3+wh 2 -F -3 =~% > -2, a contradiction.

xe V(G)U éGr}‘
Case 2.2 There exist two 2-vertices in G.
Case 2.2.1 The two 2-vertices are incident to a same 3-face, then f isa

(2,2,5%)-face for G contains no structure Hy. Sow}y > —2x4—4+1 =-%
by RG.

Case 2.2.2 Two 2-vertices are incident to a same 4-face. If each 2-
vertex is incident to another 4-face, we have wj, > -4 x2-2x3 = -14.

If one of the two 2-vertices is incident to another 3-face, the other 2-vertex
is incident to another 4-face, then the 3-face which is incident to the 2-
vertex is a (2,5, 5+) face for G contains no structure Hyg. We have wi, >
—4x3-2x2+1% x 2 = —28 by R6.

Case 2.2.3 Two 2-ve1tlces are not 1n01dent to a same face, from the
dlscussmn in Case 2.1, we have wj, > —7 X 2 = 3 . Clearly, we have
w)y > ~—4 in the rest cases. From the above discussion, we have w}, > —4%.
S0 3 revcure W'(E) -2-4= —18 > 20, a contradiction.

ase 3 There are at least three 2-vertices in G.
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For G contains no structures Hy7 ~ Hs4. G has the following properties.

Claim 3.1 Any vertex v is adjacent to at most one 2-vertex.

Claim 3.2 T'wo 2-vertices are not adjacent to each other.

Claim 3.3 For each v € V(G) with d(v) > 4, if v is adjacent to a
2-vertex, then it is not incident to a 3-face which is incident to a 3-vertex.

Claim 3.4 If v is adjacent to a 3-vertex, then it is not incident to a
3-face which is incident to a 2-vertex.

Claim 3.5 If a vertex v is adjacent to a 2-vertex, then it is not adjacent
to a 3-vertex which is adjacent to other 3~ ~-vertex.

Claim 3.6 3-faces in G which is incident to a 2-vertex are (2,6%,6%)-
faces.

Claim 3.7 4-faces which is incident to 2-vertices in G are (2,3,6%,6%)-,
(2,4,6%,6%)- or (2,5%,5%,5%)-faces.

Claim 3.8 There is at most one 2-vertex which is adjacent to a k-vertex
(3<k<L4)inG.

We call a 2-vertex a special 2-vertez if it is adjacent to a k-vertex
(3 < k < 4), otherwise a simple 2-vertex. Let ny(v) denote the number
of simple 2-vertices adjacent to v. We call a 4-face a simple 4-face if it is
incident to a 2-vertex. We use m/(v) denote the number of simple 4-faces
which is incident to v for each v € V(G).

Now redistribute the charge according to the following discharging rules.

R1', R2', R3' and R4’ are the same as R1, R2, R3 and R4 in Case 1.

R5’ is the same as R5 except that d(v) = 5 and f is a simple 4-face.
Transfer charge % from each 5-vertex to every incident simple 4-face.

R6’ If f is a 3-face incident to a vertex v, then v gives f charge 2 g if
d(v) =4 and f is a (3,4, 4)-face, 3 s, 1fd('u)—4andflsa(3 4,5%)-face, 2
if d(v) = 4 and f is an other face, £ if d(v) =5 and f is a (3, 3"' ,5)-face, &
ifd(v) =5 and f is a (4,4,5)- or (4 5,6%)- or (5,5,5%)-face, 2 if d(v) = 5
and f is a (5,6%,6%)-face, 2 if d('v) 6 and f is a (2,6, 6 )-face, I if
d(v) = 6 and f is a (3,3%,6)-face, 3 if d(v) = 6 and f is a (4,4, 6)- or
(4,5 6)-face, 3 ifd(v) =6 and f is an other face, 2 if d(v) = 7 and f is
a (2,7,6%)- or (3,3%,7)-, or (4,4, 7)-face, % if d(v) = 7 and f is an other
face, 2 if d(v) > 8.

R7' Transfer charge 2 from each 5%-vertex to every adjacent 2-vertex.

For any face f € F(G), if d(f) = 5, d(f) > 8, the discussion is similar
to the corresponding situation in Case 1. For any vertex v € V(G), if
d(v) = 3, the discussion is also similar to the corresponding situation in
Case 1. In the following, we discuss the rest cases.

Suppose d(v) = 2, then w’(v) = —4. Except the special 2-vertex, we
have w'(v) = —4+2 x 2 =0 by R7".

Suppose d(v) = 4. Then w(v) = 2 and m3(v) < 3.

First, we focus on the situation ny(v) = 0. If mg(v) = 3, then ng ('u) =0
for G contains no structures Hss and Hse. We have w'(v) > 2~ 2 x 3 =

[HES ATt
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0 by R6’. If mg(v) < 2, then the following discussion is similar to the
corresponding situation in Case 1.

In the following, we focus on the situation ny(v) = 1. By Claim 3.6,

we have mg(v) < 2. If mg(v) = 2, then n3(v) = 0 by Claim 3.3. We have

ww)>22-2x2=2>0by R6’ If ma(v) = 1, then ng(v) < 1 by Claim
3.3. We have w'(v) > > 2—2-1=1>0byR¢, R3’ Claim 3.3 and Claim
3.5. If ma(v) = 0, then nz(v) <3 So w'(v) >2—-1x3=1>0by R¥
and Claim 3.5.

Suppose d(v) = 5. Then w(v) = 5, m3(v) < 3. If na(v) = 0, then
the discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situation ng(v) = 1.

Case 3.1.1 ma(v) = 3, then mj(v) = 0, nz(v) = 0 by Claim 3.3. We
have w'(v) > 5 — % X2 - % — 2 =0 for G contains no structures Hgs7, Hgg
and by R6’, R7'.

Case 3.1.2 m3(v) = 2, then mj(v) < 1. If mjj(v) = 1 then ng(v) =0

by Claim 3.3, Claim 3.6 and Claim 3.7. Sow’(v)>5— x2—-2-2=0
by R6’, RS and R7'. If mf(v) = 0, then nz(v) <1 by Cla.lm 3.3. So
’(v)>5——x2—-—-2——>ObyCla1m35andbyR6’ R3', R7'.

Case 3.1.3 ma(v) =1, then mj(v) < 2. If m4(v) = 2, then n3(v) =0
by Claim 3.3 and Claim 3.7. So w'(v) > 5—-1—-2x2-2=1>0
by R6’, R5' and R7T'. If m}(v) < 1, then n3(v) < 2 by Claim 3.3. So
w’(v)>5—-—§——x2 9=1 >0byCla1m35andbyR6’ R5', R3
and R7’.

Case 3.1.4 m3(v) = 0, then mj(v) < 2, nz(v) < 4. We have w'(v) >
5—2x2—%x4-2=1>0byClaim 3.5 and by R, R3', R7".

Suppose d(v) = 6. Then w(v) = 8, ma(v) < 4. If na(v) = 0, then
the discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situation na(v) = 1.

If ma(v) = 4, then my(v) = 0, nz(v) = 0 by Claim 3.4. So w'(v) >
8—-2— -g- x 3 —2 = 0 for G contains no structures Hgg, Hgo and by R6'
and R7'. If m3(v) = 3, then my(v) < 1, ng(v) < 1. We have w'(v) >
8-2-32x2—-2-2-3=0by R6, R, R7' and R3". If m3(v) = 2, then
ma(v) < 2, n3(v) < 2. Wehavew'(v) > 8—2-3-2x2-2-1x2=3 >0by
R6', R5', R7' and R3'. If ms(v) = 1, then my(v) <3, na(v) <3 by Claim
3.3. Sow/(v) > 8— —2-2x3- 2—§x3 =1> 0by R6, R5', R7' and R3'. If
ma(v) = 0, then my(v) < 6, n3(v) < 5. Sow'(v) >8—2x6—-3x6-2=0
by R5', R3' and R7'.

Suppose d(v) = 7. Then w(v) = 11, ma(v) < 5. If na(v) = 0, then
the discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situation na(v) =1.

If ma(v) = 5, then my(v) = 0, n3(v) = 0. Sow'(v) = 11-2—Ix4-2=0
for G contains no structure Hgg, Hg and by R6', R7'. If mz(v) =4, then
ma(v) < 1, na(v) = 0. Sow'(v) >11—-2x4—-2-2=131>0by
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R6’, RS and RT'. If ma(v) = 3, then my(v) < 2, n3(v) < 2. So w'(v) >
11~ 2x3—§x2 2— x2=1> 0by R6’, RS, RT", R3'. Ifma('v) = 2, then
my(v) < 3, n3(v) < 6 we have w'(v) > 11-2x2-2x3-2-1x6=1>0
by R6’, RS, R7 a.nd R3. If m3('u) <1, then m4(v) < 7, na(v) < 6, we
havew’(v) >11-2-2x7-2-1x6=1%>0by R6¢, RS, R7 and RY'.
Suppose d(v) > 8. Then w(v) = 3d(v) —10. If np(v) = 0, then the
discussion is similar to the corresponding situation in Case 1. In the
following, we focus on the situatlon na(v) = 1. By Claim 3.3 and Claim
3.4, we have n3(v) < d(v) — §ms(v) — 1, ma(v) < d(v) — 3ms(v). So
w'(v) 2 3d(v) -10- 2m3(v)— —m4('u) —2-1n3(v) > 3d(v)—10— 2m3(v) -
2 x (d(v) — $msa(v)) —2— (d(v) — $m3(v) — 1) = 2d(v) — Em3(v) —
R6’ R, R7’ and R3'. Smce

mg(v) < Ed('v).

We obtain w'(v) > 3d(v)—$£ >1>0.

Suppose d(f) = 3. Then w(f) =—4 and na(f) < 1.

Case 3.2.1 na(f) = 1, then f is a (2,6%,6%)-face by Claim 3.6. So
w/(f) > -4+2x 2 =0 by R6".

Case 3.2.2 ny(f) = 0, n3(f) = 2, then ny(f) = 0, f is a special face
(3,3,5%)-face. The discussion is similar to the corresponding situation in
Case 1.

Case 3.2.3 n3(f) =1 and f is a (3,4,4)-, (3,4, 5)-face. The discussion
is similar to the corresponding situation in Case 1.

Case 3.24 n3(f) = 1 and f is a (3,4,6)-face. For G contains no
structures Hgz ~ Hey, f is not adjacent to any 3-face, then w/(f) > —4 +
2+2+3x2=0Dby R6' and R4".

Case 3.2.5 n3(f) =1, fis a (3,4, 7*)-face. For G contains no structure
Hyo, f is adjacent to at most two 3-faces. If f is adjacent to at most one
3-faces, the following discussion is similar to the corresponding situation
in Case 1. If f is adjacent to two 3-faces, then we need to consider the
following two structures Gg, G0 in Figure 2 for G contams no structures
Hyg, H3 and H32 We have w’(Gg) > —4x3+ + +2+ ><2+ x5 =
1>0,w'(Gro) > —4x3+7+3+2x2+7 + + x5=1 3 1> 0 by RE'
a.nd R4'.

Case 3.2.6 n3(f) = 1, f is a (3,5,5%)- or (3,6,6%)-face. If f is ad-
jacent to at most two 3-faces, the following discussion is similar to the
corresponding situation in Case 1. If f is adjacent to three 3-faces i.e.
G411 and Gys in Figure 2 for G contains no structures H3s and Hgg, then

w'(Gn) > —4x4+—x4+2x2+ +2x2+4x4_ B >0,
w'(Gy2) > —4x4+—x4+2x2+ + +2+3x4=1>0by
R6’ and R4’.



Case 3.2.7 n3(f) = 1, f is a (3,7%, 7*)-face, the following discussion is
similar to the corresponding situation in Case 1.

Case 3.2.8 n3(f) = 0, f is a (4,4, 4)-face, the following discussion is
similar to the corresponding situation in Case 1.

Case 3.2.9 n3(f) =0, fis a (4,4,5)- or (4,4, 6)-face. If f is adjacent to
at most one 3-face, the following discussion is similar to the corresponding
situation in Case 1. If f is adjacent to two 3-faces i.e. G4, G15 and Gyg
in Figure 2 for G contains no structures H3g ~ Hy, we have w (G14) >
—4x3+3x2+1 x3+3 x4+3x5=1>0,w (G15) > —4x3+§ x2+3 ><2+
3+2 x4+4x5 £>0, w(G16)>—4x3+ +3x2+3 +3x5+4x5— >0
by R6’ and R4'.

Case 3.2.10 n3(f) =0, f is a (4,4, 7*)-face, the following discussion is
similar to the corresponding situation in Case 1.

Case 3.2.11 n3(f) = 0, f is a (4,5, 5)-face. If f is adjacent to at most
one 3-face, the following discussion is similar to the corresponding situation
in Case 1. If f is adjacent to two 3-faces i.e. Gj7 or Gjs in Flgure 2 for G'
contains no structures Hyp and Hyz. We have v’ (G'17) > —4 X 3+ x2+2 x
3431 x4+4x5 = > 0, or w'(Gis) 2 —-4x3+32 +6x5+ +3x2+4x5 =
7 > 0 by R6' and R4’

Case 3.2.12 ns(f) 0, f|s a(4,5,6%)-or (4,6, 6"') face, then we have
w'(f) > —4+3+3+3+3=FH> Oorw'(f) >—4+2+3x2+3=4>0
by R6' and R4’.

Case 3.2.13 n3(f) = 0, f is a (5,5,5%)-face, then we have w'(f) >
-4+2 ><3+-——>0byR6’andR4’

Case 3 2. 14 n3(f) =0, fis a (5%,6%,6%)-face, then we have w'(v) >
—4+Z+4x2+3=1% >0byR6’andR4’

Suppose d(f) =4. Then w(f) = =2, n2(f) > 1 by Claim 3.7. If na(f) =
1, then f is a (2,3,6%,6%)-, (2,4,6%,6%)- or (2,5%,5%,5%)-face by Claim
3.7. Any 4-face which is incident to a 2-vertex is a,dJacent to at least one 8+-
face for G contains no 6- and 7-cycles. So w'(f) > —2+3+2x2=3%>0
by R4’ and R5’. If na(f) = 0, then the discussion is sumla.r to the situation
when d(f) = 4 in Case 1.

From the above discussion, we can obtain that w'(z) > 0 for each
z € V(G)U F(G) and z is none of a spec1al 3-vertex a specxal 2-vertex
and a special face. Furthermore, we have w} > —-§ —4=- by Claim 1
and Claim 3.8. From the above discussion, we have ZIGV(G)U Fe W (z) 2
-—121 > —20, a contradiction.

Case 4 §(G) =1.

Case 4.1 There is one 1-vertex and at most two 2-vertices in G.

When d(v) = 1, then w(v) = —7. If there is one 1-vertex in G, then
3-faces in G are (3~,5%,5%)-faces or (4%,4%,4%)-faces for G contains no
structure Hgs and the 4-faces which are incident to a 2-vertex in G are
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(2,5%,5%,5%)-faces for G contains no structure Hgg. Now there are not
special 3-vertices and special faces in G. The discharging rules are the
same as Case 1 except for the two cases. (1). A 4-face have a common
2-vertex with a 3-face. (2). Two 4-faces have a common 2-vertex. Un-
der these situation, transfer charge from its common incident vertices to
only the 3-face in the first situation and transfer charge from its common
incident vertices to only one of them in the second situation. Clearly, we
can guarantee the new charge of each vertex of G is larger than or equal
to zero. For convenience, let w}, (wj,) denote the total new charge of one
2-vertex (two 2-vertices) and the faces which are incident to the 2-vertex
(the two 2-vertices).

Case 4.1.1 There is one 2-vertex in G. If the 2-vertex is incident to
at most one 3-face and one 4-face simultaneously. Furthermore, the 3-face
and 4-face 1s (2,5%, 5"’) a.nd (2,5%,5%,5%)-face respectively. So w}, >

—4-2— 4+ X243 3 = —23 5 _g by R6 and R4. If the 2-vertex is incident
a 3-face a.nd not mmdent to a 4-face, then the 3-face is (2,5%,5%)-face. We
have w}; > —4—4+% x 2= —2 > —6 by R6. If the 2-vertex is incident a

4-face and not mc1dent toa 3—face, we consider the situation such that the 2-
vertex is a common vertex of two 4-faces then the 4-faceisa (2,5%,5%,5%)-
face. We have wj; > —4—-2— 2+ x3=—~2 > —6 by R4. We can obtain
that wy; > —6,50 3 cv(qyuF(6) w "(z) > —7+wt1 —7-6=-13> -20,
a contradiction.

Case 4.1.2 There are two 2-vertices in G.

For two 2-vertices are not incident to a same 3- or 4-face, from the dis-
cussion in Case 4.1.1, we have wi, > —6x2 = —12. S0 3 .y (gyur(c) W' (%)
-7 —12 = —-19 > —20, a contradiction.

Case 4.2 There is one 1-vertex and at least three 2-vertices in G.

For G contains no structure Hgs, the 3-faces in G are (37,5%,5%)-
faces or (4%,4%,4%)-faces. Now there are not special 3-vertices and special
faces in G. The discussion is same as the situation in Case 3, we have
Eer(G)U Fc) W' () 2 =7 —4=-11> ~20, a contradiction.

Case 4.3 )I‘here are at least two 1-vertices in G.

If there are two 1-vertices in G, then there is neither 2-vertex nor other
1-vertex in G for G contains no structure Hg7;. Furthermore, any 3-face in
Gis (3,5%,5%)- or (4*,4%,4%)-face for G contains no structure Hgs. Note
that there are neither special 3-vertices nor special faces in G now. And
the following discussion is the same as the situation in Case 1. These imply
that 3° cv(gyure (%) = =7 x 2 = —14 > —20, a contradiction. |

In the following, let us give the proof of the main theorems.

Theorem 2.8 If G is a planar graph without 6- and T-cycles and k >
max{6, A(G)}, then G is equitably k-colorable.

350

v



Proof. Let G be a counterexample with fewest vertices. If each com-
ponent of G has at most 4 vertices, then A(G) < 3. So G is equi-
tably k-colorable by Lemma 2.3. Otherwise, there is at least one com-
ponent with at least five vertices. By Lemma 2.7, G has one of the
structures H, ~ Hg7, taking one and the vertices are labeled as they
are in Figure 1. If there are vertices labeled repeatedly, then we take
the larger (z; is larger than z;_;). In the following, we show how to
find S in Lemma 2.4. If G has one of Hy, Hg, Hyg and Hgz, then let
8" = {zk, Tk—1,Tk—2,T1}. If G has one of Ha, Hg, Hyo, Hi2 ~ His, Hiz,
Hs, Ha1, Has, Hog, H3z, Hzo, Has ~ Hyz, Hs), Hes and Heg, then let
S' = {Tk,Tk-1,ZTk-2,%2,%1}. If G has one of Hy, Hy1, His, Hie, Hao,
Hyy ~ Hoy, Hog, Hay, Hyg ~ Hsg, Haq, Hye, Hso, Hss ~ Hse, Hei,
then let S’ = {zx,Zk~1,Tk—2,%3,%2,T1}. If G has Hy, then let &' =
{Zky Th~1,Tk—2, Tk—3,Z1}. If G has one of Hy, Hy, Hs, H3g, Hyo ~ Hys,
Hgo, Hsa, Heo, Hea ~ Hea, then let S = {zk,zr1,Ts—2,Tk-3, T2, T1}-
If G has Hs4, then let ' = {zg,zk-1,"* ,Tk—4,%1}. By Lemma 2.1, G
is 3-degenerate, then we can find the remaining unspecified positions in S
from highest to lowest indices by choosing a vertex with minimum degree
in the graph obtained from G by deleting the vertices already being chosen
for S at each step. By the minimality of |V(G)| and k > A(G) > A(G-S),
G- is equitably k-colorable. So G is also equitably k-colorable by Lemma
2.4, | |

Corollary 2.9 Let G be a planar graph without 6- and 7-cycles. If A(G) >
6, then x.(G) < A(G).

Corollary 2.10 Let G be a planar graph without 6- and 7T-cycles. If A(G) >
6, then x:(G) < A(G).

Theorem 2.11 If G is a planar graph without 6- and 7-cycles and k >
max{6, A(G)}, then G is equitably k-choosable.

Proof. Let G be a counterexample with fewest vertices. If each com-
ponent of G has at most 4 vertices, then A(G) < 3. So G is equitably
k-choosable by Lemma 2.5. Otherwise, the proof is similar to the proof of
Theorem 2.8 by Lemma. 2.6 and Lemma 2.7. |

Corollary 2.12 Let G be a planar graph without 6- and 7-cycles. If A(G) >
6, then G is equitable A(G)-choosable.
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