The Properties of Transformation Digraphs D^{xyz*}

Xiujuan Zhang a,b , Juan Liu a,c , Yan Long a,d , Jixiang Meng c

- a. College of Mathematics Sciences, Xinjiang Normal University,
 Urumqi, Xinjiang, 830054, P.R.China
- b. Urumqi Vocational University, Urumqi, Xinjiang, 830002, P.R.China
 - c. College of Mathematics and System Sciences, Xinjiang University
 Urumqi, Xinjiang, 830046, P.R.China
 - d. Kui tun Campus of YiLi normal University.
 kui tun, Xinjiang, 833200, P.R.China

Abstract: In this paper, we investigate some basic properties of these eight kinds of transformation digraphs.

Key words: Transformation digraphs; Connectivity; Isomorphism

1 Introduction

For graph-theoretical terminology and notation not defined here we follow Bondy and Murty [1]. We consider only strict digraph D(digraph contains no loops and no parallel arcs) with vertex set V(D) and arc set A(D). For a vertex $v \in V(D)$, we denote the indegree, the outdegree of v, the minimum indegrees and outdegrees in D by $d_D^-(v)$, $d_D^+(v)$, $\delta^-(D)$ and $\delta^+(D)$, respectively. We denote the minimum degree of D by $\delta(D) = \min\{\delta^-(D), \delta^+(D)\}$. $\overrightarrow{K_n}$, $\overrightarrow{C_n}$ and N_n denote the complete digraph, directed cycle and empty digraph of order n, respectively.

Let D = (V(D), A(D)) be a digraph, where |V(D)| = n, |A(D)| = m and $V(D) = \{v_1, v_2, \dots, v_n\}$. The line digraph of D, denoted by L(D), is

^{*}The research is supported by FSRPHEXJ (No.XJNU2010S30), the Key Project of Chinese Ministry of Education(211202), China Postdoctoral Science Foundation (No. 20100471000) and NSFXJ (No. 2010211A06).

[†]Corresponding author. E-mail: liujuan1999@126.com (J.Liu).

the digraph with vertex set $V(L(D)) = \{a_{ij} | (v_i, v_j) \text{ is an arc in } D\}$, and a vertex a_{ij} is adjacent to a vertex a_{st} in L(D) if and only if $v_i = v_s$ in D.

In [4], Wu and Meng introduced transformation graphs and investigated some basic properties of them. In [2], the authors gave the definition of transformation digraphs and discussed the properties of D^{++-} . In [3], the authors obtained the spectra of transformation digraphs of a regular digraph.

Definition 1.1. Let D = (V(D), A(D)) be a digraph, x, y, z be three variables taking values - or +. The transformation digraph of D, denoted by D^{xyz} , is a digraph with vertex set $V(D^{xyz}) = V(D) \cup A(D)$. For any vertex $a, b \in V(D^{xyz})$, $(a, b) \in A(D^{xyz})$ if and only if one of the following four cases holds:

- (i) If $a \in V(D)$ and $b \in V(D)$, then $(a,b) \in A(D)$ in D if x = + and $(a,b) \notin A(D)$ in D if x = -.
- (ii) If $a \in A(D)$ and $b \in A(D)$, then the head of arc a is the tail of arc b in D if y = + and the head of arc a is not the tail of arc b in D if y = -.
- (iii) If $a \in V(D)$ and $b \in A(D)$, then a is the tail of arc b in D if z = + and a is not the tail of arc b in D if z = -.
- (iv) If $a \in A(D)$ and $b \in V(D)$, then b is the head of arc a in D if z = + and b is not the head of arc a in D if z = -.

Thus, as defined above, there are eight kinds of transformation digraphs, in which D^{+++} is usually known as the total digraph of D. and D^{---} is its complement. Also, D^{---+} , D^{+--} and D^{-++} are the complement of D^{++-} , D^{+-+} and D^{+--} , respectively. In this paper, we investigate some basic properties of these eight kinds of transformation digraphs.

First, we list the out-degree vertex number and edge number of transformation digraphs D^{xyz} . Let $A = \sum_{v \in V(D)} d_D^+(v) d_D^-(v)$.

TD	vertex	$d^+(v), v \in V(D)$	$d^+(a), a = (u, v) \in A(D)$	edge number
D+++	m+n	$2d_D^+(v)$	$d_D^+(v)+1$	3m + A
D++-	m+n	m	$d_D^+(v)+n-1$	2mn-m+A
D	m+n	$n+m-1-2d_{D}^{+}(v)$	$m+n-2-d_{D}^{+}(v)$	$n^2 + m^2 - 4m - n + 2mn - A$
D+	m+n	n 1	$m-d_D^+(v)$	n^2+m^2-n-A
D+-+	m+n	$2d_D^+(v)$	$m-d_D^{\perp}(v)$	m^2+2m-A
D-+-	m+n	$n+m-1-2d_D^+(v)$	$d_D^+(v)+n-1$	$n^2 + 2mn - n - 3m + A$
D+	m+n	m	$m+n-2-d_D^+(v)$	$m^2 + 2mn - 2m - A$
D-++	m+n	n-1	$d_D^+(v)+1$	$n^2-n+m+A$

Tabel 1

2 Connectedness of D^{xyz}

The connectedness of D^{+++} and D^{++-} have been discussed.

Theorem 2.1. For a digraph D, D^{+++} is strongly connected if and only if D is strongly connected.

Theorem 2.2. [2] For a digraph D, D^{++-} is strongly connected if and only if D has at least one arc.

Theorem 2.3. For a digraph D, D^{+-+} is strongly connected if and only if $\delta(D) \geq 1$.

Proof. The 'only if' part is obvious. We now show the 'if' part. For any two vertices $u, v \in V(D)$, if there is a directed path in D from u to v, then there is a directed path in D^{+-+} . If there is no a directed path in D from u to v, then there are two arcs $a = (u, u_1)$ and $b = (v_1, v)$ in A(D) ($u_1 \neq v_1$) since $\delta(D) \geq 1$, hence $(a, b) \in A(D^{+-+})$. Thus, (u, a, b, v) is a directed path in D^{+-+} from u and v.

For any two vertices $a, b \in A(D)$, let $a = (u, u_1), b = (v_1, v)$. If $u_1 \neq v_1$, then $(a, b) \in A(\overline{L(D)})$. If $u_1 = v_1$, then (a, u_1, b) is a directed path in D^{+-+} from a to b.

For any two vertices $u \in V(D)$, $b \in A(D)$, then there is an arc $a = (u, u_1)$ in D for $\delta(D) \geq 1$. By the above argument there is a directed path P_1 from a to b, hence $(u, a) \cup P_1$ is a directed path in D^{+-+} from u to b. Similarly, there is an arc $c = (u_2, u)$ in D for $\delta(D) \geq 1$. Hence $P_2 \cup (c, u)$ is a directed path in D^{+-+} from b to u (P_2 is a directed path from b to c).

Theorem 2.4. For a digraph D, D^{+--} is strongly connected if and only if D has at least one arc.

Proof. If D is empty, then D^{+--} is not strongly connected. Now, we show that if D has at least one arc, then D^{+--} is strongly connected.

Take an arc $a=(u_1,v_1)\in A(D)$, then (u_1,v_1,a,u_1) is a 3-cycle in D^{+--} . For any two vertices $u,v\in V(D)$, if $(u,v)\in A(D)$, then $(u,v)\in A(D^{+--})$. Now we consider $(u,v)\notin A(D)$, if $u=u_1,v\neq v_1$, then (u, v_1, a, v) is a directed path from u to v. If $u \neq u_1, v = v_1$, then (u, a, u_1, v) is a directed path from u to v. If $u \neq u_1, v \neq v_1$, then (u, a, v) is a directed path from u to v.

For any two vertices $b,c \in A(D)$, if $(b,c) \notin A(L(D))$, then $(b,c) \in A(D^{+--})$. Now we consider $(b,c) \in A(L(D))$. Let $b = (w,w_1) \in A(D)$, $c = (w_1,w_2) \in A(D)$, then (b,w,w_1,w_2,c) is a directed path from b to c.

For any two vertices $u \in V(D)$, $b \in A(D)$, let $b = (w, w_1) \in A(D)$. If u = w, then (u, w_1, b) is a directed path from u to b. If $u \neq w$, then $(u, b) \in A(D^{+--})$. Similarly, if $u = w_1$, then (b, w, u) is a directed path from b to u. If $u \neq w_1$, then $(b, u) \in A(D^{+--})$. Thus, D^{+--} is strongly connected.

Theorem 2.5. For a digraph D, D^{-++} is strongly connected for any digraph D.

Proof. If D is empty, then it is obvious. For any two vertices $u, v \in V(D)$, if $(u, v) \notin A(D)$, then $(u, v) \in A(D^{-++})$. If $a = (u, v) \in A(D)$, then (u, a, v) is a directed path in D^{-++} from u to v. For any two vertices $a = (u, u_1), b = (v_1, v) \in A(D)$, if $u_1 = v_1$, then $(a, b) \in A(D^{-++})$; if $u_1 \neq v_1$, by the above argument, there is a directed path P from u_1 to v_1 , then $(a, u_1) \cup P \cup (v_1, b)$ is a directed path from a to b. For any two vertices $u \in V(D), b = (v_1, v) \in A(D)$, then $P_1 \cup (v_1, b)$ is a directed path from u to u to u (u is a directed path from u to u to u (u is a directed path from u to u is a directed path from u to u.

By the similar argument, we have the Theorem 2.6.

Theorem 2.6. For a digraph D, D^{--+} is strongly connected for any digraph D.

Theorem 2.7. For a digraph D, D^{-+-} is strongly connected if and only if D is not a star (out-star and in-star).

Proof. The 'only if' part is obvious. We now show the 'if' part. For any two vertices $u,v\in V(D)$, if $(u,v)\notin A(D)$, then $(u,v)\in A(D^{-+-})$, now we consider the case that $a=(u,v)\in A(D)$. If there is a vertex $u_1(\neq v)\in V(D)$ such that $(u,u_1)\notin A(D)$, then $(u,u_1)\in A(D^{-+-})$, if $(u_1,v)\notin A(D)$, then $(u_1,v)\in A(D^{-+-})$, thus (u,u_1,v) is a directed path in D^{-+-} , if $b=(u_1,v)\in A(D)$, then there is an isolated vertex x or an arc c such that

v is not the head of c since D is not an in-star, thus, (u, x, v), (u, c, v) or (u, b, u_1, c, v) is a directed path in D^{-+-} . For any vertex $w(\neq u) \in V(D)$, if $(u, w) \in A(D)$, then there is an arc $c = (w, z) \in A(D)$ such that $w \neq u$, and $z \in V(D)$ since D is not an out-star. Let (u, w) = d, if z = v, then (u, c, w, d, v) is a directed path from u to v, if $z \neq v$, then (u, c, v) is a directed path from u to v.

For any two vertices $a, b \in A(D)$, let $a = (u, u_1), b = (v_1, v)$, by the above argument, there is a directed path P from u to v in D^{-+-} , then $(a, u) \cup P \cup (v, b)$ is a directed path from a to b.

For any two vertices $u \in V(D)$, $b \in A(D)$, let $b = (v_1, v)$, if $u \neq v_1$, then $(u, b) \in A(D^{-+-})$, if $u = v_1$, then (u, P_1, v, b) is a directed path from u to b (Let P_1 be a directed path from v_1 to v). Similarly, if $u \neq v$, then $(b, u) \in A(D^{-+-})$, if u = v, then (b, v_1, P_1, u) is a directed path from b to u.

By the similar argument, we have Theorem 2.8.

Theorem 2.8. For a digraph D, D^{---} is strongly connected if and only if D is not a star (out-star and in-star).

3 Regularity of D^{xyz}

Theorem 3.1. For a digraph D of order n, then D^{+++} and D^{---} are regular if and only if $D \cong C_n$.

Proof. By Table 1, for any vertex $v \in V(D)$, we have $d_{D^{+++}}^+(v) = 2d_D^+(v)$, $d_{D^{+++}}^-(v) = 2d_D^-(v)$. For any arc $a = (u_1, u_2) \in A(D)$, we have $d_{D^{+++}}^+(a) = d_D^+(u_2) + 1$, $d_{D^{+++}}^-(a) = d_D^-(u_1) + 1$. If D^{+++} is regular, then $d_D^+(v) = d_D^-(v) = 1$ for every vertex $v \in V(D)$, hence $D \cong \overrightarrow{C_n}$. If $D \cong \overrightarrow{C_n}$, then D^{+++} and D^{---} are regular.

By the similar argument, we have the following Theorems.

Theorem 3.2. For a digraph D of order n, then D^{++-} and D^{--+} are regular if and only if D is an m-n+1-regular digraph.

Theorem 3.3. For a digraph D of order n, then D^{+-+} and D^{-+-} is regular if and only if D is an m/3-regular digraph.

Theorem 3.4. For a digraph D of order n, then D^{+--} and D^{-++} is regular if and only if D is an n-2-regular digraph.

4 Isomorphism of D^{xyz}

Theorem 4.1. Let D be a digraph, then the transformation digraphs $D^{xyz} \cong D$ if and only if $D \cong N_n$ when x = +, $D \cong K_1$ when x = -.

Proof. It is clear that if x = + and $D \cong N_n$, or x = - and $D \cong K_1$, then $D^{xyz} \cong D$. On the other hand, if $D^{xyz} \cong D$, then D has no arc, hence D is an empty digraph N_n . Thus, if x = + and $D^{xyz} \cong D$, then $D \cong N_n$. If x = - and $|V(D)| = n \geq 2$, then $D^{xyz} = \overline{N_n} = \overrightarrow{K_n}$, it is not isomorphic to D. Therefore, if x = - and $D^{xyz} \cong D$, then $D \cong K_1$.

References

- J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, Elsevier, New York, 1976.
- [2] J. Liu, J. Meng, The transformation digraph D^{++-} , Ars Combinatoria. Accepted.
- [3] J. Liu, J. Meng, Spectra of transformation digraphs of a regular digraph, Linear and Multilinear Algebra 58(5) (2010) 555-561.
- [4] B. Wu and J. Meng, Basic Properties of Total Transformation Graphs, J. Math. Study 34(2)(2001) 109-116.
- [5] B. Wu, L. Zhang and Z. Zhang, the Transformation Graphs, Discrete Mathematics 296(2005) 263-270.