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Abstract

Let B(n,k) be the set of bicyclic graphs with n vertices and
k pendant vertices. In this paper, we determine the unique graph
with minimal least eigenvalue among all graphs in #(n,k). This
extremal graph is the same as that on the Laplacian spectral radius as
done by Ji-Ming Guo[The Laplacian spectral radius of bicyclic graphs
with n vertices and k pendant vertices, Science China Mathematics,
53(8)(2010)2135-2142]. Moreover, the minimal least eigenvalue is a
decreasing function on k.
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1 Introduction

All graphs considered in this paper are finite, undirected and simple.
Denote by V(G) the vertex set and E(G) the edge set of a graph G. The
degree of a vertex v, written by dg(v) or d(v), is the number of edges
incident with v. A pendant vertex is a vertex of degree 1. The girth g(G)
of a graph G is the length of the shortest cycle in G, with the girth of an
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acyclic graph being infinite. Denote by C,, and P, the cycle and the path
on n vertices respectively.

Let A be the adjacency matrix of a graph G. Since A is symmetric and
real, the eigenvalue of A, i.e., the zeros of the characteristic polynomxal
¢(G; A) = det(M\] — A), can be arranged as follows: A\1(G) > X2(G) > -
An(G). For connected graph G, the spectral radius p(G) = A1(G) is sunple
and has a unique positive eigenvector up to multiples. We will refer to such
an eigenvector as the Perron vector of G. Denote A,(G) by A(G). Let X
be a unit vector, by the Rayleigh-Ritz Theorem, A(G) = min X7 A(G)X.
It is known [2] that A(G) = —p(G) for a bipartite graph G.

In [1], R.A. Brualdi and E.S. Solheid posed the problem of maximizing
the spectral radius and determining the extremal graph for a given class of
graphs, which became one of the classic problems of spectral graph theory.
Recently, the investigation on minimizing the least eigenvalue of a given
class of graphs is of great interest(for example, [3, 6, 7]). Let #(n,k) be
the set of bicyclic graphs with n vertices and & pendant vertices. k paths
P,,P,,...,P, are said to have almost equal lengths if /1,13, ..., l; satisfy
|li —1;| <1for1 <14,j < k. Let By(k) denote the bicyclic graph in &(n, k)
obtained from the graph G)(see Fig.1) by attaching k paths with almost
equal lengths to vertex v. The main result of this paper is as follows:

Theorem 1.1 Let B* have minimal least eigenvalue in B(n, k), wherel <
k <n—7. Then B* = By(k). Moreover, A(Bi1(k)) is a decreasing function
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F1g 1. Bicyclic graphs G1,G3 and G3

2 Preliminaries

Let B be a bicyclic graph. The base of B, denoted by By, is the
unique bicyclic subgraph of B containing no pendant vertices, and B can
be obtained from By by planting trees at some vertices of By.

Bicyclic graphs only have two types of bases. Denote by B(p, !, g)the
graph obtained by joining a new path P, : vov; - - - vj—1 between two vertex-
disjoint cycles Cp, and C,, where vp € V(Cy),vi-1 € V(Cp),g 2 p 2 3
and ! > 1. In particular, ! = 1 means identifying vo with v;—;. Denote
by P(p,q,!) the graph consisting of three pairwise internal disjoint paths
Ppt1, Pgy1, Py with common endpoints, where [ > g > p > 1 and at most
one of them is 1. We introduce two subclasses of B(n, k): #i(n,k) = {B €
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B(n,k)|Bo = B(p,l,q)} and B2(n, k) = {B € B(n,k)|Bo = P(p,q,1)}.
Then B(n, k) = B1(n, k) U Ba(n, k).

Let G, H be two disjoint connected graphs with « € V(G) and w €
V(H), we denote by GuwH the graph obtained from G and H by identi-
fying u with w.

Lemma 2.1 ([3]) Let G, H be two disjoint nontrivial connected graphs
withu,v € V(G) andw € V(H). Let X be a unit eigenvector corresponding
to AM(GuwH). If |z.| < |zy], then A(GuwH) > M(GvwH), and the equality
holds if and only if X is also an eigenvector corresponding to A(GvwH),

Ty = Ty and ZteNH(w) ;= 0.

Let G be a connected graph with uvv € E(G). We denote by G, the
graph obtained from G by subdividing the edge uv, that is, introducing a
new vertex on the edge uv. A walk vjvg--- vk (k > 2) in a graph G is called
an internal path, if these k vertices are distinct (except possibly v; = vy),
de(v1) > 2, dg(vk) > 2 and dg(v2) = - -+ = dg(vg—1) = 2 (unless k = 2).

Let W, (n > 6) be the graph obtained from a path vivg--:vn—q by
attaching two pendant vertices to v; and another two to v,—4. Hoffman
and Smith showed the following result.

Lemma 2.2 ([4]) Let G be a connected graph with wv € E(G). If wv
belongs to an internal path of G and G 2 Wy, then p(Guy) < p(G).

Lemma 2.3 ([9]) Let u,v be two distinct vertices of a connected gmph G,
{vili = 1,2,...,s} € Ng(v)\(Ne(w) U {u}), and X = (1,T2,...,%n)T be
the Perron uector of G. Let G* = G — Y ;_jviv + Y i vith. If zy > Ty,
then p(G) < p(G")-

Lemma 2.4 ([6])Let fi(z) = =z, fi(z) = = — m,i > 2 Forz £ -2,
then fi(z) < fiy1(z) < -1

Lemma 2.5 ([6])Let vo be a vertex of a connected graph G with at least
two vertices. Let Gy (I > 1) be the graph obtained from G by attaching a
new path P : vouy --- v of length | at vo, where vy,...,v are distinct new
vertices. Let X be a unit eigenvector of A(Gt). If A(G1) < —2, then we have
()2, = fimi{N)Tu,y, (0 < i < U—1), where fi(z) is a function on = defined
in Lemma 2.4 and A = A(G).

(4)For any fizedi (i = 0,1,...,l-1), we have |z, ,| < |z, | and Ty, Ty, ,, <
0, with equalities if and only if z,, = 0.

Lemma 2.6 Let g,(z) = %, gi(z) =z~ ge_-hﬁ (122). Let hy(z) =z -1,
hi(z) = 2— 5205 (i 2 2). Ifa < -2, then for any i, giy1(z) < gi(z) < -1
and hi(z) < hip1(z) < =1,
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Proof. We use 1nduct1on on i to show the result. Initially, g;(z) =

and gx(z) = z — £, Clearly, g2(z) < g1(z) < —1, since z < —2. Now
suppose that the result holds for i > 1. Then by the mductxon hypothe31s,
9i+1(2) = - 515y < 241 < —1 and gi42(2) i (2) = gy — 5ieey < O-
For h;i(z), we can get the result likewise. O

Lemma 2.7 ([6]) Let A be an n X n real symmetric matriz and )\ be the
least eigenvalue of A. If X € R™ is a unit vector such that A = XTAX,
then AX = AX.

Lemma 2.8 Let G be a connected graph, C; = vovy -+ vi—1v0 be a cycle
and GuoC; be the graph obtained by identifying vo with some vertez of
G(see Fig.2). Then there exists an eigenvector X of A(GuoCi) such that
Ty, = Ty,_;, Where 1 <i <1 —1.

i3]

Fig.2. G'voC[.

Proof. Let X be a unit eigenvector of A(GuoC). Note that there is an
automorphism ¢ of GupC; which maps v; to v;_; for 1 < i <1 —1 and
preserves other vertices. Define a new vector X such that X, = Ty (v) for
each vertex v € V(GuvoC).

EX+X ~#0, then X +X is clearly a desirable eigenvector of A\(GvyC).
Otherwise X + X = 0, then z, = 0 for each vertex v € V(G). Note that
X is an eigenvector of A(GupC}), without loss of generality, assume that
zy, # 0 for some v € V(Ci) \ {vo}. Let 9 be a circular permutation of
Ci such that ¥(v;) = vipk(mod (0 < i <1 —1) and define a new vector Y-
such that y,, = zy(y,) for each v; € V(C}) and y, = z,, for each v ¢ V(C;)
We can observe that A(GuoC)) = XTAX =2 Youve E(GuoCy) Tulv = YT AY,
and hence by Lemma 2.7, Y is also a unit eigenvector of A(GvoC}) with
Yvo = Ty, # 0. Similar to X, deﬁneavect;or Y,then Y +Y #0is a
desirable eigenvector of ,\(GvOC'I) ]

Lemma 2.9 Let X be a unit eigenvector of GuoCy corresponding to A(GvoCi)
such that z,, = z,,_,, where1 <i <l-—1. gi(z) and h;(z) are two func-
tions on x defined in Lemma 2.6 and A = A(GvoC)). If A < =2, then

(i) For even l, z,, = 91 —i(A)Zuyys and thus [Ty, | < |2y and 24,2, <
0, with equalities if and only if x,, =0, where 0 < i < % ;

(i) For oddl, z,, = hizi_i(A)Zuy1y and hence |z, | < |2v,| and 2o, Ty, <
0, with equalities if and only if z,, =0, where 0 <i < -’;—3
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Proof. For even l. From A(GuyCi)X = AX, we have Az, y = Tvica +
L2

Ty, =2%y,_, and Az, = Ty,_, + Ty,,,, Wherei=1,2,..., % By these
=

k;_ﬂ_
two equations, it is easy to show that the first half of (i) holds.

Since A < —2, then by Lemma 2.6, gi(A) < —1. Hence, from the first
half of (i), we have if z,,,, # 0, then |zy,,| < |Zv;|, Tv, vy, < 0, Where

i=0,1,..., ’—;—"’- Also from the first half of (i), we have
T, = 93Nz, = 95 (N)g152(N)20,
= =g N2 (V) NN,

Thus z,, =0 if and only if z,, =2, =+ = Ty, = 0. Then (i) holds.
Similarly, we can prove that (ii) holds. D

Lemma 2.10 ([5]) Let v be a vertez in a connected graph G and suppose
that two new paths P : vuyvy---vg and Q : vujug - -umy of length k,m
(k > m > 1) are attached to G at v, respectively, to form a new graph Gy,
where vy,vs,...,V; and uj,us, ..., Uy, are distinct new vertices. Then for
any A > p(Gi,m), we have ¢(Gry1,m—-1;2) > ¢(Grm;A). In particular,
P(Gr,m) > P(Ghy1,m—1)-

Lemma 2.11 ([8]) Let v be a vertex of G and € (v) be the set of all cycles
containing v. Then

HGN) = MG -vN)— Y $(G-v—uA) =2 Y HG-V(Z)N.

ueN(v) Ze¥€(v)

Lemma 2.12 ([5]) Let G and H be two connected graphs such that $(G; A) >
$(H; A) for A 2 p(H) or A = p(G), then p(G) < p(H).

Let Bz(k) denote the bicyclic graph in %(n, k) obtained from the graph
Ga(see Fig.1) by attaching k paths with almost equal lengths to vertex v.
Note that both B,(k) and Ba(k) exist if and only if k > 1,n > k4 7.

Lemma 2.13 If both By(k) and Ba(k) exist, then p(B1(k)) > p(Ba(k)).

Proof. Denote by ! the maximal number of vertices of a path attached to
the vertex v of Ba(k). Note that ¥ < n — 7, then | > 2. Suppose that the
number of such paths is ¢.
Casel. t > 2.

Let B; be the graph analogous to Bj(k) in which all paths attached
to vertex v have | — 1 vertices. Let By be the graph analogous to By(k)
in which all paths attached to vertex v have ! vertices. Evidently, B; is
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an induced subgraph of B;(k) and Bz(k) is an induced subgraph of Bs.
Therefore, p(B;) < p(B1(k)) with equality if and only if n = (I — 1)k + 7.
Also, p(Bz(k)) < p(Bz2) with equality if and only if n = lk + 5. Thus for
the proof of Lemma 2.13 it is sufficient to show that p(B;) < p(B;). Let
T = p(Bz), by Lemma 2.12, it suffices to show that ¢(B;;r) < 0.

By applying Lemma 2.11 to the vertex v of By and Bs, respectively,

$(B1;A) = A2(A2=2)(Pro1; \)¥ (A3 —6A)p(Pr—1; A) k(A2 —2)$(Pr—2; N)};

$(Bz; A) = N¢(Pi; ¥ [(A® = 6X)(Py; X) — k(A — 3)$(Pi—1; A)).

Note that (r3 — 6r)¢(P;r) — k(r? — 3)¢(P;—1;) = 0, where | > 2. Then
for | > 3 we have (r® — 6r)¢(Pi—1;7) — k(r? — 3)¢(Pi—2;7) = 0. Hence
#(By;r) = —kr?(r? — 2)¢(P—1;7)* "1 ¢(P—2;7) < 0 since 7 > 2. When I =
2, §(By;r) = 12(r2 = 2)¢(Py;r)*(r — 6r)p(Py; 7) - k(r® —2)¢(Poi7)] < 0
since k = A= fr_;r"l .

Case2. t=1.

In this case, it is straightforward to check that the maximal number of
vertices of a path attached to the vertex v of Ba(k) is !, while the minimal
number of vertices of a path attached to the vertex v of By(k) is Il — 2,
where | > 3. Let B be the graph analogous to B;(k) in which all paths
attached to vertex v have | — 2 vertices and Bz be the graph analogous to
Bs(k) in which all paths attached to vertex v have [ vertices. Evidently, B}
is an induced subgraph of B; (k) and By(k) is an induced subgraph of B,.
Therefore, p(B}) < p(Bi(k)) with equality if and only if n = (! - 2)k + 7.
Also, p(Ba(k)) < p(Bs) with equality if and only if n = lk + 5. Thus for
the proof of Lemma 2.13 it is sufficient to show that p(Bz) < p(B}). Let
T = p(B2), by Lemma 2.12, it suffices to show that ¢(Bj;r) < 0. Similar
to Casel, we can easily prove the result. O

Let B3(k) denote the bicyclic graph in %(n, k) obtained from the graph
Gj(see Fig.1) by attaching k paths with almost equal lengths to vertex v.
Note that both B, (k) and Bs(k) exist if and only if k > 1,n > k+ 7.

Lemma 2.14 If both By (k) and Bs(k) exist, then p(B;(k)) > p(Bs(k)).

Proof. Denote by ! the maximal number of vertices of a path attached to
the vertex v of Bs(k). Note that k <n — 7, then ! > 2.

Let B; be the graph analogous to B;(k) in which all paths attached
to vertex v have I — 1 vertices. Let B3 be the graph analogous to Bs(k)
in which all paths attached to vertex v have ! vertices. Evidently, B; is
an induced subgraph of B;(k) and Bs(k) is an induced subgraph of Bj.
Therefore, p(B1) < p(Bi(k)) with equality if and only if n = (I — 1)k + 7.
Also, p(Bs3(k)) < p(B3) with equality if and only if n = lk + 6. Thus for
the proof of Lemma 2.14 it is sufficient to show that p(B3) < p(B1). By
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Lemma 2.12, it suffices to show that ¢(B; p(B3)) < 0. Similar to Casel of
Lemma 2.13, we can easily get the result. O

Let By(k) denote the bicyclic graph in %(n, k) obtained from the graph
G (see Fig.1) by attaching k paths with almost equal lengths to vertex u.
Let Bs(k) denote the bicyclic graph in %(n, k) obtained from the graph
Gs(see Fig.1) by attaching k paths with almost equal lengths to vertex wu.

Lemma 2.15 p(B3(k)) > p(Ba(k)) and p(Bs(k)) > p(Bs(k))-

Proof. Assume that k(k > 1) paths in By(k) and Ba(k) are P, yoror Pl
Apply Lemma 2.11 to the vertex v of Bz(k) and the vertex u of Ba(k),

B(Ba(k);A) = (A°—6X)B(Py; ) $(Py; A) — (A — 3)2)

k
Y G(Pui ) S(Prm1i ) -+ $(Pys N,

i=1
$(Ba(k);N) = (A°—6X)G(Py; M) - (P A) — (A = 4)?)
k
> AP A) - B(Pi-1; A) -+ $(Piui N).
i=1
For A > p(B2(k)) = 2.5576, we have

k
$(Ba(k); \) — $(Ba(k)i A) = A2 Y (Py; ) -+ §(Pr—1; A) -+ - 6(Piu; A) > 0.
i=1

By Lemma 2.12, p(By(k)) > p(Ba(k)). Similarly, we can get p(Bs(k)) >
p(Bs(k)).
3 Characterization of the extremal graph

Let B* have minimal least eigenvalue in %(n, k), and B(k) € B(n, k).
Note that By (k) is a bipartite graph, hence A(B*) < A(B1(k)) = —p(B1(k)) <
—p(G1) =~ —2.4495. Note that By (k) exists if and only if k > 1,n > k+ 7.
For any B € %(n, k), we know that B € #1(n, k) or B € B3(n, k).

Lemma 3.1 For any graph B € %1(n, k), there exists a graph B € $11(n, k) (see
Fig.8)such that A\(B) > A(B).

Proof. For any graph B € %,(n, k), B can be obtained from B(p,!,q) by
planting trees at a subset V of V(B(p,!,q)), where P, : vovy « -+ v;_1 is the
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unique path between C, and C,, any u € V} is called the root of tree T,
or the root-vertex of B. Let X be a unit eigenvector of B corresponding
to A(B). Without loss of generality, let |z,| = max{|z.||u € Vp}. Let B;
be the graph obtained from B(p, !, q) by planting all the trees T, at vertex
u to form a new big tree T with root v. From a repeated use of Lemma
2.1, we have A(B) > A(B1). Consider the graph B,. If v & V(P,), without
loss of generality, we can assume that v € V(Cp) \ {vw}. Let X' be a
unit eigenvector of B; corresponding to A(B;). Denote N(v) N V(T') =
{z1,...,24,—2} and N(w) NV(P,UC,) = {wy,...,wa, —2}. Define

B, — { By — {vzy,...,vzq,—2} + {voz1,...,v2d4,-2} if |:z::,°| > Ia::,}
2 = . h h
By —{vowy, ..., vowd, -2} + {vwy,...,vwa, -2} if |z,| <z,
Then in either case, the unique root-vertex v = vp € V(F,) in B,, and
by Lemma 2.1, A(By) 2 A(Bz). If v € V(P,), then By = By, and A(B,) =

A(Bg). Hence for any graph B;, we can always find a graph B, with A(B,) >
A(B2), and the unique root-vertex v = v; € V(P;) in By, where 0 < i < [—1.

k paths

F1g3 @11 (n, k)

Consider the graph Bs, let ¢ be the cardinality of the vertices whose
degrees are no less than 3 in V(T) \ {v;} and X" be a unit eigenvector
corresponding to A(Bz), and now we distinguish the following three cases:

Casel. t = 0. In this case, B = B, € $11(n, k), and A\(Bz) = A(B).

Case2. t = 1. We can assume that there exists one vertex v € V(T') \
{v;} with d(v) > 3 in By, then there is a unique path with the length at
least 1 joining v; and v. Denote N(v;) = {wy,wa,ws,...,wp} and N(v) =
{z1,22,23,...,2,}. Assume that w,z belong to the path joining v; and
v, wsg lies on the path from vg to v;. Define

B= { By — {vz3,...,v2,} + {vi23,...,v:2,} 'z:f |a:;;,| > |.'L';:|,

By — {vyws, ..., vwp} + {vws,...,vwp} if |z, | <|z,]|

Then in either case, B € 811(n, k) and by Lemma 2.1, A\(Bz) > A(B).
Case3. t > 1. Suppose that u,v € J/(T) \’{'u,-} are two vertices of Bj
whose degrees are 3 or greater, and |z,| > |z,|. Since T is a tree, there
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is a path between u and v and only one neighbor of v, say w, is on the
path. Assume {v;,vs,...,v4,—2} C N(v) \ {w}. Delete the edges (v,v;)
and add the edges (u,v;) (1 < j < dy — 2), then we get a new bicyclic
graph B’l Obvious], B; still has k pendant vertices. By Lemma 2.1, we
have A(Bz) > A(B;) and the cardinality of the vertices of degree 3 or
greater decreases tot—1. If t—1> 1, to Bl repeat the above step until
the cardinality is only one. So we get blcychc graphs B, Ba, B,,l, and
A(By) > M(By) = -+ = M(B,_,). Moreover, each B hask pendant vertices.
Refer to Case2, there exists B € %,;1(n, k) such that A(B,_;) > A(B). By
the above cases, we complete the proof. DO

For any graph B € %s(n,k), B can be obtained from P(p,l,q) by
planting trees at a subset Vp of V(P(p,l,q)), where any u € V} is called
the root of tree T, or the root-vertex of B. Similar to the proof of Lemma
3.1, we have the following result.

Lemma 8.2 For any graph B € Ba(n, k), there exists a graph B € B (n, k)J
Baa(n, k) (see Fig.4) such that A(B) 2 A(B).

Lemma 3.3 Let B* have minimal least eigenvalue in B(n, k), where 1 <
k <n-~17. Then B* contains no Cs.

Proof. Note that B(n, k) = $B:(n, k)UB2(n, k). Suppose that B* contains
Cs, then for the proof of Lemma 3.3 it suffices to find a graph B € %,(n, k)U
Ba(n, k) such that A(B*) > A(B).

k p:ths lﬂths

e Y

\_Piﬂ .__/
.@21 (n, k) .@22 (n, k)
Fig.4. Two classes of graphs in Ba(n, k).

If B* € 8B;(n, k). By Lemma 3.1, we may assume without loss of gen-
erality that B* € %),(n, k). By the definition of the graph B(p,l,q), we
have ¢ > p > 3 and ! > 1. Suppose that B* contains C3, then p = 3.
Let N(v) N V(C3) = {u1,u2}, Cy = vi—1wywa -+ -wy—1v;—1 be the other
cycle of B*. By Lemma 2.8, there exists a unit eigenvector X of A(B*)
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such that z,, = z,, and z,,, = = ZTy,_;, where 1 < i < ¢ — 1. Note
that A(B*) < —2.4495, by Lemmas 2.5, 2.9 and AX = A(B*)X, then
Tygy Tyy_, 7 O(otherwise X = 0). Now we distinguish the following two
cases:; '

Casel. [ =1, then we have v;—; = v; = vp. According to Lemmas 2.5
and 2.9, then each component of X is not equal to zero.

Casel.l. ¢ > 5 is odd.

Casel.l.l. z,,%y,_, <0.Let B=B* —Ull W1 Wept +u1w3_;_1 +

UgWatr. Clearly B € %(n, k), and
A(B)-A(B*) < XT(A(B)-AB*)X
= —2(zy, —:z:,,,g_;_l)2 <0,

hence A(B*) > A(B).

Casel.l.2. zy,Ty,_, > 0, then ¢ > 7. Next, for convenience, let
A(B*) = A. By Lemma 2.9, we have z,, = hg_;_l (A)hg_-;é (A) - - hi(A)zy
and z,, = (A — 1)z,,. By Lemma 2.6, h;(A) < —1, hence

2] = lhaga(Whaza(A) -+ ha(A)|Zw g, |

|h3(A)h2 (M1 (A)]|zw a1 |

%__[

v

= AB-2-_2+ 1||x,,,1;_1|.

Since A < —2.4495, then [A\3 — )2 —2X+1| > |A—1|, and we have |:z:,,,1;l | #
|Zw, |- Let B = B* — ujug — w%_nw,_#_ +wwazs + uzwq_ Clearly B €
%#1(n, k) and A(B*) > A(B), since z,, = z,, and Twgs = Tuggs -

Casel.2. ¢ > 6 is even.
Casel.2.1. {isodd, then z,,2, $ > 0. By Lemma 2.9, we have z,, =

93 (A)gﬂ_;_z (A)-- -gl()\)zw; and z,, = (A — 1)z,,. By Lemma 2.6, g;()\) <
—1, hence

|Zool = l9g(N)gaz2(X) -+ 1 (V)[|Zwy |

93(A)g2(A)91(A)||zwg |

v

— L _
= 0% = 3N)llzug).

Since A < —2.4495, then |3(A3 —3A)| > |\ — 1|, and we have |mw%| < |Zy,|.
Let B = B* —ujuqg — Wasa Wy +uiWe2 +ugwy. Clearly B € %#;(n, k) and
A(B*) > A(B).



Casel.2.2. % is even, then ¢ > 8. Note that -‘1;—2 > 3 is odd, hence

Ty, Ty,_, > 0. Similar to Casel.2.1, we can show that |z, _, | < |Zy,|. Let
B = B* —ujus — wy-2wg + uWez + ugwy. Clearly B € %,(n,k) and
A(B*) > A(B).

Casel.3. ¢ = 3 or 4. If there exists a pendant vertex s in B* such that
dp- (s, vo) is even, then by Lemma 2.5, z,,z; > 0. Note that =, z, < 0. Let
B = B* —ujus + u38, clearly B € %#,(n, k) and A(B*) > A(B). Otherwise
for any pendant vertex t in B*, dg-(t,vp) is odd. Since k < n — 7, then
there must exist a pendant path with length s > 3. We have z,,z, > 0.
And next we will show that |z;| < |Zu,|. By Lemma 2.5, we have z,, =
£s(Nfo-1(A) - - 1(N)2s and Tyy = (A— 1)z, By Lemma 2.4, fi(}) < -1,

[fs(A) fo=1(X) - - (M)

|f3(A) 2 (W) Fr (M)l
|A3 = 2)]|z].

|Z |

\Y

]

Since A < —2.4495, then |A3 — 2)| > |A — 1|, and we have |z,| < |Ty,|. Let
B = B* — ujus +u; 8, clearly B € #,(n, k) and A(B*) > A(B).

Case2. | > 2. We have vy # v;—1.

Define a new vector Y from X as follows: y; = (—1)48*(:)|z;| for each
vertex i € V(B*), then y,, > 0. By Lemma 2.7, Y is also a unit eigenvector
of A(B*).

Case2.1. 1 =0, ie. v; =vp.

Clearly |yw,| > |¥u,_,|-(Otherwise |yuo| < |yu,_,|. Let B be the graph
obtained from B* by removing all the pendant paths at vp to v;_;, clearly
B € %, (n, k), and by Lemma 2.1, we have A(B*) > A(B). If A(B*) = A(B),
then y,, = yu,_, = 0, hence Y = 0, a contradiction. So we have A(B*) >
A(B).) When g > 3 is odd, by Lemma 2.9, |yy,]| = |h1(A)||yu,| and |yo,_,| =
Pzt Nhaze () - BaWllyw s | 2 11N [8wgs | hence [y, | > [yu,y |-
Let B = B* —ujug —'lUg_;_l'I.Ugjz—_l +u1wg_;_1 +u2wg;_1. Clearly B € .@z(n, k)
and A(B*) > A(B). When ¢ > 4 is even. If dg.(vp,v1-1) is even, by the
definition of Y, yu, Yy, < 0 and Yy, Yy, < 0. Let B = B* — wyv_1 +
wyvg. Clearly B € %:(n, k) and A(B*) > A(B). Otherwise dp-(vo,vi—1)
is odd, then y,,_, < 0. By Lemma 2.9, |y,,| > |y,,,,‘,_;_2| > Iyw§ |. Let
B = B* —uyuy — Wy Wap +UWet +UpWaa . Clearly B € B(n, k) and
A(B*) > A(B).

Case2.2. 1<i<l—1.

Clearly |yvo| < |yu;|-(Otherwise |yy,| = [40;|. Let B be the graph ob-
tained from B* by removing all the pendant paths at v; to vo, clearly B €
%, (n, k), and by Lemma 2.1, we have A(B*) > A(B). If \(B*) = A(B), then
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Yvo = Yu; = 0, hence Y = 0, a contradiction. So we have A(B*) > A(B).)
If dp- (vo,v;) is even, by the definition of Y, yy, 4y, < 0 and gy, %, < 0.
Let B = B* — ujvo + u1v;. Clearly B € %(n,k) and A\(B*) > A(B).
Otherwise dp-(vo,v;) is odd. Define a new vector Z from Y as follows:
Zy, = =Yy, and z; = y;,i € V(B‘) \ {ul}. Let B = B* — u1vy + w1v;,
clearly B € %,(n, k). And

MB*)—A(B) > YTAB“)Y - ZTAB)Z
= 2093, + Yuour +93, + Yuitu,)
> 2|y“ll(|y‘ui| - lyvoD > 0.

If B* € #2(n,k). By Lemma 3.2, we may assume without loss of gen-
erality that B* € %21(n, k) U Baa(n, k). By the definition of the graph
P(p,l,q), we have | > ¢ > p > 1 and at most one of them is 1. Suppose
that B* contains C3, then p=1,q=2,1 > 2.

Let X be a unit eigenvector of B* corresponding to A(B*). Let u and
v be two common endpoints of P,, P;, P11, w be the other vertex of Cs.
For even i > 4 or odd ! > 3. If z,z, > 0, without loss of generality letting
zy > 0,z, 2> 0, then except u,v the path Py, must contain a vertex with
negative value given by X. Deleting uv and adding edge between u(or v)and
the negative vertex, we get a graph B € %,(n, k) with A(B*) > A(B). If
A(B*) = X(B), then zy(or z,)= 0. Considering the equation A(B*)X =
A(B*)X at vertex u(or v), we can deduce that X = 0, a contradiction.
Hence A(B*) > A(B). If zyz, < 0, without loss of generality letting =, >
0,z, < 0,2y = 0, then except u,v the path P;;; must contain a negative
vertex. Deleting wu and adding edge between w and the negative vertex,
we get a graph B € B5(n, k) with A(B*) > A(B). If A(B*) = A(B), then
z,, = 0. Considering the equation A(B*)X = A(B*)X at vertex w,u,v, we
can deduce that X = 0, a contradiction. Hence A(B*) > A(B).

For even ! = 2. When v is the root-vertex of B*, If z,z, > 0, without
loss of generality letting =, > 0,z, > 0. Since 1 < k < n — 7, then
there exists a pendant path containing a non-pendant negative vertex t
such that d(v,t) = 1. Deleting uv and joining ut, we get a graph B €
Ba(n, k) with A(B*) > AB). If z,z, < 0, without loss of generality
letting z, < 0,2, > 0. If z,, > 0, deleting wv and joining wt, we get
a graph B € %5(n,k) with A(B*) > A(B). Otherwise z,, < 0, there
exists a pendant path containing a non-pendant positive vertex g such that
d(v,q) = 2. Deleting wu and joining wq, we get a graph B € %B;(n, k)
with A(B*) > A(B). When w is the root-vertex of B*, similar to the above
proof, we can find B € %,(n, k) U Ba(n, k) such that A(B*) > A(B). O
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Lemma 3.4 Let B* have minimal least eigenvalue in B(n, k), where 1 <
k <n-17 If B* € %1(n,k), then p = q = 4. If B* € By(n,k), then
B* = By(k) or Ba(k).

Proof. By the Lemma 3.3, B* contains no C3.

When B* € %;(n, k), by Lemma 3.1, we may assume without loss of
generality that B* € %)1(n, k). By the definition of the graph B(p,l,q),
we have g > p > 3. Note that B* contains no C3, then ¢ > p >4.If ¢ > 5.
Let B be the graph obtained from B* by contracting C, to Cy and adding
a pendant path P,_4 to a pendant vertex of B*, then B € %;(n, k) and
B is bipartite. By Lemma 2.2, p(B*) < p(B). Thus A(B*) > —p(B*) >
—p(B) = A(B). Hence p = g = 4.

When B* € %;(n,k), by Lemma 3.2, we may assume without loss of
generality that B* € %) (n, k) U Bo2(n, k). By the definition of the graph
P(p,l,q), we have I > ¢ > p > 1 and at most one of them is 1. Note that
B* contains no Cj, then we distinguish the following two cases:

Casel. 2<p<g¢g<l

If 3 < p < ¢ <l. Let B be the graph obtained from B* by contracting
P(p,l,q) to P(2,2,2) and adding a pendant path Pp4g4i-6 to a pendant
vertex of B*, then B € %»(n,k) and B is bipartite. By Lemma 2.2,
p(B*) < p(B). Thus \(B*) > —p(B*) > —p(B) = MB). If p=2,3 <
g<lorp=2¢q=23 < similar to the above proof, there exists
B € @B(n,k) such that A(B*) > A(B). Hence p = ¢ = | = 2. Clearly
P(2,2,2) = Ga(see Fig.1). Note that at this moment B* is bipartite,
we consider p(B*). If v € G, is the root-vertex of B*, by Lemmas 2.2,
2.3 and 2.10, we have B* & By(k). If u € G is the root-vertex of B*,
then B* & By(k). Combining Lemma 2.15, p(B2(k)) > p(Ba(k)). Hence
B* 22 By(k).

Case2. p=1,3<¢<l.

Similar to the proof of Casel, then p = 1,q = ! = 3. Clearly P(3,1,3) =
Ga(see Fig.1). Note that at this moment B* is bipartite, we consider p(B*).
If v € G5 is the root-vertex of B*, by Lemmas 2.2, 2.3 and 2.10, we have
B* = Bs(k). If u € G is the root-vertex of B*, then B* = Bs(k). Com-
bining Lemma 2.15, p(Bs(k)) > p(Bs(k)). Hence B* & Bs(k). 0O

Let B* have minimal least eigenvalue in #(n, k). When B* € %#,(n,k),
clearly, B* have minimal least eigenvalue in %,(n,k). By Lemma 3.1, we
may assume without loss of generality that B* € &y, (n, k). Let B7,(n, k)
be the set of bicyclic graphs in %11(n, k) with p = ¢ = 4. According to
" Lemma 3.4, B* € %B},(n,k). Note that A(G) = —p(G) for any bipartite
graph. Thus the problem minimizing the least eigenvalue in &;(n,k) is
equivalent to that of maximizing the spectral radius in 8}, (n, k).

Theorem 3.5 Let B* have mazimal spectral radius in B%,(n, k), where
1<k<n-—17 Then B* = B,(k).
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Proof. If | = 1, then we have v;_; = v; = vy. From a repeated use of
Lemma 2.10, we have B* = B, (k). Otherwise ! > 2, then 0 < i <[ —1. For
any B* € .@ll(n, k), by Lemmas 2.2 and 2.3, there exists B € 8y,(n, k)
such that p(B) > p(B"), a contradiction. Hence B* = By(k). O

Proof of Theorem 1.1 According to Theorem 3.5 and Lemma 3.4, B* =
By (k), Ba(k) or Bs(k). By Lemmas 2.13 and 2.14, we have p(B;(k)) >
p(Bz(k)) and p(B;(k)) > p(Bs(k)). Note that these three bicyclic graphs
are all bipartite, hence A(B1(k)) < A(Ba(k)) and A(By(k)) < A(Bs(k)). So
B* =2 B, (k).

Let 1 < k < n—7. It follows that there exists a pendant path P, =
vyvg - - - vy attached to the root vertex vy of Bi(k) such that | > 3. Let
B = By(k) = {vi-1vi} + {vini}. Then B € %;(n,k + 1). By Lemma 2.10,
we have p(By(k)) < p(B). Note that Bj(k) and B are bipartite, then
A(B1(k)) > A(B). By Theorem 3.5, we have A(B) > A(Bi1(k + 1)). Hence
A(B1(k)) > A(Bi(k + 1)). Hence A(By(k)) is a decreasing function on k.
This completes the proof of Theorem 1.1. O
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