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Abstract: Let G be a subgraph of K,,. The graph obtained from G
by replacing each edge with a 3-cycle whose third vertex is distinct
from other vertices in the configuration is called a T(G)-triple. An
edge-disjoint decomposition of 3K, into copies of T(G) is called a
T(G)-triple system of order n. If, in each copy of T(G) in a T(G)-
triple system, one edge is taken from each 3-cycle (chosen so that
these edges form a copy of G) in such a way that the resulting copies
of G form an edge-disjoint decomposition of K, then the T(G)-
triple system is said to be perfect. The set of positive integers n
for which a perfect T(G)-triple system exists is called its spectrum.
Earlier papers by authors including Billington, Lindner, Kiigiikgifci
and Rosa determined the spectra for cases where G is any subgraph
of K4. In this paper, we will focus in star graph K ; and discuss
the existence for perfect T'(K x)-triple system. Especially, for prime
powers k, its spectra are completely determined.
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1 Introduction

Denote an edge in K, on vertices = and y by zy or yz, and denote a 3-cycle
on vertices z,y, 2 by (z,y, 2) or (z, 2,y) (or any cyclic shift of these). Let
G be a subgraph of K,,. Let T(G) = {(a,b,¢c) : ab € E(G)} be a collection
of 3-cycles satisfying:

(i) if (@,b,¢) € T(G) and ab € E(G), then ¢ & V(G), and

(ii) if (@i, b, ¢;) € T(G), i = 1,2, with a1by, a2bs € E(G), then ¢; # cs.
The graph formed in this way, by taking a triangle or triple on each edge
of G, will be called a T(G)-triple. In a T(G)-triple, the vertices and edges
of G are called interior, but the vertices and edges of T(G) — G are called
exterior.

A T(G)-triple system of order n, denoted by T(G,n) briefly, is a pair
(X, B) where X is the vertex set of K, and B is an edge-disjoint collection
of T(G)-triples which partitions the edges set of 3K,,. If the interior edges
of the T(G)-triples (which form the copies of G) partition the edge set
of K, (with vertex set X), then (X, B) is said to be a perfect T(G)-triple
system. The spectrum for perfect T'(G)-triple system is the set of all positive
integers n for which there exists a perfect T'(G)-triple system of order n.
The concepts of T'(G)-triple, T(G)-triple system and perfect T'(G)-triple
system were firstly introduced by S. Kiigiikgifci and C. C. Lindner in [4].

A holey T(G)-triple system with m h-holes, denoted by T(G,h™), is
a pair ({S1, -+, Sm},A), where each S; is a h-set (or hole), these S; are
pairwise disjoint and A is a collection of T(G)-triples which partitions all
edges joining the vertices in distinct holes. An incomplete T'(H)-triple
system on the set X — Y, denoted by T'(H,v : h), is a trio (X,Y,C), where
Y C X, |X| =, |Y| = h and C is a collection of T'(H)-triples which
partitions the edges of X, that are not in Y.

Lemma 1.1 Let H be a simple graph with e edges. If there exists a
T(H,v), then 2e|v(v — 1) and v is odd. Specially, the orders v=1 mod 2e
and the orders v = e mod 2e (for odd e) satisfy the necessary conditions.

Proof. First, it is easy to see that the degree of each exterior-vertex is two
and the degree of each interior-vertex is even. Thus, the greatest common
divisor d of the degrees of all vertices is 2. By the definition of T'(H)-triple
system and the necessary condition for existence of graph design, we have
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3e|3(3) and d|3(v — 1) = 2e|v(v ~ 1) and v is odd.
Of course, the orders » = 1 mod 2e and the orders v = e mod 2e (for odd
e) satisfy the above conditions. |

To date, the spectrum for perfect T(G)-triple system has been deter-
mined for all subgraphs G of Ky (see [1,2,4,5]). In this paper, we will
focus in star graph K x and discuss the existence of perfect T'(K «)-triple
system. The block in a T'(K &, v) can be expressed two forms in right.

(O:AI,A21"')Ak;BlaBZ"")Bk)
A Ag - Ag
0]
B1 32 v Bk

Sometimes, the vertex sequences A;, Az, -+, Ay and By, By, - -+, By can be
replaced by some integer intervals. Let a, b be integers, and a < b. So-called
integer interval [a,b] represents the ordered set {a,a +1,--+,b—1, b}. If
a = b mod ¢, the generalized integer interval [a,b]; represents the ordered
set {a,a+t,---,b—t,b}. Furthermore, denote [a,]” = {b,0—1,---,a+1, a}
and [a,b]; = {b,b—t,---,a+1t,a}.
In this paper, the construction for perfect T'(H)-triple system will use

the difference method. The elements in Z} = Z,\{0} = {1,2,---,n — 1}
can be written as

{1,2,“-,-’-‘—5-1-,—1,—2,---,—5;—1} for odd n; or

{1,2,---, 1;—2, 2,-1,-2,---, —252} for even n.
Using this notation, the ordered differences in Z, are {0,1,2,---,n — 1},
but the unordered differences in Z,, are {1,2,---, 252} or {1,2,---, 252, 3}.
The equivalent transformation from an ordered difference set A to an un-
ordered difference set B is written as A — B.

Lemma 1.2 Let n be positive integers, then
(1). In Zyn or Zany2, [1 — 2n,2n = 3]s — [1,2n — 1],
[3 - 2n,2n - 1]4 i [1, 2n — 1]2,’
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(2). In Zgny2, (2,41 — 2]4 — [2,2n]2 and [4,4n]4 — [2,2n)s;
(8). In Zgnya, [1 —3n,3n— 3]s — [1,3n — 1] for n =0 mod 4,
[-3rn—1,3n—1]4 = [1,3n + 1] for n =2 mod 4;
(4). For a € Zanq1, 1 <a < m, [a,2n — a]; — [a,n] for odd a,
[a,2n+2—a]; — [a—1,n] for even a.

Proof. (1) When n = 0 mod 2, then
1-2n,2n-3)4=[1-2n,-3]4U[1,2n - 3], —
[3, 2n — 1]4 U [1, 2n — 3]4 = [1, 2n — 1]2,
[3 —-2n,2n — 1]4 = [3 - 2n, —1]4 U [3, 2n — 1]4 —
[1,2n - 3|4V (3,2n — 1], = [1,2n — 1]s;
When n =1 mod 2, then
[1 —2n,2n — 3]4 = [1 —2n, —1]4 U [3,271 - 3]4 —
[1, 2n — 1]4 U [3, 2n — 3]4 = {1, 2n — 1]2;
B-2n,2n—-1)4=[3-2n,-3J4U[1,2n - 1], —
[3,271 - 3]4 U [1,271. - 1]4 = [1, 2n — 1]2.
(2) When n =0 mod 2, then
(2,47 — 2]y = [2,2n — 24 U 20 + 2, 4n — 2]4 —
[2,271. - 2]4 U [4,21’1.]4 = [2, 2n]2,
[4,4n]4 = [4,2n]s U [2n + 4,4n]4 — [4,2n]4 U [2,2n — 24 = [2, 2n],.
When n =1 mod 2, then
[2,4n~-2]4 = [2,2n]4U[2n+4,4n—-2]4 — [2,2n]4U[4, 2n—2]4 = [2, 2n)s,
[4,4n]s = [4,2n - 2]4U[2n +2,4n]s — [4,2n - 2]4 U2, 2n)4 = [2, 2n]o.
(3) When n =2 mod 4, then
[-3n-1,3n—-1]4 - [-3n-1,-3]4U[1,3n - 1)y —
[3, 3n+ 1]4 U [1, 3n- 1]4 = [1,3n + 1]2.
When n = 0 mod 4, then
[1-3n,3n—-3]4 — [1-3n,-3]4U[1,3n - 3], —
3,30 — 14U [1,3n = 3]s = [1,3n — 1],.
(4) When n = 0 mod 2, then
[@,2n+2 - a]s =[e,n]2U[n+2,2n+2 —a]; —
fa,n]2U[a—1,n —1]; = [a — 1,n] for even g;
[a,2n —als =[a,n -1} U[n+1,2n — a]p —
[e,n — 12U [a + 1,n]2 = [a,n] for odd a.
When n =1 mod 2, then
[@,2n4+2—als =[a,n—1pU[Rn+1,2n+2 - q]; —
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[a,n=1]2Ula - 1,n]s = [a ~ 1,n], for even a;

[a,2n — a]z = [a,n]2 U [n +2,2n — a2 —
la,n)2 U [a+1,n — 1]z = [a,n], for odd a. ]
In Z,, x Z,,, the difference between Z, x {i} and Z, x {3}, 1,5 € Zm, is
denoted by (4, j)-difference, which is named pure (i = j) or mized (i # 7).

2 A recurrence method

Theorem 2.1 Let H be a simple graph with e edges. If there exist T(H, 2e+
1), T(H,4e + 1) and T(H,e?), then there ezists a T(H,2me + 1) for any
positive integer m.
Construction. Take the vertex set (Z2m X Z.) U {oo}. The block set of
T(H, 2me + 1) consists of (2me + 1)m blocks. From [3], for m > 3, there
exist
3-GDD(2™) = (Zam,{G; : 1 £ j < m}, B) for 3 J(m — 2), where
G;j={2-1,2j}, 1<j<m;
3-GDD(2™~24') = (Z2m, {G; : 0 < j £ m—2}, B) for 3|(m —2), where
Go={1,2,3,4} and G; = {2j +3,2j +4}, L <j<m—2.

For the group Go, |Go| = 4, let ((Go X Z.) U {00}, Ao) be a T(H,4e + 1).
For each group Gj, |G;| =2, let ((G; x Z.)U {0}, A;) be a T(H, 2e + 1).
For each triple B € B, let ({{a} x Z. : a € B},Cp) be a T(H, €®). Then,

Q=(U Cs)U(U 4
BeB jeJ

forms a T(H,2me + 1), where J = {1,---,m} if 3 f(m —2) or
J=1{0,---,m—2} if 3|(m — 2).

Proof. First, we have the following enumeration:

3),.2
o] = 2(4e +1), |A;] = 2e+1for j £0, Cp] = 2E = 3e,

m 22 m{m— .
lm={(ﬂ = nlp=ll if 3 J(m - 2)

3
™ 2)2%+8(m—2 — .
("% 3 (m-2) _ 2(m 2g(m+1) if 3|(m — 2)

« g’ﬂ-’;;ll .3e + m(2e + 1) = (2me + 1)m.
2gm-—2;(m+12 -3¢+ 2(de + 1) + (m — 2)(2e + 1) = (2me + 1)m.

The number [£| is just the block number in a T'(H,2me+1). Furthermore,
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Vz € Zom,3G; containing x == Vi € Z,, {(z,),00} appears in three
blocks of A;, where exactly one edge is interior. '
Y (z,%) # (¢',i) € Zo X Ze, T € G; and LS Gjl,
if j # 7', then 3B € B such that z,z’ € B, so {(z,1), (z',4')} appears
in three blocks of Cp, where exactly one edge is interior.
if j = 7', then z,2' € G; = {(z, %), (2',%')} appears in three blocks
of A;, where exactly one edge is interior. |

Theorem 2.2 Let H be a simple graph with odd e edges. If there exist
T(H,3e),T(H,5¢), T(H,e®) and T(H,3e : €), then there ezists T(H, 2me+
e) for anym > 0.

Construction. Take the vertex set (Zam U {o0}) X Z,. There are (2m +
1) - GmAle=l plocks in a T(H, 2me + €). From [3), for m > 3, there exist
3-GDD(2™) = (Zom,{G; : 0 < j <m —1},B) for 3 J(m - 2),
where G; = {2j+1,2j+2}, 0<j<m—1;
3-GDD(2™24!) = (Zam, {Gj : 0 < j < m — 2}, B) for 3|(m — 2),
where Go = {1,2,3,4} and G; = {2j +3,2j+4}, 1<j<m-2.
For the group Gy, let ((Go U {o0}) x Ze, Ag) be a T(H,3e) if 3 f(m — 2)
or a T(H,5e) if 3|(m — 2). For each group Gj, j # 0, there exists a
T(H,3e:e) = (((Gj U {oo}) x Z,, {00} X Z), A;). For each triple B € B,
there exists a T(H, %) = ({{a} x Z. : a € B},Cp). Then,

2=(U c)u(U 4
BEB §=0
forms a T'(H,2me + e), where s =m —1if 3 fJ(m —2) or s = m — 2 if
3|(m - 2).
Proof. First, we have the following enumeration:

3Be1) i3 fm—2 3((%)+2¢2 .
|Ao|={ w6y oz = S e nor i,
2

m 22 - .
18| = (232 = gl if3 fim-2)
(m; )22;.8(7"—2) - 2(m—2;(m+1) if 3|(m _ 2)

33 2
lcs| = 2@ — 3¢,
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2m(m-1) 3(3e-1) - _
|sz|={ 53 TR+ (e=Dm-D _ oninemere-y)

2(m—23!$m+12 .3e+ i@;“_ll + (4e - 1)(m - 2)

The number || is just the block number in a T'(H, 2me + e). Further,
Vi # i € Z., {(c0,1)(00,%’)} appears in three blocks of Ag, where
exactly one edge is interior.
Vz € Zom,3G; containing z = V4,4’ € Z,, {(z,i), (c0,)} appears in
three blocks of A;, where exactly one edge is interior.
v (:c,z) # (:r:',i') € Zom X Zey T € Gj and z’ € Gj/,
if j # 4, then 3B € B such that z,2’ € B, so {(z,1), (z',4’)} appears
in three blocks of Cg, where exactly one edge is interior.
if j = j', then z,2’ € G; = {(z,1), (z',7')} appears in three blocks
of Aj;, where exactly one edge is interior. | |

3 Main constructions
Theorem 3.1 There exist T(K) x,2km + 1) for integers m,k > 1.

Construction. Take the vertex set Zakm+1. The block set consists of the
following m base blocks module 2km + 1, where 0 <7 <m - 1.
Bi=(0:ki+1,ki+2,---,ki+k—(ki+1),—(ki+2),---,—(ki+k)).
Proof. The interior differences in the base block B; are
ki+1,ki+2,---,ki+k,
so the interior differences of all base blocks B;, 0 < 1 < m — 1, exactly
cover the integer interval [1, km]. But, the exterior differences in the base
block B; are
ki+1,ki+2, -+, ki+kand 2(ki+1),2(ki +2),---,2(ki + k),
so the exterior differences of all base blocks B;, 0 < 7 < m — 1, exactly
cover the intervals [1, km] and [2,2km]2 = [1, km], see Lemma 1.2. [ |

Theorem 3.2 There ezists a T (K, k3) for any odd integer k > 1.

Construction. Total 3k blocks on the set Z, x Z3 are given by the fol-

lowing base block module (&, 3):
B= (00 : (k—l)la 01) 111 ctty (k_2)1; (k_1)2i (k—2)2; (k_3)27 Tty 22) 12) 02))
Proof. The interior (0, 1)-mixed differences in B exactly cover the integer
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interval [0, k—1]. B mod (—, 3) will give the interior (1, 2)- and (2, 0)-mixed
differences with the same values. The exterior mixed differences in B are
(2,0)-mixed differences:—[0,k — 1] = [0,k — 1];
(1,2)-mixed differences:{i — (k—2—1%)}iez, = {2i+2}iez, = [0,k —1].
But, B mod (-, 3) will give the exterior (0, 1)- and (1, 2)-mixed differences
((2,0)- and (0,1)-mixed differences) respectively, with the same values. m

Theorem 3.3 There exists a T(Kx,3k : k) for any odd integer k > 1.

Construction. For k£ = 1, a T(K1,,,3 : 1) is just a T(K},,3), which
consists of three blocks as follows.
2 1 9
0y 0" o DR |

Below, for k > 3, define the following 4k —1 blocks A;, B;, B; and A on the
set ZoxU{00g, * * +,00k—1}, where {cog, "+ +,00,_1} is a k-hole, 0 < i < k—1
for A;,B;,B],and 1 <i< k-1 for 4]

0,2k — 2]z
Ai = (o o ¥} N
[k + 23,3k — 2 + 23,

A 1,2k — 1]z
i = 004 ’
(k+1+2i,8% —1+2i,

( k+2 [1+2,k-2+2) [2+2,k—1+2i )
Bi=| 2i ,

00p 001, - )00kt [k+1+424,2k - 2 + 2i];
o0 [2+42k—1+2i (3 + 2i, k + 2i)z
Bi=| 1+2 .
k+14+2i oopgr, e ,00k_1 [k +2+2i,2k — 1+ 2]

Proof. The appearance of the pair containing oo; is as follows.
interior (¢ = 0): [0,2k — 2] U {1+ 2i}5-} = [0,2k — 1], in Ap and all B;
(:#£0): [0, 2k — 2]2 U [1,2]6 - 1]2 = [0,2]0— 1], in A; and A;.
exterior (i =0): [k,3k— 22U {25} J U{k+ 2} U{k+1+25}52] =
2 x ([k,3k —2]2U[0,2k - 2]3) =2 x [0,2k — 1],
in Ao, all Bj and B_;-;
(1<i<k-1): [k+2,3k—2+2i]pU[k+1+2{,3k — 1+ 2i],
= [k +2i,3k — 1+ 2i] = [0,2k — 1], in A; and A};
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A<i<Ely: (20 u{2i+2-1}2 =1[0,2k — 2
{2d — 1,2¢ + 2k — 3] = [0,2k — 1], in all By;
(Bl<i<k-1): {1+250u{2+2-k+1}i5 =
1,2k =1} U2 —k+1,2i+ k — 1]2 = [0,2k — 1], in all B].
The appearance of the difference [d] = {{z,z+d} : z € Z}, 1 <d Lk,
is as follows.
interior (d = k) : {24,2i + k}*2} in all B;;
(1<d<k-2 dodd): {{2i,2 +d}:de[l,k—2}}5 inal B,
{{142i,1+ 2% +d}:de[1,k-2}5 in all B}
(2<d< k-1, deven): {{2i,2i+d}:d € [2,k—1)2}i= inall B;,
{142,142 +d}:de[2,k~1)2}5] inall B
exterior (d = k) : {24,25 +k}523 U{1+2i,1+2i + k}iZJ, in Ao and all B};
(1<d< k-2, dodd): {{25,2f +k+2i}}5=5 in all A,
{{1+25,1+2j+k+ 21}}1_0 in all A,
where i € [,k — 1] and d € {k + 2i}57]
=[k+2,3k—2]2 = 2x[1,k—2];
(2<d<k-1, deven): {{2i,2 +d}}5-} inall B;,
{{1 + 2,1+ 2 + d}}5=5 in all B/, where
dek+1, 2k 202 — [2,k — 1]3;
{{k+2+1-25,k+2i~1 + 2.7}}3-1 in all B;,
{{k+2i+2-25, Ic+2z+2_7}};‘r1 in all B!, wherei € [0,k—1]

Theorem 3.4 There ezists a T(K) k,3k) for any k =1 mod 4.

Construction. First, a T'(K},1,3) has been given in Theorem 3.3. Below,
let k =4t + 1, t > 0. Take the vertex set (Zgt4+1 X Z2) U {oo}. The block
set consists of the following 3 base blocks module 6t + 1, where the interval
[a,8] = {ao,---,bo} and the interval [@,d] = {a1,---,b1}.

B, = ( 0 oo [5t+1,6t) [3t+1,4t] [4t+1,5¢ [26+1,31 )’
0 [F+12t- [BE+LE) (LY 13-

B, = ( 5 % (1,7] 2t+1,3] [FFLE [BETLE )
0 [t+1,2" [5t+1,66" [8t+1,44~ [L7-
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oo [L¢]7  [2t+1,3t)" [Gt+1,6¢~ [4&+1,5¢"

Proof. Obvious, the appearance of the pair containing oo satisfy condi-
tions. Below, list tables of the interior differences and exterior differences in
Zgt+1 X Zg, respectively. In these tables, the notation (%, 2)-PD represents
(4,7)-pure difference for i = 0,1, and the notation (0,1)-MD represents
(0,1)-mixed difference.

The interior differences of the base blocks B;

(_ 0 [5t+1,6¢] [4t+1,5¢ [t+1,2¢ 1,3 )
B3 = 0 .

(0,0)-PD (1,1)-PD (0,1)-MD
[3t+1,6¢]
1,3
Bl D sy (2t +1,3¢)
By (t+1,2¢] [5t + 1,6t
(3t +1,4t] — [2t +1,3¢) (3t +1,41)
B3 (1,4 [4t +1,5¢], [0,2¢]
The exterior differences of the base blocks B;
(0,0)-PD (1,1)-PD (0,1)-MD
L4 [t +1,2t],[5t + 1, 6¢)
B, ’ [t+1,3t-1) [1,1), [t + 2,3t]2,
[t +2,5t]2 [t +1,3t — 1)2,0
By 1,2t ~ 1] (1,¢) [4t + 1,5¢],[1,¢],0
[2t +1, 3¢ [2t + 1, 3¢) [2t +1,3¢], [3t+2,5¢]2
{1,
[2,2t)2 (6t +1,6¢), [3t +1,4¢]
By {t+1,2¢
t+1,3t-1)2 [t +2,3t]2 [3t+1,5t 1)

Theorem 3.5 There ezists a T(Kyx,3k) for any k =3 mod 4.

Construction. Let k = 4t + 3. Below, in the procedure from the base
block B to block B + i, we use the following notations:

a , (3) for 0<i<3t+1
t cks B b
(b(d)) means the blo +zta.ke{ (Z) for 3t+2<i<6t43

(&) for 0<i<3t+1
() for 3t+2<i<6t+3

3

(aib)) means the blocks B + i take {
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afb] (4) for 0<i<¥
(c[ d]) means the blocks B +i take¢ (3) for 2 <i<3t+1
(%) for 3t+2<i<6t+3

For t = 0, take Z3 x Z3, the following blocks mod (3, —):

(00 . 10, 01, 11; 20, 22, 12), (01 : 11, 12,22; 21, 10, 00),
(02 : 12,01,00;22,20,21), (00 : 21,12,22;02,11,01).

For t = 1, take (Z10 x Z2) U {00}, the following blocks mod (10, —):
(0:7,9,6,8,9,00,5(0);1,2,3,4,2,0(5),5),
(0:7,9,6,8,3,00,0(5); 1,2,4,2,4,5(0),5),
(0:6,8,2,4,5,9,7;8,9,3,1,00,2,1).

For t = 2, take (Z16 X Z2) U {o0}, the following blocks mod (16, —):

(0:1,3,14,7,1,5,9,10,12, 13, 15; 4, 00,2, 13,8, 10,4, 8,6, T4, T5).

Below, for the case t > 3, take the vertex set (Zgt44 X Z2) U {00}. The
block set consists of three base blocks module (6t + 4, —).
Case odd t > 3:

o) 3t+2(0) [3t+4,6t+3]2 [3t+3,6t+2]
B;=]0 -
0(3t+2) 3t+2 [1, 3L (342,35 + 10
Bt+4,66+3) [Bt+4,4t+1)2
FLE GF )
o 0(B3t+2) [3t+4,6t+3) [3t+3,6t4+2]
By=\| 0 -—
3E+2(0) 3t+2 T, 38H) [2,3t +1])5
t+2,2t+1) X3 1
2t+2,%8] X, Y, )’
_ gt+2 i3t+3,6t+2|2 [2,3t+ 1]2 Z, W
B3=1| 0 , where
fore] [%, 6t + 3] [1, 3t]; Zo Wa
for t=1mod 4

Xl — [3t23s2t_12 }’l — %)@2
X2 [2lt4;|;15, 11t2;|:5] ! Y2 [23t4i17,m ’
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Z )\ _ (B9, wi\ [ (BB, %F1),
) \ EEE ) \wm) \ EEF )

Caset =2 mod 4 and ¢ > 6:
_ 3t+2[3t+2] oo 4t+3 (0,3t]2
0o ___
9t2:|;6 [9t2i-6] 9t212 '5_t + 3 [1’ 3¢t + 1]2—

By =
B,3%+1): [+2.3% )

(2410 6t +3) [5t+4,6+ 3|

5 3t + 23T + 2 oo 1 2 TF5 [4,31,
2= 0 — —_—
[9t2i8 , 6t + 2] 9t2:tG [9&216] 6t +3 9t2;|;4 3t2;t4 m

RE+3,3% 3 F+7,&8+1): [3,3t+1)
LI EEm o B )
T 2t+1 [29.6t+2, (3t+4,2%H), 2,92
By=| 0 —
82 ETz %% (842 [(BEETI
[1,2t—3, 3 3t-1 [4t+5,6t+3]2)

Bt+2,% oo %2 [5T+4,6t+3

Caset =0 mod 4 and ¢ > 4:

B ( 3t+2B+2 1 2 ) (4,3t)2 3,3t - 3]2
1= 0 — _— —
MO i W gr43 [Wer+2 (TFE,F

4,72 3t+5 Bt+3 3t+1 XM [H+6,5+2)
Bt+4,2H] 2 T 3t+1 8eHz [Fpgs lugs) f°

5 (ﬁ TF2Bt+2 3+1 BEFL (1,52,
2 = - TEV
mzislgtzie] 3_'_3;?, 00 [gﬁ"—zm, 6t + 3);
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[342,3t -1, [@+4,5: 6+3 6t+2

Be+3, 22 (BELIST) 4 WEI
(26,3t [3t+4,Fl [232,5:+22 [4,4:
BT EEY R gD )
- 0 2 [3+56t+3 [2,t+2)

Bs=| 0

oo
344 42 T [Bt+4,6t+2); (2,504

2E+2,3. [,3k+1):
(=6 F3) (42,3t +1] ) '
Proof. For the case t = 0,1,2,3, the check is immediate. For ¢ > 4, the
appearance of the pair containing oo satisfy conditions. Below, consider the
interior and exterior differences in Zg¢4.q X Zo, respectively. The symbols
3 + 2 and 0 repress the semi-orbit for PD 3¢+ 2 and a half of the orbit for
MD 0, respectively. For even ¢, there is one symbol (:([d"{) in B; and Bs:

3t + 23t + 2] _ 3t+238t+2
M[S)_t—t@'] or? 9t1619t16)
2 2 2 2

It is not difficult to verify that the exterior edges of this part in all blocks
generated by bases B; and B; are just all pairs in (0,0)-PD 3—'{,_':3, (1,1)-
PD 342 (0,1)-MD 32 and (0,1)-MD 946 For even ¢, the rest of the
differences except the above four are listed in the following tables.

The interior differences for odd t > 3

(0,0)-PD (1,1)-PD (0,1)-MD
[1,3¢)2 [5¢ + 4,6t + 3]2
B 3 +2 [3t + 4,4t + 1)z
(2,3t + 12 0
3t+2 [1,3t]2,0
By { (3452, 2t — 1], 342, 31); t = 1(4) (2,3t +1]2
[3L£5, 2t 4 1], [254T, 3t]2 ¢ = 3(4) [t + 3,5t + 22
2,3t + 1]2
B (1, 851, 26+ 1, 8Ly ¢ = 1(4) (3¢ +33:‘ 6‘; 22
(1, 2, 2t + 3, 252, ¢ = 3(4) *

The exterior differences for odd ¢t > 3
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(0,0)-PD (1,1)-PD : (0,1)-MD
(22,3t +1]
B o (352, 2t +1), 38 +2 [ -1, ]
1 + TS (1, 5]
(384230 + 1) 2 0,3t +2
(3¢t + 3, 2t43)
3t + 2,1, 3], [2t + 2, 5L43) [
t+3 3e+1y 19847 St4ly 4 3t + 3,6t + 22
12, 6t]« (552, 26HL), (24T, 284 s = 1(a) 5055 g 1}
Ba| = [2,3t+1)2 [E5E, 3LR2), (2440, 56H3) ¢ = 3(4) 2,
A o (2,14
3t+2 1, —;—M 49 3¢ 4 1) £ = 1(4) 0,3t + 2
1, 558, (14 LT 55 4 1) ¢ = 3(4)
[H'_ _'ﬂ] [_L d’—]t—l(4)
“ 1 3:11]
—3t,3t — 2 { —"’-—L] l—’L,‘ 1]t =3(4 I, =5
[ ]a [ ratheal (4) (3¢ + 4,6t + 3]3

B L5
S = 1,34, [—+— —;"—] [4 L ]t‘l(4) (247 6t + 3]

The interior differences fort =2 mod 4,t > 6

(0,0)-PD (1,1)-PD (0,1-MD
B 3t+2,[t +2,3t]2 3t+2,0
(5,3t +1]2 [3t +4,6t +2)2,2t + 1
B 3t+2,[4,3t)2 [2t + 3,3t + 3]2,3t +2
2| 1,2,3,8t+1) (3t +7,4t + 1,4t +5
[2r 3¢T—§]2, ['3‘2L2 ) 3t]2
Bs 2,t]2,1,3 [4t + 7,6t + 3)2,[1,2t — 1)
3t+5,4t+3
The exterior differences for t =2 mod 4,¢ > 6
(0,0)-PD (1,1)-PD (0,1-MD
B [-3t-1,3t —1)4 f1,¢,t+1 [3t + 3,6t + 3]a,t, 2£E8 |
ISt (2t +2,3t+1] [1, 3=2] [3L48 3¢ 4 9)
_1-_ 1 6t 1 4

B, 15:1‘%4’3:’6’& ol I ] B+1, --*—E] (2552, 2]
[ 2 13t+1]![2l—2_ [ ] !2t+1]12t+3 [3t+3 i l,2t+2,§2£

Qtiﬁ lglilo 6t+2]
3¢ 2 2 2
[t"'l’ _2']'[1!;3 6 [3t+2, 9t:|:2]2
Bz | (4,3t —2)4,[2,3t)4 [2t + 4,3t + 2], 34E 2 oiis
2 +2, (24,2t + 1] [2t+3.3t+1),—'~i'—2
W2 [0,t —1), 344 2r 41

The interior differences for t =0 mod 4, t > 4
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(0,0-PD (1,1)-PD ' (0,1)-MD
3t+2,1

B 2,3t —1,3t+1
[4,3t)2,[3,3t — 3)2

3T+2,3t 41,344
(4,t)2, [at + 6,5t + 2]2
(2419 6t + 32
[3t + 5, —'-i'—-]z

3t+2,3
Bz t+4 2;]2 1 3t + 3, (5t + 4, 6t]’2,\
e [8t +4,4t +4]2,3t +2
[%,:ﬂ]z, t+2, %]2
2,1 + 2]2, [2t + 2,3t
Bs 2 +[5]Zz[+ 1"]'2 3tk (1,3t — 1], 0,6t + 2
?
The exterior differences for t =0 mod 4,t > 4
3
(0,0)-PD (1,1)-PD (0,1)-MD
L8 3¢), [3t + 4, B9
g, 3‘+1 Ot4d [Bt+d gy [ zgni'mlzl 1 16415
By [2 3:1, H '2[ 25 2 liey6y a3t
[ t48 3t+2] [‘;‘Wt—l] [5t+5,_2'+_]’[31’2-1
96 31 +1,3t+2,0
3t+1, 2
82, t_il”] 2, [1, 321, (2642, 3¢ 4 1),
Bo 2,3t - 2)a i 3], (24, 58] 3t+3 J— LR 6t 4 2)
(4, 3t)4 (Bis | ] 42 [-—;— 5t + 4]
[2t+3 ] [ Stil j: l [ i Stj; ]
3t+2,1, [t —3‘-,[2,31:]2
Bs [_1)_[13;;3‘ ;]3]“ [1,%],[3—‘2ﬂ,2c+2] [3¢ -+ 3, 2£2),3¢ + 2
' 2 (544 3¢ 4 1] 6t + 3, (24412 6t + 3],0

Theorem 3.6 There ezists a T(K1 k, 5k) for any k=1 mod 4.

Construction. For k = 1, a T(K;,1,5) consists of two base blocks: (0 :
1;2),(0 : 2;3) mod 5. Below, let k = 4t + 1. Take the vertex set (Z10c42 X
Z2) U {o0}. The block set consists of the following five base blocks module
10t + 2. In the base block B, we use the following notation:

(&) for 0<i<5t

a(6) the blocks B + ¢ tak
(8:2)) means the blocks B + ¢ take (%) for 5t+1<i<10t+1

c(d)
Case even t > 0:
co [Tt+3,10t+1],  [2,58

B = —
St (Ut+2,T0+1] [5t+1,5
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B2=(6 5+ 1(0) (BT, (208 )
co(5t+1) [Rt+2,T0t+1] [Lt+1,5
Ba=(0 0(5t+1) [Bt+1,5t—1) [3T+2,6% [m,mz)
5t+1(c0) [9t+2,10t+1) [Pt+2,8+1]  [3¢,3t—1)
B4=(0 [62 + 2,102, m—l,mz),
(8t + 2,10t + 1] 3¢, 5%
Bs=(0 I S R )
St+1 [Pt+2,9+1] [3t+2,5+1]
Case odd ¢:
(0 gy ST )
IR [38,5t 4] [ME, 10647
322(6 FFI0 T RE-1 [7t+3,10t]2)’
oo(5t+1) SE3 [18655 ToF+T1)  [T4f3, 5¢)
Ba=(0 (st + 1) st (2,3t 1) )
5t+ 1(co) [34EL,57] [15Lt3,0¢ + 1]
B4=(0 o [Bt+1,5t-1 BIFLE-T BT+ 1,6, )
Sl 9t +2,10t+1]  [3H 3F-T) [135£3,8t +1)

B 0 6t+1,10¢+ 1), [6t+2,10%);
5 — .
32,59 (8 + 2,10t + 1]

Theorem 3.7 There ezists a T(K, k,5k) for any k =3 mod 4.

Construction. For k = 3, a T(K) 3,15) on (Z7 X Z3) U {co} can be con-

structed as follows.

(04 : 00,21, 50; 51, 61, 20), (0o : 00, 19, 30; 50, 31,41), (01 : 11,31, 60; 30, 40, 61),
(00 . 01,20,31;00, 60, 11), (00 . 51,41,61;21,50, 60), mod (7, —).

Below, let k£ = 4t + 3, t > 0. Take the vertex set (Z10:4+7 X Z2)U {oo}. The

block set consists of the following five base blocks module 10t + 7.

Case even ¢t > 0:
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B, =

oo 2,5t + 2)2 (7t + 5,10t + 5]2
Bivs5 (Bt+6,10t+6 [Lt+2,5t+2 )
. 1,5t + 32 (2, 3]s )

By = —
Bit+s [3t+3,5t+4 [Pt+6,9+5

B g 1,5t +3]2 [7t+6,10t+6);
3= B )
(3t +3,5¢+4] [4t+6,10t+6]

, 0 Br+25t+2 FEFIETIL [3t+4,6t+2]2)
oo [0t+6,10t+6] [3t+1,32+1) [Pt+5,8+4

[(t+5,10t 5], [6t+4,T0EF 6

[Bt+2,5t¥2 [8t+5,10t + 6] )

00 [1,5¢ + 22 [7¢ + 6,10t + 5)2
stbs (LRI TOr+ 6]  [Z4%,5¢42 |
o [2,5t+3 (1,3¢]2 )

b

S5 (BT Brg 4] (L%t ot +5)

B ( 5 BET3 (14510046, ),

[242,5¢ +4] [T, T07+ 6]

0 [3t+2,5t+22 [Bt+4,6t+32 [3+3,6t+2
oo [9t+6,10t+6] [ 371 [l§-‘§'—9,8t+4])
[6t+5,10t + 52 [6t+ 4,10t + 6)>

BtF2,56+2 [8t+5,10t+6] )

The proofs of the Theorems 3.6 and 3.7 are simple, which are omitted.

4 Conclusion

Theorem 4.1 A T(Ki,v) ezists for v=1 mod 2k.

Proof. By the directed construction Theorem 3.1. [ |

375



Theorem 4.2 For odd k, a T(K x,v) ezists for v =k mod 2k.

Proof. By Theorems 3.2 — 3.7 and Theorem 2.2. |

Theorem 4.3 The spectrum for perfect T(K 2:,v) is v = 1 mod 2t+1,
For odd prime power g, the spectrum for perfect T(K q4,v) is v =1,q mod
2g.

Proof. For prime power k, the necessary conditions to exist a T'(K} k,v)
is that v is odd and v = 1,k mod 2k (see Lemma 1.1). Thus, when k& is
even, the first conclusion can be obtained by Theorem 4.1. And, when & is
odd, the second conclusion can be obtained by Theorems 4.1 and 4.2. m
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