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Abstract. In this paper, we study the enumeration of noncrossing parti-
tions with fixed points. The expressions of fm,(z1,z2,%3,0,0,:--,0) and
fm(z1,72,0,---,0,2p43,0,--- ,0) are found and a new proof of the expres-
sion of fm(z1,22,0,0,---,0) is obtained using diophantine equations.
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1 Introduction

A partition # = B;/B3/--- /By, of a totally ordered set X is called non-
crossing partition (n.c.p.) iff there do not exist four elements a < b < c < d
of X such that a,c € B;, b,d € B; and i # j. We denote by NC(X) the
set of all n.c.p. of X.

Many authors have worked on n.c.p. (see for example Kreweras [2]
Sapounakis and Tsikouras [3}).

In [3], an interesting class of n.c.p. has been introduced. 7 € NC(X, A)
is called noncrossing partition with fixed points the elements of a given set
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A C X iff every block of 7 contains exactly one element of A. The set of
all these n.c.p. is denoted by NC(X, A). Our purpose is to evaluate the
cardinality |[NC(X, A)|.

Since the distribution of the elements of A in X determines the car-
dinality |[NC(X, A)|, we can restrict the problem to the equivalent case.
Let [m] = {1,2,--- ,m}, X = [m]UY, where the elements of Y are dis-
tributed in the intervals (i,i + 1), ¢ € [m — 1] and (m,+400), so that
XN(i+1)=X; Vi€ [m—1] and X N (m,+00) = X,n. A function fp,
of m variables is defined with fm(z),%2, -+ ,2m) = |[NC(X, [m])|, where
z; = | Xi| for every i € [m — 1] and zp, = | Xyl

In [3],[4] Sapounakis and Tsikouras have proved the following results.

Theorem 1.1 For every m € N, with m > 2 we have that
fm(z1,22,0,0,- -+ ,0) = (H¥724™) — (BAm=l) _ (7atm-l),

Theorem 1.2 For every m € N, with m > 4 and for every p € N*, with
2p £ m — 2 we have that

S0 0t e 0= ()= (e

m

Z 2 (z;+k—1)(z,+g+m-—k -1

Using the formula (**23m+1) = ﬁ (o5 (B+m=F) (e.g. see [1]), we can
k=0

obtain another expression of Theore;l 1.2 as foHOWS'
fm(21,22,0,0,- - ,0) = (B+p4m=t) 4 Z D ESEY.

In section 2 of this paper, we first show a lemma about the number of
nonnegative integer solutions of a diophantine equation. Using this lemma,
we can easily prove the result obtained by Sapounakis and Tsikouras.

In section 3, the expressmns of fm(z1,22,23,0,---,0) and
fm(xl)z2, 0) 0 xp+3g 0) are presented

2 A new proof of the expression of
fm(xla Z2, Oa O, te 10)

We denote by N[t; +t3 + - + ¢, = n] the number of nonnegative integer
solutions of the equation t; +t3 + -+« + &, = n;

Nty +ta+ -+ +t, = n;t1 < ny] the number of nonnegative integer
solutions of the equation ¢; +¢3 +--- + ¢, = n with ¢; < n;;

378



N[ty +ta + --- + t, = n;t; < ny,t3 < ng] the number of nonnegative
integer solutions of the equation t; + t2 + --- + ¢, = n with ¢; < ny and
ity < ng.

Lemma 2.1 For everym € N, with m = 2

Nty +ta 4 + tmy1 = T1 + T25t1 < 1,82 < T
= (21+zz+m) _ (:c1+m—l) - (:n2+m—1)
m m m *

Proof. It is well-known that, N[t +t2+- -« -+tmy1 = 21 +22] = (“’+:f+m).
On the other hand, N[tl +tot---+tmy1 =21 +T2; 81 > .’B]_]
=N[ti+t2+ +imsy1 =22 — 1]
(a:g-{-m—
and N[t1 Flot+ - Fitnp1 =21 +.'l:2,t2>.’l:2]
=N[(t1+ta+ -+ +tmy1 =21 — 1]
= zy4m—1
)
Then N[ty +t2 + -+ + tmy1 = Z1 + T2; £1 < T1, 82 < 22
= N[t;+ta+ - -+tmy1 = T1+T2] - N[t +to+- - +tmy1 = T1+225 11 > z1]
~Nits +to+ -+ tmp1 = 1 + T2; b2 > T2
— ($1+.‘tg+m) _ (a:l+m—l) _ (a:z+m—1). B
m m m
Using Lemma 2.1, we prove Theorem 1.1.
2
Proof. Here, we deal with the set NC(X,[m]) with X = [m]U U X,
i=1

Xi=XN(i+1),z=]Xn3i+1)| (i=1,2).

For every n.c.p. ® = By/By/---/Bm € NC(X,[m]) with i € B; for
every i € [m],

|Bi| -1, i€{1,3,4,---m}
let n; [BaNXy|, i=2
{ |B2r1X2|, i=m+1.

Then the sequence (n;), i € [m + 1] is a nonnegative integer solution of
the equation t; + to 4+ ++ + tm41 = T1 + Z2 With 3 < z) and tm41 < 2.

Conversely, if (n,), i € [m + 1) is a nonnegative integer solution of the
equation #) +ty + - -+ + tm+1 = Z1 + T2 With ¢2 < ;3 and ¢4y < Zo. We
define recursively the blocks of a n.c.p. @ = B1/By/--- /Bm € NC(X,|m])
with i € B; for every i € [m] as follows.

(1) B3 contains 2, the last n elements of X; and the first 2,41 elements
of Xo;

(2) B contains 1 as well as the first n; elements of X\([m] U By);

(3) For z = 3,4,--- ,m, B; contains i as well as the last elements of

X\([m] v ( U B;))-
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Thus, we define a bijection between the set NC(X, [m]) and the set of all
nonnegative integer solutions of the equation t; +ta + - - +tm41 = 1 + 2o
with t3 < z; and tmy1 < T2,

Since N[ty +t2 + -+« +tmp1 = Z1 + T3 81 < 71,13 < T9]

— (:c1+xz+m) - (zpl-m—l) _ (zg+m—l)
m m m ’
we obtain that
fm(xly Z2, 0: O» Tt O) = ($1+::+M) - (zl+1:;"_1) - ($2+7:1n_1)‘ |

3 fm(z1,29,23,0,0,---,0) and
fm(xlpx%O) e aO) Zp+3s 0) e >O)
We now turn to find fi(zi,z2,23,0,0,---,0).

Theorem 3.1 For everym € N, withm > 3

Jm(z1,%2,23,0,0,---,0) = (zl+:°;?1+m+l) - 2 (zi::i.ll-m)"'
1<i<j<3

3 2
Z (i) +(@a+1) o (i) (srtmohty

Proof. We consider the case that f,,(z1,%3,%3,0,0,---,0) = [NC(X, [m])]
3

withX =[mju U X;, Xi =X N(,i+1), 2= |XN(Ei+1)| (= 1,2,3).
=1

We partition the set NC(X, [m]) into sets Ay, and T v, ; (With u,v,1,
JeENu<z,v<2,i<z;— 1,1<j<z3—- i)'l where Au,v and Tu,v,i,j
are defined as follows:

For every n.c.p. # = By/B3/---/Bm € NC(X,[m]), i € B; for every
i€ [m].

Each set Ay, consists of all # € NC(X, [m]) with the property that
|B2 nXll =z —u, IBgﬂXgl = x5 —v and |Bz ﬂX3I =0.

Each set T, .,i,; consists of all 7 € NC(X, [m]) with the property that
|anX1| =1 — U, IBz nX2| =Ty — v, |Bg ﬂX3| =4 and |B30X3| =1.

":['-'hu52|Au'v| = fm_l(u-{-v,xg, o,--- ,O) = u+v-l;:i-;-m—l) _ (u+:;|-_ﬂll-2 -
Ta+m—
( am—l ’

|Tu,u,i,j| = fm—2(u +z3—i— j) Oa T 0) = (u+za—ni:_g+m—3 .

Hence, we finally obtain
fm(mhz% 1'3)0) 01 tte 30)

] T2 3 x3 T3—1zz—1i
=2 2 A+ 2 X X X 1Tupisl
u=0v=0 u=0v=0 i=0 j=0
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= uz_-: Z [(u-{-u-{;:g_{l-m—l) _ u+u+m—2) (za+m~2)]+
) = +ag—i—jt+m—3
Z Z z (u T3 n:_% m
= (T - S T+ 3 (T
(xz + 1)[(x1+=s+m— ) _ (zn+7r:-l) - (13+:—2) —z3 z;+m—2)]

(z1 + 1)(z2 + 1)(*172)

3
=) - ST v g (o )+
(324_1) z (xl+k 1) (zs+m—k 1) =

Note. (l)We note that if 23 = 0 we obtain Theorem 1.1, whereas if z; =0
we obtain Theorem 1.2 for p= 1.

(2)Using the formula (®*0+e+m+2) = 2 Z e (*1H) (¢tm=*-1), we can
=0 i

deduce another expression of Theorem 3.1 as follows

fm(l‘l,xz,xs,O, 0, . ’0)= (:cl-l':l:z;za-i-m) +i§:1 (::;+"1:1.—1)+

m+l-—u—v

-2
Lo, (RETHeRT) (”3+'“'“-")+(x2+1)':22 (Frth=1) (satmokety
u_:l-t;;;'n ~

We now generalize Theorem 1.2 for three variables.

Theorem 3.2 For every m € N, with m > 5 and for every p € N*, with
2p<m-3,

fm(z1,22,0,- -+ ,0,2p43,0,-++ ,0)
= (‘“!+‘°2+1‘p+3+m+1) > (z.-+xj+m) + 5 (-’l'i+m—1)+

m+1 m+1
i< :
4 d€{1,5,p43) i€{1,2,p+3}

P2 mZ—J ( 1 +uv— 1) (zp+3;l;rf;v-1) + Pil mz_.:ﬂ (m—ul+u) ("-'p+3;;'3;u—1)+
6=2 v=6 =0 o5
i m 22 i (::1 +tt- 1) (:l:zl;lfg-lt-—t) (z,,+3+rz_k_2)+
— ke
6=1 k=6
- (:u +vv—1) (zz+|:t—1) (z,r:::i.f;f;,,)
sy
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Proof. We consider the case that fy,(z1,72,0,---,0,7543,0,---,0) =
INC(X,[m])]with X =[mju U X; Xi= Xn (it + 1), z; = | Xi|

1€{1,2,p+3}
(i€ {1,2,p+3}).

We partition the set NC(X, [m]) into sets Ay, and Ty k1 (With u, v, k,
leN, u<m,v< 29l <k < zpy3—1), where A,y and Ty ok, are
defined as follows:

For every n.c.p. # = By/By/--- /B, € NC(X,[m]), i € B; for every
i€ [m].

Each set A,,, consists of all # € NC(X,[m]) with the property that
IBzﬂX1| =) —u, |BaNXy| =23 —v and IBzﬂXp+3| =0

Each set T,y k.1 consists of all # € NC(X, [m]) with the property that
IBz ﬂXll = z) — U, IBg anl = Tg9 — v, |Bz ﬂXp+3| = Tpi3 — k and
Hy € Xp43ly > maz{z € Bo}}| = 1.

Thus IAu,vl = fm—l(u +v,0,0,--- »Oa Tp43,° 70)1

ITu,v,k,lI = fp+1(v + k- l1 0» et 10)fm—p—2(u + l$ Oa e ,0).

Hence,we ﬁnally obtain

fm(xla $2,0 0 mp-{-3)0 . )0)

ZTp. 3—

Z ElAu.u|+Z Z E ZITuuktl

u=0v=0 u=0v=0 k=0 =0

% i’:[ u+ﬂ+1p+3+m—1) (u+v+m-2) (wp+s+m-2).|.

u=0v=

pHlm—1-4

Z I (T

Ty T2 -"-'p+3

v+k+p=1\ (u+l+m—p-3
u§002—:0 k=0 IZ( )( m=p-3

= (T1+Z2+zopatm+ly _ zitzj+m zi+m—1
( m:-l ) B ; ( m-IJ-I )+ie{l§p+3} 'm+1
i,j€{1,2,p+3}
p+lm—
+2 E (e - (oz) — RN ™)

p-l-lm—z—' z1—14v\ (2—~14u) (Topa+m—u—v Tppa+m—2
+3 T T —a1za(7T)

m+l—u—v

+ Z (::3 1+u)(:,,+3—1+m—u)+ Z (zl—l-l-v) Tpp3—1+m—v

m—v
= ::1+a:z+::p+a+m+l _ :c‘+z_,+m zit+m—1
( m+1 ) -;; ( m+1 )+i6{1§,:p+3}( m+1
7€{1,2,p+3)
P+1m—1-5 e
+2 TS G CHE + G + It )
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pt+l m—
# R () () (i) —maa (k)

m+l—u—v
u=1 v—

Al T2—14u\ (Tpp3—1+m—u m2-P z1—=14v\ (Tp4a—14+m—v
+ T et T8 () ()

m—v
=(iet) -y R+ (Geace
Li€(15p+3) i€{1,2,043}

pF2m— z;+11— To4at+m—~v—1 pElm=é z2—14+u) (Zppa+m—u—1

> ( YER T+ X X (LT (I

6=2 v=46 6=2 u=4

TS R R )

() () e .
u€[p+1)
sty

Note. (1)From Theorem 3.2 we can easily obtain Theorem 3.1 (for p = 0),
as well as Theorem 1.2 (for z2 = 0).

(2)we can easy obtain that

fm(%1,22,0,+ -+ ,0,Z,43,0,-- ,0)
= fm(flfl; Z2,Tp+3, 0, 0, ceey 0)+ Z ($1+”v—1) (:cz»f-:«l) (mp+3+m—u—v)+

weim] m4l—u—v
"fi":;,f::’
pI2m=5 T1+v—-1) (Tp43+m—v—1 = Zotu~1\ (Zpp3+m—u—1
SIS e ) + £ T8 e et

m-—3
P ("*:‘1) (v [ Qe by
p m—-2-6k
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