CONTINUOUS MAPPINGS AND BOUNDED LINEAR OPERATORS IN FUZZY n-NORMED LINEAR SPACES

HAKAN EFE

ABSTRACT. The aim of this paper to define different types of continuities of operators and boundedness of linear operators over fuzzy n-normed linear spaces. Also some definitions such as fuzzy continuity, sequential fuzzy continuity, weakly fuzzy continuity, strongly fuzzy continuity, weakly fuzzy boundedness are given in fuzzy n-normed linear spaces. In addition, some theorems related to these definitions are proved.

1. Introduction

Since the introduction of the concept of fuzzy norm on a linear space by Katsaras [11] in 1984, many authors have studied the fuzzy topological vector spaces. In 1992, Felbin [4] introduced an idea of a fuzzy norm on a linear space by assigning a fuzzy real number to each element of the linear space so that the corresponding metric associated to this fuzzy norm is of Kaleva type [10] fuzzy metric. In 1994, Chang and Moderson [3] introduced another idea of a fuzzy norm on a linear space in such a manner that the corresponding fuzzy metric of it is of Kramosil and Michalek type [13]. Recently Xiao and Zhu [18] redefined the idea of Felbin's [4] definition of fuzzy norm of a linear operator from a fuzzy normed linear space to another fuzzy normed linear space. In 2003, Bag and Samanta [1] introduced a definition of a fuzzy norm and proved a decomposition theorem of a fuzzy norm into a family of crisp norms. Also in 2005, Bag and Samanta [2] give some properties on fuzzy norms. In [5, 6, 14] were studied various properties of these types of fuzzy normed linear spaces. The concept of 2-norm and n-norm on a linear space has been introduced and developed by Gähler in [7, 8]. Following Misiak [16], Kim and Cho [12] and Malčeski [15] developed the theory of n-normed space. In [9], Gunawan and Mashadi gave a simple way to derive an (n-1)-norm from the n-norm and realized that any n-normed space is an (n-1)-normed space. Also, Narayanan and Vijayabalaji [17] introduced the concept of fuzzy n-normed linear space.

²⁰⁰⁰ Mathematics Subject Classification. 46A30, 46A70, 54A40. Key words and phrases. fuzzy n-norms, linear operator, fuzzy continuity.

In the present paper, we define various types of continuities of operators and boundedness of linear operators over fuzzy n-normed linear spaces such as fuzzy continuity, sequential fuzzy continuity, weakly fuzzy continuity, strongly fuzzy boundedness and strongly fuzzy boundedness.

2. Preliminaries

Definition 1 ([9]). Let $n \in \mathbb{N}$ and let X be a real vector space of dimension $d \geq n$. (Here we allow d to be infinite.) A real-valued function $||\cdot, ..., \cdot||$ on $X \times \cdots \times X$ satisfying the following four properties,

- (1) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,
- (2) $||x_1, x_2, ..., x_n||$ is invariant under any permutation,
- (3) $||x_1, x_2, ..., \alpha x_n|| = |\alpha| ||x_1, x_2, ..., x_n||$ for any $\alpha \in \mathbb{R}$,
- (4) $||x_1, x_2, ..., x_{n-1}, y+z|| \le ||x_1, x_2, ..., x_{n-1}, y|| + ||x_1, x_2, ..., x_{n-1}, z||$, is called an *n*-norm on *X* and the pair $(X, ||\cdot, ..., \cdot||)$ is called an *n*-normed

Example 1. Let $X = \mathbb{R}^n$ and

$$||x_1,x_2,...,x_n||_E=abs\left(\left|\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array}\right|\right),$$

where $x_i = (x_{i1}, ..., x_{in}) \in \mathbb{R}^n$ for each i = 1, 2, ..., n. Then $(X, ||\cdot, ..., \cdot||_E)$ is an n-normed space which is called Euclidean n-normed space.

Definition 2 ([9]). Let $(X, ||\cdot, ..., \cdot||)$ be an n-normed linear space and x(k) be a sequence in X. Then x(k) is said to be convergent if there exists a $x \in X$ such that

$$\lim_{k \to \infty} ||x_1, x_2, ..., x_{n-1}, x(k) - x|| = 0$$

for every $x_1, x_2, ..., x_{n-1} \in X$. Then x called limit of the sequence x(k) and denoted by $\lim x(k) = x$ or $x(k) \to x$.

Definition 3 ([9]). A sequence x(k) in $(X, ||\cdot, ..., \cdot||)$ is called Cauchy sequence, if

$$\lim_{k,l\to\infty} ||x_1,x_2,...,x_{n-1},x(k)-x(l)||=0$$

for every $x_1, x_2, ..., x_{n-1} \in X$ and $k, l \in \mathbb{N}$.

Definition 4 ([17]). Let X be a linear space over a real field F. A fuzzy subset N of $\underbrace{X \times \cdots \times X}_{n} \times \mathbb{R}$ (\mathbb{R} , set of real numbers) is called a fuzzy n-norm on X if and only if

- (N1) for all $t \in \mathbb{R}$ with $t \leq 0$, $N(x_1, x_2, ..., x_n, t) = 0$,
- (N2) for all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., x_n, t) = 1$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent,
- (N3) $N(x_1, x_2, ..., x_n, t)$ is invariant under any permutation of $x_1, ..., x_n$,
- (N4) for all $t \in \mathbb{R}$ with t > 0, $N(x_1, x_2, ..., cx_n, t) = N(x_1, x_2, ..., x_n, t/|c|)$, if $c \neq 0$, $c \in F$,
- (N5) for all $s, t \in \mathbb{R}$,

$$N(x_1, x_2, ..., x_n + x'_n, s + t) \ge \min\{N(x_1, x_2, ..., x_n, s), N(x_1, x_2, ..., x'_n, t)\},$$

(N6) $N(x_1, x_2, ..., x_n, \cdot)$ is a nondecreasing function of \mathbb{R} and

$$\lim_{t \to \infty} N(x_1, x_2, ..., x_n, t) = 1.$$

Then (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.

Remark 1. From (N3), it follows that in a f-n-NLS,

(N4) for all $t \in \mathbb{R}$ with t > 0,

$$N(x_1, x_2, ..., cx_i, ..., x_n, t) = N(x_1, x_2, ..., x_i, ..., x_n, t/|c|),$$

if $c \neq 0$,

(N5) for all $s, t \in \mathbb{R}$,

$$N(x_1, x_2, ..., x_i + x_i', ..., x_n, s + t)$$

$$\geq \min\{N(x_1, x_2, ..., x_i, ..., x_n, s), N(x_1, x_2, ..., x_i', ..., x_n, t)\}.$$

Example 2. Let $(X, ||\cdot, \cdot, ..., \cdot||)$ be an n-normed space as in Definition 1. Define,

$$N(x_1, x_2, ..., x_n, t) = \begin{cases} \frac{t}{t + ||x_1, x_2, ..., x_n||} & if \quad t > 0, \ t \in \mathbb{R}, \\ 0 & if \quad t \le 0 \end{cases}$$

for all $x_1, x_2, ..., x_n \in X$. Then (X, N) is a f-n-NLS.

Theorem 1 ([17]). Let (X, N) be a f-n-NLS. Assume further those

(N7) $N(x_1, x_2, ..., x_n, t) > 0$ for all t > 0 implies $x_1, x_2, ..., x_n$ are linearly dependent.

Define

$$||x_1, x_2, ..., x_n||_{\alpha} = \wedge \{t : N(x_1, x_2, ..., x_n, t) \ge \alpha\}, \ \alpha \in (0, 1).$$

Then $\{||\cdot,\cdot,...,\cdot||_{\alpha}: \alpha \in (0,1)\}$ is an ascending family of *n*-norms on X. These *n*-norms are called α -*n*-norms on X corresponding to the fuzzy *n*-norm N on X.

Theorem 2. Let $\{||\cdot,\cdot,...,\cdot||_{\alpha}: \alpha \in (0,1)\}$ ascending family of n-norms on X. Now we define a function $N': \underbrace{X \times \cdots \times X}_{} \times \mathbb{R} \to [0,1]$ by

$$N'(x_1,x_2,...,x_n,t) \\ = \begin{cases} V\{\alpha: ||x_1,x_2,...,x_n||_{\alpha} \leq t\} & \textit{otherwise} \\ 0 & \textit{if} & x_1,x_2,...,x_n \textit{ are} \\ & \textit{linearly dependent and } t = 0 \end{cases}$$

Then N' is a fuzzy n-norm on X.

Proof. (N1) For all $t \in \mathbb{R}$ with t < 0 we have

$$N'(x_1, x_2, ..., x_n, t) = \vee \{\alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t\} = 0$$

for all $x \in X$. For t = 0 and $x_1, x_2, ..., x_n$ are linearly dependent from the definition $N'(x_1, x_2, ..., x_n, t) = 0$.

(N2) Let $N'(x_1, x_2, ..., x_n, t) = 1$ for all t > 0. Choose any $\varepsilon \in (0, 1)$. Then for any t > 0, there exists $\alpha_t \in (\varepsilon, 1]$ such that $||x_1, x_2, ..., x_n||_{\alpha_t} \le t$, and hence $||x_1, x_2, ..., x_n||_{\varepsilon} \le t$. Since t > 0 is arbitrary, this implies that $||x_1, x_2, ..., x_n||_{\varepsilon} = 0$ then $x_1, x_2, ..., x_n$ are linearly dependent.

If $x_1, x_2, ..., x_n$ are linearly dependent then

$$N'(x_1, x_2, ..., x_n, t) = \bigvee \{\alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t\}$$

= $\bigvee \{\alpha : \alpha \in (0, 1)\} = 1$

for all t > 0.

(N3) Since $||x_1, x_2, ..., x_n||_{\alpha}$ is invariant under any permutation, then $N'(x_1, x_2, ..., x_n, t)$ is invariant under any permutation.

(N4) Let $c \neq 0$, $c \in F$ and t > 0. Then

$$N'(x_1, x_2, ..., cx_n, t)$$

$$= \forall \{\alpha : ||x_1, x_2, ..., cx_n||_{\alpha} \le t\} = \forall \{\alpha : |c|||x_1, x_2, ..., x_n||_{\alpha} \le t\}$$

$$= \forall \{\alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le \frac{t}{|c|}\} = N'\left(x_1, x_2, ..., x_n, \frac{t}{|c|}\right)$$

for all $x_1, x_2, ..., x_n \in X$.

(N5) We have to show that for all $s, t \in \mathbb{R}$,

$$N'(x_1, x_2, ..., x_n + x'_n, s + t) \ge \min \left\{ \begin{array}{c} N'(x_1, x_2, ..., x_n, s), \\ N'(x_1, x_2, ..., x'_n, t) \end{array} \right\}.$$

If,

(a) s+t<0, (b) s=t=0, (c) s+t>0; s>0, t<0; s<0, t>0, then in these cases the ralation is obvious. If,

(d) s > 0, t > 0, let $p = N'(x_1, x_2, ..., x_n, s)$, $q = N'(x_1, x_2, ..., x'_n, t)$ and $p \le q$.

If p = 0, q = 0 then obviously (N5) holds.

Let $0 < r < p \le q$. Then there exists $\alpha > r$ such that $||x_1, x_2, ..., x_n||_{\alpha} \le s$ and there exists $\beta > r$ such that $||x_1, x_2, ..., x_n'||_{\beta} \le t$. Let $\gamma = \alpha \land \beta > r$. Thus

$$||x_1, x_2, ..., x_n||_{\gamma} \le ||x_1, x_2, ..., x_n||_{\alpha} \le s \text{ and}$$

 $||x_1, x_2, ..., x_n'||_{\gamma} \le ||x_1, x_2, ..., x_n'||_{\beta} \le t.$

Now

$$||x_1,x_2,...,x_n+x_n'||_{\gamma} \leq ||x_1,x_2,...,x_n||_{\gamma} + ||x_1,x_2,...,x_n'||_{\gamma} \leq s+t.$$

Therefore $N'(x_1, x_2, ..., x_n + x'_n, s + t) \ge \gamma > r$. Since $0 < r < \gamma$ is arbitrary thus

$$N'(x_1, x_2, ..., x_n + x'_n, s + t) \ge p = \min \left\{ egin{array}{l} N'(x_1, x_2, ..., x_n, s), \\ N'(x_1, x_2, ..., x'_n, t) \end{array}
ight\}.$$

Similarly if $p \geq q$, then the relation also holds.

(N6) Let $x_1, x_2, ..., x_n \in X$ and $\alpha \in (0, 1)$. Now $t > ||x_1, x_2, ..., x_n||_{\alpha}$, then

$$N'(x_1, x_2, ..., x_n, t) = \vee \{\beta : ||x_1, x_2, ..., x_n||_{\beta} \le t\} \ge \alpha$$

where $\beta \in (0,1)$. So $\lim_{t\to\infty} N'(x_1, x_2, ..., x_n, t) = 1$.

Next we show that $N'(x_1, x_2, ..., x_n, \cdot)$ is a nondecreasing function of \mathbb{R} . If $t_1 < t_2 \le 0$, then

$$N'(x_1, x_2, ..., x_n, t_1) = N'(x_1, x_2, ..., x_n, t_2) = 0$$

for all $x_1, x_2, ..., x_n \in X$. If $t_2 > t_1 > 0$ then

$$\{ \alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t_1 \} \subset \{ \alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t_2 \}$$

$$\Rightarrow \forall \{ \alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t_1 \} \le \forall \{ \alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t_2 \}$$

$$\Rightarrow N'(x_1, x_2, ..., x_n, t_1) \le N'(x_1, x_2, ..., x_n, t_2).$$

Thus, $N'(x_1, x_2, ..., x_n, \cdot)$ is a nondecreasing function of \mathbb{R} and hence N' is a fuzzy n-norm on X.

(N8) We assume that, for $x_1, x_2, ..., x_n$ are linearly independent, and $N(x_1, x_2, ..., x_n, \cdot)$ is a continuous function of \mathbb{R} and strictly increasing on the subset $\{t: 0 < N(x_1, x_2, ..., x_n, t) < 1\}$ of \mathbb{R} .

Lemma 1. If (X, N) be a fuzzy n-normed linear space satisfying (N7) and (N8) and $\{||\cdot, \cdot, ..., \cdot||_{\alpha} : \alpha \in (0, 1)\}$ be an ascending family of n-norms on X defined as $||x_1, x_2, ..., x_n||_{\alpha} = \wedge \{t : N(x_1, x_2, ..., x_n, t) \geq \alpha\}, \ \alpha \in (0, 1),$ then for $x_{10}, x_{20}, ..., x_{n0}$ in X which are linearly independent,

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, ||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha}) \geq \alpha$$

for all $\alpha \in (0,1)$.

Proof. Let $||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} = T$, then T > 0. Then there exists a sequence $(t_n)_n, t_n > 0, n = 1, 2, ...$ such that $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_n) \ge \alpha$ and $t_n \downarrow T$. Therefore,

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_n) \ge \alpha \Rightarrow N(x_{1_0}, x_{2_0}, ..., x_{n_0}, \lim_{n \to \infty} t_n) \ge \alpha$$
 by (N8)

which implies $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, ||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha}) \geq \alpha$ for all $\alpha \in (0, 1)$.

Lemma 2. If (X, N) be a fuzzy n-normed linear space satisfying (N7) and (N8) and $\{||\cdot, \cdot, ..., \cdot||_{\alpha} : \alpha \in (0, 1)\}$ be a family of α -n-norms on X defined by

$$||x_1, x_2, ..., x_n||_{\alpha} = \wedge \{t : N(x_1, x_2, ..., x_n, t) \geq \alpha \},$$

 $\alpha \in (0,1)$ and for all $x \in X$. Then for $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly independent, $\alpha \in (0,1)$ and for t' > 0,

$$||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} = t' \text{ iff } N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') = \alpha.$$

Proof. Let $\alpha \in (0,1), x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly independent and

$$t'=||x_{1_0},x_{2_0},...,x_{n_0}||_{\alpha}=\wedge\{s:N(x_{1_0},x_{2_0},...,x_{n_0},s)\geq\alpha\}.$$

Since $N(x_1, x_2, ..., x_n, \cdot)$ is continuous by (N8), we have

(i)
$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') \ge \alpha.$$

Also

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') \leq N(x_{1_0}, x_{2_0}, ..., x_{n_0}, s)$$

if $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, s) \geq \alpha$. If possible, let $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') > \alpha$, then by the continuity of $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, \cdot)$ at t', there exists t'' < t' such that $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t'') > \alpha$ which is impossible, since $t' = \wedge \{s : N(x_{1_0}, x_{2_0}, ..., x_{n_0}, s) \geq \alpha\}$. Thus

(ii)
$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') \leq \alpha.$$

By combining (i) and (ii) we get $N(x_{10}, x_{20}, ..., x_{n0}, t') = \alpha$. Thus

(iii)
$$t' = ||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} \Rightarrow N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') = \alpha.$$

Next if $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') = \alpha, \alpha \in (0, 1)$, then from definition

(iv)
$$||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} = \wedge \{t : N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t) \geq \alpha\} = t'$$

(Since $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, \cdot)$ is strictly increasing in

 $\{t: 0 < N(x_1, x_2, ..., x_n, t) < 1\}$). From (iii) and (iv) we have, for $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly independent, $\alpha \in (0, 1)$ and for t' > 0,

$$||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} = t' \text{ iff } N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') = \alpha.$$

Theorem 3. Let (X, N) be a fuzzy n-normed linear space satisfying (N7) and (N8). Let

$$||x_1, x_2, ..., x_n||_{\alpha} = \wedge \{t : N(x_1, x_2, ..., x_n, t) \geq \alpha \},$$

 $\alpha \in (0,1)$ and $N': \underbrace{X \times \cdots \times X}_{n} \times \mathbb{R} \to [0,1]$ be a function defined by

$$N'(x_1, x_2, ..., x_n, t)$$

$$= \begin{cases} \forall \{\alpha : ||x_1, x_2, ..., x_n||_{\alpha} \leq t\} & \textit{otherwise} \\ 0 & \textit{if} & x_1, x_2, ..., x_n \textit{ are} \\ & \textit{linearly dependent and } t = 0 \end{cases}$$

Then

- (i) $\{||\cdot,\cdot,...,\cdot||_{\alpha}: \alpha\in(0,1)\}$ is an ascending family of α -n-norms on X.
- (ii) N' is a fuzzy n-norm on X.
- (iii) N' = N.

Proof. We only prove (iii) and we consider the following cases.

Let
$$(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) \in \underbrace{X \times \cdots \times X}_n \times \mathbb{R}$$
 and $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) =$

 α_0 .

Case I. $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly dependent, $t_0 \leq 0$. Then,

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 0.$$

Case II. $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly dependent, $t_0 > 0$. Then,

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 1.$$

Case III. $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly independent, $t_0 \leq 0$. Then,

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 0.$$

Case IV. $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly independent and $t_0 > 0$ such that $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 0$.

For $\alpha \in (0,1)$,

$$||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} = \Lambda\{t : N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t) \ge \alpha\}.$$

By Lemma 1 we have $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, ||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha}) \ge \alpha$ for all $\alpha \in (0, 1)$. Since $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 0 < \alpha$, it follows that $t_0 < ||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha}$ for all $\alpha \in (0, 1)$. So,

$$N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = \vee \{\alpha : ||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} \le t_0\} = \vee \emptyset = 0.$$

Therefore,

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 0.$$

Case V. When $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly independent and $t_0 > 0$ such that $0 < N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) < 1$. Let $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = \alpha_0$. Then $0 < \alpha_0 < 1$. Now

$$N'(x_1, x_2, ..., x_n, t) = \bigvee \{\alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t\}$$

when

(i)
$$x_1, x_2, ..., x_n$$
 are linearly independent and $t \neq 0$,

(ii)
$$||x_1, x_2, ..., x_n||_{\alpha} = \wedge \{t : N(x_1, x_2, ..., x_n, t) \ge \alpha \}$$

for all $x_1, x_2, ..., x_n \in X$ and $0 < \alpha < 1$. Since $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = \alpha_0$, we have from (ii)

(iii)
$$||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha_0} \leq t_0.$$

Using (iii), we get from (i)

$$N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) \geq \alpha_0 \Rightarrow N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) \geq (2.1)$$

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0).$$

Now from Lemma 2, we have

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = \alpha_0 \Leftrightarrow ||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha_0} = t_0.$$

Now for $1 > \alpha > \alpha_0$, let $||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} = t'$, then $t' \ge t_0$. Then by Lemma 2, $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') = \alpha$. So,

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') = \alpha > \alpha_0 = N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0).$$

Since $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, \cdot)$ is strictly monotonically increasing in $S_{x_0} = \{t : 0 < N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t) < 1\}, t', t_0 \in S_{x_0}$ and

$$N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t') > N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0),$$

it follows that $t'>t_0$. So for $1>\alpha>\alpha_0, ||x_{1_0},x_{2_0},...,x_{n_0}||_{\alpha}=t'\nleq t_0$. Hence

(v)
$$N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) \le \alpha_0 = N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0).$$

By (iv) and (v) we have $N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0)$.

Case VI. When $x_{1_0}, x_{2_0}, ..., x_{n_0}$ are linearly independent and $t_0 > 0$ such that $N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 1$. Note that,

(i)
$$N'(x_1, x_2, ..., x_n, t) = \vee \{\alpha : ||x_1, x_2, ..., x_n||_{\alpha} \le t\},$$

for $x_1, x_2, ..., x_n$ are linearly independent and $t \neq 0$,

(ii)
$$||x_1, x_2, ..., x_n||_{\alpha} = \wedge \{t : N(x_1, x_2, ..., x_n, t) \ge \alpha\}$$

 $\alpha \in (0,1), x_1, x_2, ..., x_n \in X$. It follows that, for all $\alpha \in (0,1)$,

$$||x_{1_0}, x_{2_0}, ..., x_{n_0}||_{\alpha} \le t_0 \text{ by (ii)} \Rightarrow N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 1 \text{ by (i)}.$$

Thus $N'(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = N(x_{1_0}, x_{2_0}, ..., x_{n_0}, t_0) = 1$.

Hence, $N(x_1, x_2, ..., x_n, t) = N'(x_1, x_2, ..., x_n, t)$ for all $x_1, x_2, ..., x_n \in X$ and for all $t \in \mathbb{R}$.

Definition 5. Let (X, N) be a f-n-NLS and x(k) be a sequence in X. Then x(k) is said to be convergent if there exists a $x \in X$ such that $\lim_{k\to\infty} N(x_1, x_2, ..., x_{n-1}, x(k) - x, t) = 1$ for every $x_1, x_2, ..., x_{n-1} \in X$ and for all t > 0. Then x called limit of the sequence x(k) and denoted by $\lim x(k) = x$ or $x(k) \to x$.

Definition 6. A sequence x(k) in (X, N) is called Cauchy sequence, if

$$\lim_{k,l\to\infty} N(x_1,x_2,...,x_{n-1},x(k)-x(l),t)=1$$

for every $x_1, x_2, ..., x_{n-1} \in X$ and for all t > 0, $k, l \in \mathbb{N}$.

3. MAIN RESULTS

Throughout this paper (X, N_1) and (Y, N_2) are f-n-NLS over the same field of scalars.

Definition 7. A mapping T from (X, N_1) to (Y, N_2) is said to be fuzzy continuous at $z \in X$, if for given $\varepsilon > 0$, $\alpha \in (0,1)$, there exists $\delta = \delta(\alpha, \varepsilon) > 0$, $\beta = \beta(\alpha, \varepsilon) \in (0,1)$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$,

$$N_1(x_1, x_2, ..., x_{n-1}, y-z, \delta) > \beta \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty-Tz, \varepsilon) > \alpha.$$

If T is fuzzy continuous at each point of X, then T is said to be fuzzy continuous on X.

Definition 8. A mapping T from (X, N_1) to (Y, N_2) is said to be strongly fuzzy continuous at $z \in X$, if for each $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$,

$$N_2(y_1, y_2, ..., y_{n-1}, Ty - Tz, \varepsilon) \ge N_1(x_1, x_2, ..., x_{n-1}, y - z, \delta).$$

If T is strongly fuzzy continuous at each point of X, then T is said to be strongly fuzzy continuous on X.

Definition 9. A mapping T from (X, N_1) to (Y, N_2) is said to be weakly fuzzy continuous at $z \in X$, if for a given $\varepsilon > 0$, $\alpha \in (0,1)$, there exists $\delta = \delta(\alpha, \varepsilon) > 0$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$,

$$N_1(x_1, x_2, ..., x_{n-1}, y-z, \delta) \ge \alpha \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty - Tz, \varepsilon) \ge \alpha.$$

If T is weakly fuzzy continuous at each point of X, then T is said to be weakly fuzzy continuous on X.

Definition 10. A mapping T from (X, N_1) to (Y, N_2) is said to be sequentially fuzzy continuous at $z \in X$, if for any sequence x(k) in X with $x(k) \to z$ implies $Tx(k) \to Tz$, $k \in \mathbb{N}$. I.e., for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$ and for all t > 0,

$$\lim_{k \to \infty} N_1(x_1, x_2, ..., x_{n-1}, x(k) - z, t) = 1 \Rightarrow$$

$$\lim_{k \to \infty} N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Tz, t) = 1.$$

If T is sequentially fuzzy continuous at each point of X, then T is said to be sequentially fuzzy continuous on X.

Remark 2. It is easy to see that if a mapping is strongly fuzzy continuous then it is weakly fuzzy continuous.

Theorem 4. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a mapping. If T is strongly fuzzy continuous then it is sequentially fuzzy continuous..

Proof. Assume that T is strongly fuzzy continuous at $z \in X$. Then for each $\varepsilon > 0$, there exists $\delta = \delta(z, \varepsilon) > 0$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$,

(i)
$$N_2(y_1, y_2, ..., y_{n-1}, Ty - Tz, \varepsilon) \ge N_1(x_1, x_2, ..., x_{n-1}, y - z, \delta).$$

Let x(k) be a sequence in X such that $x(k) \rightarrow z$, i.e.,

(ii)
$$\lim_{k \to \infty} N_1(x_1, x_2, ..., x_{n-1}, x(k) - z, t) = 1$$

for all t > 0. Now from (i) we have,

$$N_2(y_1,y_2,...,y_{n-1},Tx(k)-Tz,arepsilon)\geq N_1(x_1,x_2,...,x_{n-1},x(k)-z,\delta)$$
 for $k=1,2,...$ Then,

$$\lim_{k \to \infty} N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Tz, \varepsilon) \ge \lim_{k \to \infty} N_1(x_1, x_2, ..., x_{n-1}, x(k) - z, \delta),$$

which implies $\lim_{k\to\infty} N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Tz, \varepsilon) = 1$ by (ii). Since $\varepsilon > 0$ is arbitrary, it follows $Tx(k) \to Tz$.

Theorem 5. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a mapping. Then T is fuzzy continuous iff it is sequentially fuzzy continuous.

Proof. Assume that T is fuzzy continuous at $z \in X$. Let x(k) be a sequence in X such that $x(k) \to z$. Let $\varepsilon > 0$ be given. Choose $\alpha \in (0,1)$. Since T is fuzzy continuous at z, then there exists $\delta = \delta(\alpha, \varepsilon) > 0$ and $\beta = \beta(\alpha, \varepsilon) \in (0,1)$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$ and $y_1, y_2, ..., y_{n-1} \in Y$,

$$N_1(x_1, x_2, ..., x_{n-1}, y-z, \delta) > \beta \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty-Tz, \varepsilon) > \alpha.$$

Since $x(k) \to z$ in X, there exists positive integer k_0 such that

$$N_1(x_1, x_2, ..., x_{n-1}, x(k) - z, \delta) > \beta$$

for all $k \geq k_0$. Then $N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Tz, \varepsilon) > \alpha$ for all $k \geq k_0$. So for a given $\varepsilon > 0$ and for any $\alpha \in (0,1)$, there exists positive integer k_0 such that $N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Tz, \varepsilon) > \alpha$ for all $k \geq k_0$. This implies $\lim_{k \to \infty} N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Tz, \varepsilon) = 1$. Since $\varepsilon > 0$ is arbitrary, thus $Tx(k) \to Tz$ in Y.

Next we suppose that T is sequentially fuzzy continuous at $z \in X$. If possible suppose that T is not fuzzy continuous at z. Thus, there exists $\varepsilon > 0$ and $\alpha > 0$ such that for any $\delta > 0$ and $\beta \in (0,1)$, there exists w (depending on δ , β) such that

 $N_1(x_1, x_2, ..., x_{n-1}, z - w, \delta) > \beta$ but $N_2(y_1, y_2, ..., y_{n-1}, Tz - Tw, \varepsilon) \le \alpha$. Thus for $\beta = 1 - \frac{1}{k+1}$, $\delta = \frac{1}{k+1}$, k = 1, 2, ..., there exists w(k) such that

$$N_{1}\left(x_{1}, x_{2}, ..., x_{n-1}, z - w(k), \frac{1}{k+1}\right) > 1 - \frac{1}{k+1}$$
 (i) but $N_{2}(y_{1}, y_{2}, ..., y_{n-1}, Tz - Tw(k), \varepsilon) \leq \alpha$.

Taking $\delta > 0$, there exists k_0 such that $\frac{1}{k+1} < \delta$ for all $k \ge k_0$. Then,

$$N_1(x_1, x_2, ..., x_{n-1}, z - w(k), \delta) \ge N_1\left(x_1, x_2, ..., x_{n-1}, z - w(k), \frac{1}{k+1}\right)$$
 $> 1 - \frac{1}{k+1}$

for all $k \geq k_0$. Therefore $\lim_{k\to\infty} N_1(x_1,x_2,...,x_{n-1},z-w(k),\delta) \geq 1 \Rightarrow w(k)\to z$. But from (i), $N_2(y_1,y_2,...,y_{n-1},Tz-Tw(k),\varepsilon)\leq \alpha$ so

$$N_2(y_1, y_2, ..., y_{n-1}, Tz - Tw(k), \varepsilon) \nrightarrow 1$$

as $k \to \infty$. Thus Tw(k) does not convergence to Tz whereas $w(k) \to z$ (w.r.t N_1), which is a contradiction to our assumption. Hence T is fuzzy continuous at z.

Definition 11. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a linear operator. T is said to be strongly fuzzy bounded on X iff there exists positive real number M such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$ and for all $s \in \mathbb{R}$,

$$N_2(y_1, y_2, ..., y_{n-1}, Ty, s) \ge N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{s}{M}\right)$$

Example 3. The zero and identity operators are strongly fuzzy bounded.

Example 4. Let $(X, ||\cdot, ..., \cdot||)$ be an n-normed linear space. We define two functions N_1 and N_2 from $X \times \cdots \times X \times \mathbb{R}$ to [0,1] by

$$N_1(x_1, x_2, ..., x_n, t) = \begin{cases} \frac{t}{t + \alpha_1 ||x_1, x_2, ..., x_n||} & if \quad t > 0 \\ 0 & if \quad t \le 0 \end{cases}$$

and

$$N_2(x_1, x_2, ..., x_n, t) = \begin{cases} \frac{t}{t + \alpha_2 ||x_1, x_2, ..., x_n||} & if \quad t > 0 \\ 0 & if \quad t \le 0 \end{cases}$$

where α_1 and α_2 are two fixed positive real numbers and $\alpha_1 > \alpha_2$. It is easy to show that N_1 and N_2 are fuzzy n-norms on X. We define an operator $T:(X,N_1)\to (X,N_2)$ by Ty=ry where $r\in\mathbb{R}\setminus\{0\}$ is fixed. Clearly T is a linear operator. If we choose a positive number M such that $M\geq |r|$, then it can be shown that

(ii)
$$N_2(x_1, x_2, ..., x_{n-1}, Ty, t) \ge N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{t}{M}\right)$$

for all $x_1, x_2, ..., x_{n-1}, y \in X$, and for all $t \in \mathbb{R}$. For all $x_1, x_2, ..., x_{n-1}, y \in X$, $M \ge |r|$ we have $\alpha_1 M \ge \alpha_2 |r|$, for all t > 0,

$$\Rightarrow \alpha_1 M||x_1, x_2, ..., x_{n-1}, y|| \ge \alpha_2 |r|||x_1, x_2, ..., x_{n-1}, y||$$

$$\Rightarrow t + \alpha_1 M||x_1, x_2, ..., x_{n-1}, y|| \ge t + \alpha_2 |r|||x_1, x_2, ..., x_{n-1}, y||$$

$$\Rightarrow \frac{t}{t + \alpha_2 |r| ||x_1, x_2, ..., x_{n-1}, y||} \ge \frac{t}{t + \alpha_1 M ||x_1, x_2, ..., x_{n-1}, y||},$$

$$\Rightarrow \frac{t}{t + \alpha_2||x_1, x_2, ..., x_{n-1}, ry||} \ge \frac{\frac{t}{M}}{\frac{t}{M} + \alpha_1||x_1, x_2, ..., x_{n-1}, y||}$$

$$\Rightarrow N_2(x_1, x_2, ..., x_{n-1}, Ty, t) \ge N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{t}{M}\right).$$

If $t \leq 0$ then above relation holds for all $x_1, x_2, ..., x_{n-1}, y \in X$. Hence T is a strongly fuzzy bounded linear operator.

Definition 12. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a linear operator. T is said to be weakly fuzzy bounded on X if for any $\alpha \in (0,1)$, there exists $M_{\alpha} > 0$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$ and for all $t \in \mathbb{R}$,

$$N_1\left(x_1,x_2,...,x_{n-1},y,\frac{t}{M_{\alpha}}\right)\geq lpha\Rightarrow N_2(y_1,y_2,...,y_{n-1},Ty,t)\geq lpha.$$

Theorem 6. Let (X, N_1) and (Y, N_2) be f-n-NLS and $T: X \to Y$ be a linear operator. If T is strongly fuzzy bounded then it is weakly fuzzy bounded but not conversely.

Proof. We suppose that T is strongly fuzzy bounded. Thus there exists M>0 such that for all $x_1,x_2,...,x_{n-1},y\in X,\,y_1,y_2,...,y_{n-1}\in Y$ and for all $t\in\mathbb{R}$ we have

$$N_2(y_1, y_2, ..., y_{n-1}, Ty, t) \ge N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{t}{M}\right).$$

Thus for any $\alpha \in (0,1)$, there exists $M_{\alpha}(=M) > 0$ such that

$$N_1\left(x_1,x_2,...,x_{n-1},y,rac{t}{M_lpha}
ight) \geq lpha \Rightarrow N_2(y_1,y_2,...,y_{n-1},Ty,t) \geq lpha$$

for all $x_1, x_2, ..., x_{n-1}, y \in X, y_1, y_2, ..., y_{n-1} \in Y$ and for all $t \in \mathbb{R}$. This implies that T is weakly fuzzy bounded.

For the converse result we consider the following example.

Example 5. Let $(X, ||\cdot, ..., \cdot||)$ be an n-normed linear space. We define two functions N_1 and N_2 from $X \times \cdots \times X \times \mathbb{R}$ to [0, 1] by

$$N_1(x_1,x_2,...,x_n,t) = \left\{ \begin{array}{ll} \frac{t^2 - ||x_1,x_2,...,x_n||^2}{t^2 + ||x_1,x_2,...,x_n||^2} & if \quad t > ||x_1,x_2,...,x_n|| \\ 0 & if \quad t \leq ||x_1,x_2,...,x_n|| \end{array} \right.$$

and

$$N_2(x_1, x_2, ..., x_n, t) = \begin{cases} \frac{t}{t + ||x_1, x_2, ..., x_n||} & if \quad t > 0 \\ 0 & if \quad t \le 0 \end{cases}$$

for all $x_1, x_2, ..., x_n \in X$. It can be shown that N_1 is a fuzzy n-norm on X. We define a linear operator $T: X \to X$ by Ty = y. If we choose $M_{\alpha} = \frac{1}{1-\alpha}$ for all $\alpha \in (0,1)$, we get

$$N_1\left(x_1,x_2,...,x_{n-1},y,rac{t}{M_lpha}
ight) \geq lpha \Rightarrow N_2(x_1,x_2,...,x_{n-1},Ty,t) \geq lpha.$$

Hence T is weakly fuzzy bounded. But it can be proved that T is not strongly fuzzy bounded.

Definition 13. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a linear operator. T is said to be uniformly bounded if there exists M > 0 such that for all $\alpha \in (0, 1)$,

$$||y_1,y_2,...,y_{n-1},Ty||^2_{\alpha} \leq M||x_1,x_2,...,x_{n-1},y||^1_{\alpha}$$

for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$, where $||\cdot, \cdot, ..., \cdot||_{\alpha}^1$ and $||\cdot, \cdot, ..., \cdot||_{\alpha}^2$ are α -n-norms of N_1 and N_2 respectively.

Theorem 7. Let (X, N_1) and (Y, N_2) be two f-n-NLS satisfying (N7) and (N8). Let $T: (X, N_1) \to (Y, N_2)$ be a linear operator. Then T is strongly fuzzy bounded iff it is uniformly bounded with respect to α -n-norms of N_1 and N_2 .

Proof. Let $||\cdot, \cdot, ..., \cdot||_{\alpha}^{1}$ and $||\cdot, \cdot, ..., \cdot||_{\alpha}^{2}$ be α -n-norms of N_{1} and N_{2} respectively.

First we suppose that T is strongly fuzzy bounded. Thus there exists M > 0 such that

$$N_2(y_1, y_2, ..., y_{n-1}, Ty, s) \ge N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{s}{M}\right)$$

for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$ and for all $s \in \mathbb{R}$. This implies

(i)
$$N_2(y_1, y_2, ..., y_{n-1}, Ty, s) \ge N_1(x_1, x_2, ..., x_{n-1}, My, s)$$
.

Now $||x_1, x_2, ..., x_{n-1}, My||_{\alpha}^1 < t$

$$\Rightarrow \land \{s: N_1(x_1, x_2, ..., x_{n-1}, My, s) \geq \alpha\} < t$$

$$\Rightarrow \exists s_0 < t \text{ such that } N_1(x_1, x_2, ..., x_{n-1}, My, s_0) \geq \alpha$$

$$\Rightarrow \exists s_0 < t \text{ such that } N_2(y_1, y_2, ..., y_{n-1}, Ty, s_0) \ge \alpha \text{ by (i)}.$$

$$\Rightarrow ||y_1, y_2, ..., y_{n-1}, Ty||_{\alpha}^2 \le s_0 < t.$$

Hence

 $||y_1, y_2, ..., y_{n-1}, Ty||_{\alpha}^2 \le ||x_1, x_2, ..., x_{n-1}, My||_{\alpha}^1 = M||x_1, x_2, ..., x_{n-1}, y||_{\alpha}^1$ for all $\alpha \in (0, 1)$. This implies that T is uniformly bounded w.r.t. α -n-norms, $\alpha \in (0, 1)$.

Conversely suppose that, there exists M > 0 such that

(ii)
$$||y_1, y_2, ..., y_{n-1}, Ty||_{\alpha}^2 \le M||x_1, x_2, ..., x_{n-1}, y||_{\alpha}^1$$

holds for all $\alpha \in (0,1)$ and for all $x_1, x_2, ..., x_{n-1}, y \in X, y_1, y_2, ..., y_{n-1} \in Y$. Now $r < N_1(x_1, x_2, ..., x_{n-1}, My, s)$ then

 $r < \vee \{\alpha \in (0,1) : ||x_1,x_2,...,x_{n-1},My||_{\alpha}^1 \le s\}$ by Theorem 3. Then there exists an $\alpha_0 \in (0,1)$ such that $r < \alpha_0$ and $||x_1,x_2,...,x_{n-1},My||_{\alpha_0}^1 \le s$. Therefore $||y_1,y_2,...,y_{n-1},Ty||_{\alpha_0}^2 \le s$ by (ii) which implies

 $N_2(y_1, y_2, ..., y_{n-1}, Ty, s) \ge \alpha_0 > r$. Hence

$$N_2(y_1, y_2, ..., y_{n-1}, Ty, s) \ge N_1(x_1, x_2, ..., x_{n-1}, My, s)$$

= $N_1(x_1, x_2, ..., x_{n-1}, y, \frac{s}{M})$

which shows T is strongly fuzzy bounded.

Theorem 8. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a linear operator. Then

(i) T is strongly fuzzy continuous everywhere on X if T is strongly fuzzy continuous at a point $z \in X$.

(ii) T is strongly fuzzy continuous iff T is strongly fuzzy bounded.

Proof. (i) Since T is strongly fuzzy continuous at a point $z \in X$, thus for each $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$ we have

$$N_2(y_1, y_2, ..., y_{n-1}, Ty - Tz, \varepsilon) \ge N_1(x_1, x_2, ..., x_{n-1}, y - z, \delta).$$

Taking any $w \in X$ and replacing y by y + z - w we get

$$N_2(y_1, y_2, ..., y_{n-1}, T(y+z-w)-Tz, \varepsilon) \ge N_1(x_1, x_2, ..., x_{n-1}, y+z-w-z, \delta)$$

 $\Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty + Tz - Tw - Tz, \varepsilon) \ge N_1(x_1, x_2, ..., x_{n-1}, y - w, \delta)$

 $\Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty - Tw, \varepsilon) \ge N_1(x_1, x_2, ..., x_{n-1}, y - w, \delta)$. Since w is arbitrary, it follows that T is strongly fuzzy continuous on X.

(ii) First we suppose that T is strongly fuzzy bounded. Thus there exists M>0 such that

$$N_2(y_1, y_2, ..., y_{n-1}, Ty, \varepsilon) \ge N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{\varepsilon}{M}\right)$$

for all $x_1, x_2, ..., x_{n-1}, y \in X, y_1, y_2, ..., y_{n-1} \in Y$ and for all $\varepsilon > 0$, i.e.,

$$N_2(y_1, y_2, ..., y_{n-1}, Ty - T(\underline{0}), \varepsilon) \ge N_1\left(x_1, x_2, ..., x_{n-1}, y - \underline{0}, \frac{\varepsilon}{M}\right)$$

which implies

$$N_2(y_1, y_2, ..., y_{n-1}, Ty - T(\underline{0}), \varepsilon) \ge N_1(x_1, x_2, ..., x_{n-1}, y - \underline{0}, \delta)$$

where $\delta = \frac{\varepsilon}{M}$. This shows that T is strongly fuzzy continuous at $\underline{0}$ and hence it is strongly fuzzy continuous on X.

Conversely, assume that T is strongly fuzzy continuous on X. Using continuity of T at y = 0, for $\varepsilon = 1$, there exists $\delta > 0$ such that

$$N_2(x_1, x_2, ..., x_{n-1}, Ty - T(\underline{0}), 1) \ge N_1(x_1, x_2, ..., x_{n-1}, y - \underline{0}, \delta)$$

for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$. Suppose that $y \neq \underline{0}$ and t > 0. Putting u = y/t then

$$\begin{array}{lcl} N_2(y_1,y_2,...,y_{n-1},Ty,t) & = & N_2(y_1,y_2,...,y_{n-1},tTu,t) \\ & = & N_2(y_1,y_2,...,y_{n-1},Tu,1) \\ & \geq & N_1\left(x_1,x_2,...,x_{n-1},u,\delta\right) \\ & = & N_1\left(x_1,x_2,...,x_{n-1},y/t,\delta\right) \\ & = & N_1\left(x_1,x_2,...,x_{n-1},y,t/M\right) \end{array}$$

where $M = 1/\delta$. So

$$N_2(y_1, y_2, ..., y_{n-1}, Ty, t) \ge N_1(x_1, x_2, ..., x_{n-1}, y, t/M)$$

If $y \neq \underline{0}$ and $t \leq 0$ then

$$N_2(y_1, y_2, ..., y_{n-1}, Ty, t) = 0 = N_1(x_1, x_2, ..., x_{n-1}, y, t/M).$$

If $y = \underline{0}$ and $t \in \mathbb{R}$ then $T(\underline{0}_X) = \underline{0}_Y$ and

$$\begin{array}{lcl} N_2(y_1,y_2,...,y_{n-1},\underline{0}_Y,t) & = & N_1\left(x_1,x_2,...,x_{n-1},\underline{0}_X,t/M\right) = 1 \text{ if } t>0, \\ N_2(y_1,y_2,...,y_{n-1},\underline{0}_Y,t) & = & N_1\left(x_1,x_2,...,x_{n-1},\underline{0}_X,t/M\right) = 0 \text{ if } t\leq 0. \end{array}$$

From the above discussion it follows that T is strongly fuzzy bounded. \square

Remark 3. If T is strongly fuzzy bounded then it is sequentially fuzzy continuous on X.

Theorem 9. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a linear operator. If T is sequentially fuzzy continuous at a point then it is sequentially fuzzy continuous on X.

Proof. Suppose that T is sequentially continuous at $y_0 \in X$. Let $y \in X$ be an arbitrary point and let x(k) be a sequence in X such that $x(k) \to y$. Then for all $x_1, x_2, ..., x_{n-1}, y \in X$,

$$\lim_{k \to \infty} N_1(x_1, x_2, ..., x_{n-1}, x(k) - y, t) = 1 \text{ for all } t > 0,$$

i.e.,

$$\lim_{k\to\infty} N_1(x_1,x_2,...,x_{n-1},(x(k)-y+y_0)-y_0,t)=1 \text{ for all } t>0.$$

Since T is continuous at $y_0 \in X$, then from Theorem 5 we have, for all $y_1, y_2, ..., y_{n-1} \in Y$,

$$\lim_{k \to \infty} N_2(y_1, y_2, ..., y_{n-1}, T(x(k) - y + y_0) - Ty_0, t) = 1 \text{ for all } t > 0$$

$$\Rightarrow \lim_{k \to \infty} N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Ty + Ty_0 - Ty_0, t) = 1 \text{ for all } t > 0$$

$$\Rightarrow \lim_{k \to \infty} N_2(y_1, y_2, ..., y_{n-1}, Tx(k) - Ty, t) = 1 \text{ for all } t > 0.$$

Thus $\lim_{k\to\infty} N_1(x_1,x_2,...,x_{n-1},x(k)-y,t)=1$ for all t>0 which implies $\lim_{k\to\infty} N_2(y_1,y_2,...,y_{n-1},Tx(k)-Ty,t)=1$ for all t>0. This shows that T is sequentially fuzzy continuous on X.

Theorem 10. Let (X, N_1) and (Y, N_2) be two f-n-NLS and $T: X \to Y$ be a linear operator. Then

- (i) T is weakly fuzzy continuous everywhere on X if T is weakly fuzzy continuous at a point $y_0 \in X$.
- (ii) T is weakly fuzzy continuous iff T is weakly fuzzy bounded.

Proof. (i) Since T is weakly fuzzy continuous at a point $y_0 \in X$, thus for each $\varepsilon > 0$ and $\alpha \in (0,1)$ there exists $\delta(\alpha,\varepsilon) > 0$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X, y_1, y_2, ..., y_{n-1} \in Y$ we have

$$N_1(x_1, x_2, ..., x_{n-1}, y - y_0, \delta) \ge \alpha \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty - Ty_0, \varepsilon) \ge \alpha.$$

Taking any $z \in X$ and replacing y by $y + y_0 - z$ we get

$$egin{array}{lll} N_1(x_1,x_2,...,x_{n-1},y+y_0-z-y_0,\delta) & \geq & lpha \Rightarrow \ N_2(y_1,y_2,...,y_{n-1},T(y+y_0-z)-Ty_0,arepsilon) & \geq & lpha, \ {
m i.e.}, \ N_1(x_1,x_2,...,x_{n-1},y-z,\delta) & \geq & lpha \Rightarrow \ N_2(y_1,y_2,...,y_{n-1},Ty-Tz,arepsilon) & \geq & lpha. \end{array}$$

Since z is arbitrary, it follows that T is weakly fuzzy continuous on X.

(ii) First we suppose that T is weakly fuzzy bounded. Thus for any $\alpha \in (0,1)$, there exists $M_{\alpha} > 0$ such that

$$N_1\left(x_1,x_2,...,x_{n-1},y,rac{t}{M_lpha}
ight)\geq lpha \Rightarrow N_2(y_1,y_2,...,y_{n-1},Ty,t)\geq lpha$$

for all $x_1, x_2, ..., x_{n-1}, y \in X, y_1, y_2, ..., y_{n-1} \in Y$ and for all $t \in \mathbb{R}$, i.e.,

 $N_1\left(x_1,x_2,...,x_{n-1},y-\underline{0},rac{t}{M_lpha}
ight)\geq lpha \Rightarrow N_2(y_1,y_2,...,y_{n-1},Ty-T(\underline{0}),t)\geq lpha, ext{ i.e.,}$

 $N_1\left(x_1,x_2,...,x_{n-1},y-\underline{0},\frac{\varepsilon}{M_\alpha}\right)\geq\alpha\Rightarrow N_2(y_1,y_2,...,y_{n-1},Ty-T(\underline{0}),\varepsilon)\geq\alpha\text{ for }\varepsilon>0\text{, i.e.,}$

 $N_1\left(x_1,x_2,...,x_{n-1},y-\underline{0},\delta\right)\geq \alpha \Rightarrow N_2(y_1,y_2,...,y_{n-1},Ty-T(\underline{0}),\varepsilon)\geq \alpha$ where $\delta=rac{\varepsilon}{M}$.

This implies that T is weakly fuzzy continuous at $x = \underline{0}$ and hence weakly fuzzy continuous on X.

Conversely, assume that T is weakly fuzzy continuous on X. Using weakly fuzzy continuity of T at $y=\underline{0}$, for $\varepsilon=1$ we have for all $\alpha\in(0,1)$, there exists $\delta(\alpha,1)>0$ such that for all $x_1,x_2,...,x_{n-1},y\in X$, $y_1,y_2,...,y_{n-1}\in Y$,

$$\begin{split} N_1\left(x_1, x_2, ..., x_{n-1}, y - \underline{0}, \delta\right) &\geq \alpha \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty - T(\underline{0}), 1) \geq \alpha \\ \text{i.e. } N_1\left(x_1, x_2, ..., x_{n-1}, y, \delta\right) &\geq \alpha \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty, 1) \geq \alpha. \end{split}$$

Suppose that $y \neq 0$ and t > 0. Putting y = u/t then

$$N_1(x_1, x_2, ..., x_{n-1}, u/t, \delta) \ge \alpha \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, T(u/t), 1) \ge \alpha$$

i.e.
$$N_1\left(x_1,x_2,...,x_{n-1},u,t\delta\right)\geq \alpha\Rightarrow N_2(y_1,y_2,...,y_{n-1},Tu,t)\geq \alpha$$
, i.e., $N_1\left(x_1,x_2,...,x_{n-1},u,\frac{t}{M_\alpha}\right)\geq \alpha\Rightarrow N_2(y_1,y_2,...,y_{n-1},Tu,t)\geq \alpha$ where $M_\alpha=\frac{1}{\delta(\alpha,1)}$. This shows that T is weakly fuzzy bounded.

If $y \neq 0$ and $t \leq 0$ then

$$N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{t}{M_{\alpha}}\right) = N_2(y_1, y_2, ..., y_{n-1}, Ty, t)$$

for any $M_{\alpha} > 0$.

If y = 0 then for $M_{\alpha} > 0$,

$$N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{t}{M_{\alpha}}\right) = N_2(y_1, y_2, ..., y_{n-1}, Ty, t) = 1 \text{ if } t > 0,$$

$$N_1\left(x_1,x_2,...,x_{n-1},y,\frac{t}{M_{\alpha}}\right) = N_2(y_1,y_2,...,y_{n-1},Ty,t) = 0 \text{ if } t \leq 0.$$

From the above three cases it follows that for $\alpha \in (0, 1)$, there exists $M_{\alpha} > 0$ such that

$$N_1\left(x_1,x_2,...,x_{n-1},u,rac{t}{M_lpha}
ight) \geq lpha \Rightarrow N_2(y_1,y_2,...,y_{n-1},Tu,t) \geq lpha$$

for all $x_1, x_2, ..., x_{n-1}, u \in X, y_1, y_2, ..., y_{n-1} \in Y$ and for all $t \in \mathbb{R}$. Hence T is weakly fuzzy bounded.

Theorem 11. Let (X, N_1) and (Y, N_2) be two f-n-NLS satisfying (N7) and (N8). Let $T: (X, N_1) \to (Y, N_2)$ be a linear operator. Then T is weakly fuzzy bounded iff T be bounded w.r.t. α -n-norms of N_1 and N_2 , $\alpha \in (0,1)$.

Proof. First we suppose that T is weakly fuzzy bounded. Thus for all $\alpha \in (0,1)$, there exists $M_{\alpha} > 0$ such that for all $x_1, x_2, ..., x_{n-1}, y \in X$, $y_1, y_2, ..., y_{n-1} \in Y$, for all $t \in \mathbb{R}$ we have

$$N_1\left(x_1,x_2,...,x_{n-1},y,rac{t}{M_lpha}
ight)\geq lpha\Rightarrow N_2(y_1,y_2,...,y_{n-1},Ty,t)\geq lpha,$$

i.e., $N_1(x_1, x_2, ..., x_{n-1}, M_{\alpha}y, t) \ge \alpha \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty, t) \ge \alpha$, i.e.,

$$\forall \{ \beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\beta}^1 \le t \} \ge \alpha \Rightarrow$$

$$\forall \{ \beta \in (0,1) : ||y_1, y_2, ..., y_{n-1}, Ty||_{\beta}^2 \le t \} \ge \alpha.$$
(i)

Now we show that,

$$\forall \{ \beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\beta}^1 \le t \} \ge \alpha$$

$$\Leftrightarrow ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\alpha}^1 \le t.$$

If $y = \underline{0}$ then the relation is obvious. Suppose $y \neq \underline{0}$. Now if

$$\forall \{ \beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\beta}^1 \le t \} > \alpha$$

$$\Rightarrow ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\alpha}^1 \le t.$$
(ii)

If $\forall \{\beta \in (0,1) : ||x_1,x_2,...,x_{n-1},M_{\alpha}y||_{\beta}^1 \leq t\} = \alpha$, then there exists an increasing sequence $(\alpha_n)_n$ in (0,1) such that $\alpha_n \uparrow \alpha$ and

 $||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\alpha_n}^1 \leq t$. Then, we have

(iii)
$$||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\alpha}^1 \le t.$$

Thus from (ii) and (iii) we get,

$$\forall \{\beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\beta}^{1} \le t\} \ge \alpha \qquad \text{(iv)}$$

$$\Rightarrow ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\alpha}^{1} \le t.$$

Next we suppose that $||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\alpha}^1 \leq t$.

If $||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\alpha}^1 < t$ then

(v)
$$\forall \{\beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\beta}^1 \le t\} \ge \alpha.$$

If $||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\alpha}^1 = t$ i.e. $\wedge \{s : N_1(x_1, x_2, ..., x_{n-1}, M_{\alpha}y, s) \geq \alpha\} = t$, then there exists a sequence $(s_k)_k$ in \mathbb{R} such that $s_k \downarrow t$ and $N_1(x_1, x_2, ..., x_{n-1}, M_{\alpha}y, s_k) \geq \alpha$.

This implies $\lim_{k\to\infty} N_1(x_1, x_2, ..., x_{n-1}, M_{\alpha}y, s_k) \geq \alpha$, then $N_1(x_1, x_2, ..., x_{n-1}, M_{\alpha}y, \lim_{k\to\infty} s_k) \geq \alpha$ by (N8).

Therefore $N_1(x_1, x_2, ..., x_{n-1}, M_{\alpha}y, t) \geq \alpha$, then

(vi)
$$\forall \{\beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\beta}^1 \leq t\} \geq \alpha.$$

From (v) and (vi) it follows that,

(vii)
$$\forall \{\beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\beta}^1 \leq t\} \geq \alpha.$$

Hence,

$$\forall \{\beta \in (0,1) : ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\beta}^{1} \le t\} \ge \alpha \qquad \text{(viii)}
\Leftrightarrow ||x_1, x_2, ..., x_{n-1}, M_{\alpha} y||_{\alpha}^{1} \le t.$$

In a similar way we can show that,

(ix)

$$\sqrt{\{\beta \in (0,1) : ||y_1, y_2, ..., y_{n-1}, Ty||_{\beta}^2 \le t\}} \ge \alpha \Leftrightarrow ||y_1, y_2, ..., y_{n-1}, Ty||_{\alpha}^2 \le t.$$

Therefore from (viii) and (ix) we have if

$$N_1(x_1, x_2, ..., x_{n-1}, M_{\alpha}y, t) \ge \alpha \Rightarrow N_2(y_1, y_2, ..., y_{n-1}, Ty, t) \ge \alpha$$

holds. Then

$$||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\alpha}^1 \le t \Rightarrow ||y_1, y_2, ..., y_{n-1}, Ty||_{\alpha}^2 \le t$$

holds. Then weakly fuzzy boundedness of T implies

$$||y_1, y_2, ..., y_{n-1}, Ty||_{\alpha}^2 \le M_{\alpha} ||x_1, x_2, ..., x_{n-1}, y||_{\alpha}^1$$

for all $\alpha \in (0,1)$.

Conversely suppose that for all $\alpha \in (0,1)$, there exists $M_{\alpha} > 0$ such that

$$||y_1, y_2, ..., y_{n-1}, Ty||^2_{\alpha} \le M_{\alpha} ||x_1, x_2, ..., x_{n-1}, y||^1_{\alpha}$$

for all $x_1, x_2, ..., x_{n-1}, y \in X, y_1, y_2, ..., y_{n-1} \in Y$.

Then for $y \neq \underline{0}$,

$$||x_1, x_2, ..., x_{n-1}, M_{\alpha}y||_{\alpha}^1 \le t \Rightarrow ||y_1, y_2, ..., y_{n-1}, Ty||_{\alpha}^2 \le t$$

for all t > 0, i.e.,

In a similar way as above we can show that

and

Thus we have

$$N_1\left(x_1, x_2, ..., x_{n-1}, y, \frac{t}{M_{\alpha}}\right) \geq \alpha \Rightarrow N_2\left(y_1, y_2, ..., y_{n-1}, Ty, t\right) \geq \alpha$$

for all $x_1, x_2, ..., x_{n-1}, y \in X, y_1, y_2, ..., y_{n-1} \in Y$.

If $y \neq \underline{0}$, $t \leq 0$ and $y = \underline{0}$, t > 0 then the above relation is obvious. Hence the theorem follows.

Theorem 12. Let (X, N_1) and (Y, N_2) be two f-n-NLS satisfying (N7) and (N8). Let $T: X \to Y$ be a linear operator. If X is of finite dimension then T is weakly fuzzy bounded.

Proof. Since (X, N_1) and (Y, N_2) satisfying (N7), we may suppose that $||\cdot, \cdot, ..., \cdot||^1_{\alpha}$ and $||\cdot, \cdot, ..., \cdot||^2_{\alpha}$ are the α -n-norms of N_1 and N_2 respectively. Since X is of finite dimension, thus $T: (X, ||\cdot, \cdot, ..., \cdot||^1_{\alpha}) \to (Y, ||\cdot, \cdot, ..., \cdot||^2_{\alpha})$ is a bounded linear operator for each $\alpha \in (0, 1)$. Thus by Theorem 11, it follows that T is weakly fuzzy bounded.

Acknowledgement 1. The author would like to thank the referees for their help in the improvement of this paper.

REFERENCES

- T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003), 687 - 705.
- [2] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005), 513 – 547.
- [3] S. C. Chang and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (5) (1994), 429 – 436.
- [4] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets and Systems 48 (2) (1992), 239 - 248.
- [5] C. Felbin, The completion of a fuzzy normed linear space, J. Math. Anal. Appl. 174(2) (1993), 428 440.
- [6] C. Felbin, Finite dimensional fuzzy normed linear space. II, J. Anal. 7 (1999), 117-131.
- [7] S. Gähler, Lineare 2-normierte Räume, Math.Nachr. 28 (1964), 1 43.
- [8] S. Gähler, Untersuchungen über verallgemeinerte m-metrische Räume, I, Math.Nachr. 40 (1969), 165 – 189.
- [9] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (10) (2001), 631 - 639.
- [10] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Set and Systems 12 (1984), 215 – 229.
- [11] A. K. Katsaras, Fuzzy topological vector spaces. II, Fuzzy Sets and Systems 12 (2) (1984), 143 – 154.
- [12] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math. 29 (4) (1996), 739 - 744.
- [13] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975) 326 – 334.
- [14] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (2) (1994), 207 – 217.
- [15] R. Malčeski, Strong n-convex n-normed spaces, Mat. Bilten 21 (47) (1997), 81-102.
- [16] A. Misiak, n-inner product spaces, Math. Nachr. 140(1989), 299 319.
- [17] Al. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, Int. J. Math. Math. Sci. 24(2005), 3963 – 3977.

[18] J.-z. Xiao and X.-h. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems 133 (3) (2003) 389 – 399.

(Hakan Efe), DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, GAZI UNIVERSITY, TEKNIKOKULLAR, 06500 ANKARA, TURKEY E-mail address: hakanefe@gazi.edu.tr