CONTINUOUS MAPPINGS AND BOUNDED LINEAR
OPERATORS IN FUZZY »-NORMED LINEAR SPACES

HAKAN EFE

ABSTRACT. The aim of this paper to define different types of conti-
nuities of operators and boundedness of linear operators over fuzzy n-
normed linear spaces. Also some definitions such as fuzzy continuity,
sequential fuzzy continuity, weakly fuzzy continuity, strongly fuzzy
continuity, weakly fuzzy boundedness and strongly fuzzy bounded-
ness are given in fuzzy n-normed linear spaces. In addition, some
theorems related to these definitions are proved.

1. INTRODUCTION

Since the introduction of the concept of fuzzy norm on a linear space
by Katsaras [11] in 1984, many authors have studied the fuzzy topological
vector spaces. In 1992, Felbin [4] introduced an idea of a fuzzy norm on
a linear space by assigning a fuzzy real number to each element of the
linear space so that the corresponding metric associated to this fuzzy norm
is of Kaleva type [10] fuzzy metric. In 1994, Chang and Moderson (3]
introduced another idea of a fuzzy norm on a linear space in such a manner
that the corresponding fuzzy metric of it is of Kramosil and Michalek
type [13]. Recently Xiao and Zhu [18] redefined the idea of Felbin's [4]
definition of fuzzy norm of a linear operator from a fuzzy normed linear
space to another fuzzy normed linear space. In 2003, Bag and Samanta
[1] introduced a definition of a fuzzy norm and proved a decomposition
theorem of a fuzzy norm into a family of crisp norms.Also in 2005, Bag and
Samanta [2) give some properties on fuzzy norms. In (5, 6, 14] were studied
various properties of these types of fuzzy normed linear spaces. The concept
of 2-norm and n-norm on a linear space has been introduced and developed
by Gahler in (7, 8). Following Misiak [16], Kim and Cho [12] and Maléeski
[15]) developed the theory of n-normed space. In [9], Gunawan and Mashadi
gave a simple way to derive an (n-1)-norm from the n-norm and realized
that any n-normed space is an (n-1)-normed space. Also, Narayanan and
Vijayabalaji [17] introduced the concept of fuzzy n-normed linear space.
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In the present paper, we define various types of continuities of operators
and boundedness of linear operators over fuzzy n-normed linear spaces such
as fuzzy continuity, sequential fuzzy continuity, weakly fuzzy continuity,
strongly fuzzy continuity, weakly fuzzy boundedness and strongly fuzzy
boundedness.

2. PRELIMINARIES
Definition 1 ([9]). Letn € N and let X be a real vector space of dimension

d > n. (Here we allow d to be infinite.) A real-valued function ||-,...,-|| on
X X ---x X satisfying the following four properties,
n
(1) l|lz1,%2, .., zn|| = 0 if and only if 21,23, ...,z, are linearly depen-
dent,

(2) l|z1,z2, ..., Zn|| is invariant under any permutation,

(3) lz1, %2, ooy @znl] = |0 ||21, 22, ..., Zn|| for any o € R,

(4) ||$1,$2, ---,a?n—l,y'i'Z“ < ”:Bl,:Bg, '--1xn—11y”+”x1,z2: w3 Tn—1, Z”,

is called an n-norm on X and the pair (X, ||+, ..., -||) is called an n-normed

space.

Example 1. Let X = R" and

11 Zin
l|z1, Z2, ..., Zn||E = abs oo, )
Tpr ' Tpn
where ; = (Zi1, ..., Tin) € R® for each i = 1,2,...,n. Then (X, ||, ...,"||E)
is an n-normed space which is called Euclidean n-normed space.
Definition 2 ([9]). Let (X, ||, ...,-||]) be an n-normed linear space and z(k)

be a sequence in X. Then z(k) is said to be convergent if there exists a
x € X such that

lim ||z1,%2,...,Zn-1,2(k) — || =0

k—oo
for every 21,23, ...,xn-1 € X. Then z called limit of the sequence z(k) and
denoted by limz(k) = = or z(k) — =z.

Definition 3 ([9]). A sequence z(k) in (X, ||, ...,*||) is called Cauchy se-
quence, if
kllim |1, Z2y ooy Zn—1,2(k) — z(1)|| = 0
=00

for every xy,xa,...,zn—1 € X and k,l € N.

Definition 4 ([17]). Let X be a linear space over a real field F. A fuzzy
subset N of X x ---x X x R (R, set of real numbers) is called a fuzzy
Nt e’

n-norm on X if an?i only if
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(N1) for all t € R with ¢t < 0, N(z1,%2,...,Za,t) =0,

(N2) for all t € R with ¢ > 0, N(z1,%2,...,Zs,t) = 1 if and only if
1,2, ..., Tn, are linearly dependent,

(N3) N(z1,z2,...,Zn,t) is invariant under any permutation of zi, ..., Tn,

(N4) forallt € Rwitht > 0, N(z1,%2,...,CZn,t) = N(z1,Z2, ..., Tn, t/|c]),
ifc#0,ceF,

(N5) for all s,t € R,

N(Z1, T2y 00y T + Th, 8 + 1) > min{N(z1,Z2, ..., Tn, 8), N (21, T2, ..., Ty 1) },
(N6) N(z1,z2,...,Zn,") is a nondecreasing function of R and
tl_lf& N(z1,z2,...;Tn,t) = L.
Then (X, N) is called a fuzzy n-normed linear space or in short f-n-NLS.
Remark 1. From (N3), it follows that in a f-n-NLS,
(N4) for allt € R with ¢ > 0,
N(Z1, T2y oy CTiy ooy Ty B) = N(T1,Z2, ooy Ty ooy Ty Ef ],

ifc#0,
(N5) for all s, € R,

N(z1,Z2y .00y Ti + Thyerry Ty $ + 1)
> min{N(z1,Z2, s Tiy ey Tny 8), N(T1, T2y o0y ¢, o0y Ty B) }-

Example 2. Let (X,||,,",...,-||) be an n-normed space as in Definition 1.
Define,

L if t>0,teR,
N(xth, ey T,y t) = { t’i‘“-""lv"’(;r'"»zn" :; > ¢ < 06 R

for all z1,%2,...,xn € X. Then (X, N) is a fn-NLS.
Theorem 1 ([17]). Let (X,N) be a f-n-NLS. Assume further those

(N7) N(z1,Z2,..., Zn,t) > 0 for all ¢ > 0 implies z;, z2, ..., T, are linearly
dependent.

Define
21,22y oy Znlla = A{t : N(21,Z2, ..., Tnyt) > a}, a € (0,1).

Then {||,, ---*|la : @ € (0,1)} is an ascending family of n-norms on X.
These n-norms are called a-n-norms on X corresponding to the fuzzy n-
norm N on X.
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Theorem 2. Let {||:,-,...,"]|la : @ € (0,1)} ascending family of n-norms on
X. Now we define a function N' : X x--- x X x R — [0,1] by
N e, e’

n
N’(!Dl, T2y +e0y Ty t)
v{a:||z1, 22, ..., Znlla <t} otherwise
= 0 if Z1,%2,..., Ty ATE
linearly dependent andt =0

Then N' is a fuzzy n-norm on X.
Proof. (N1) For all t € R with ¢t < 0 we have
N'(z1,Z2y ..., Tn, t) = V{a : ||Z1, T2y oy Znl|la <t} =0

for all z € X. For t = 0 and z,, 22, ..., T, are linearly dependent from the
definition N'(z1, 29, ..., Zn,t) = 0.

(N2) Let N'(z1,%2,...,Zn,t) = 1 for all £ > 0. Choose any ¢ € (0,1).
Then for any ¢ > 0, there exists a; € (¢, 1] such that ||z1,z2,...,Zs|la, < ¢,
and hence ||z1,Z2,...,Zs||le < t. Since ¢ > 0 is arbitrary, this implies that

llz1, Z2, ...y Tnlle = O then 1, %3, ..., T, are linearly dependent.
If 21, 22, ..., z,, are linearly dependent then

N,(xtha oy Tnyt) = V{a: ||z1,T2, s Znlla < t}
Via:ae(0,1)} =1

for all ¢ > 0.

(N3) Since ||z1, %2, ..., Zn||o 18 invariant under any permutation, then
N'(z1,x2,...,Tn,t) is invariant under any permutation.

(N4) Let ¢c#0,c€ F and t > 0. Then

N'(z1,z2, ..., CTn, )
V{a: ||z1,Z2,...,cZn||a < t} = V{a: |c|||z1,Z2, ..., Zn|]a < t}

t t
= V {a : “ml:x%"-azn”a < 'I_c'l'} =N’ (wl,xZ,'":mn) I—C-l)

for all zq,z2,...,2, € X.
(N5) We have to show that for all s,t € R,

N’(Z], L2,y ..-y T, 3), }

’ ! > mi
N'(z1, %2,y Tn + Ty s +1) 2 mm{ N'(zy, 2o, ..., Z}, t)

If,

() s+t<0,(b)s=t=0,(c)s+t>0;5>0,t<0;5<0,t>0,
then in these cases the ralation is obvious. If,

(d) s> 0,t>0,let p=N'(z;,22,...,Tn, 8), ¢ = N'(21, 22, ..., T}, 1) and
Pgq

If p=0, ¢ = 0 then obviously (N5) holds.
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Let 0 < r < p < g. Then there exists a > r such that ||z1, Z2, ..., Talla <
s and there exists 8 > r such that ||z1,%2,...,2,||g < t. Let y=aAf > r.
Thus
”xth) ---:wn”'y S ”:cl,xZ)"'a wn“a S s and
lz1, 22, Zplly < @2, 22, 20]lg < ¢
Now
llz1, T2y oes Tn + 23l < |21, 22, s Tally + |21, 22, o Tplly S s +E
Therefore N'(z1, Z2, ..., Tn + 24, s+1) > v > 7. Since 0 < r < v is arbitrary
thus

Nl(xla T2y 000y $n,5), }

! : 2 p=mi
N'(z1,%2,.0Tn + T, 8 +1) 2P mm{ N'(z1,22,..., 20, 1)

Similarly if p > g, then the relation also holds.
(N6) Let z;,z3,...,z, € X and & € (0,1). Now ¢t > ||z1,Z2,..; Znla)
then
N’(a:l,a:g, ...,.'l:.,,,,t) = V{ﬂ : ||x1,a:2,...,xn||ﬁ < t} Za
where 3 € (0,1). So limg—oo N'(1,Z2, .y Tn,t) = 1.
Next we show that N'(z;, 232, ..., Tn, ) is a nondecreasing function of R.
If t; <ty <0, then

N'(ml, T2, eeey :l:n,tl) = N'(.’Bl,wg, ...,.'Bn,tz) =0
for all z1,%2,...,2n € X. If t3 > t; > 0 then
{@ : ||lz1,Z2, 0 Tnlla < t1} C {a: ||21, 22, ..., Talla < t2}
= V{a:||z1,Z2, . Znlla St} < V{a: ||z, 22,0, Znlla < t2}
= N'(z1,%2,..-,Tn,t1) £ N'(z1,Z2, ., Tn, t2).

Thus, N'(z1, T2, ..., Zn, -) is a nondecreasing function of R and hence N’ is
a fuzzy n-norm on X. 0O

(N8) We assume that, for z;,za,...,Zn are linearly independent, and
N(z1,Z9,...,Zn,") is a continuous function of R and strictly in-
creasing on the subset {t: 0 < N(z1,%2,...,Zn,t) < 1} of R.

Lemma 1. If (X, N) be a fuzzy n-normed linear space satisfying (N7) and
(N8) and {||-,-,...,"||a : @ € (0,1)} be an ascending family of n-norms on
X defined as ||z1, %2, ..., Tnlla = A{L: N(21,%2,...,2Zn,t) 2 }, a € (0,1),
then for T1,,Z2q, -y Tn, in X which are linearly independent,

N(zlosa:Zm w1 Tngy |I$107x2m "'7xno”a) P

for all & € (0,1).
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Proof. Let ||z1,Z29s .-y Tnolla = T, then T > 0. Then there exists a se-
quence (t,)n, tn > 0, n = 1,2,... such that N(z1y,T2,, ..y Tng,tn) = a and
tn, | T. Therefore, :

N(Z15, %24, -0y Tngy tn) 2 & = N(z1,, T2y, ...,:c,.,,,nllngotn) > a by (N8)

which implies N (14, T2y, -+, Tngs |[T101 T205 -y Tnol|a) = @ for all & € (0,1).
(]

Lemma 2. If (X, N) be a fuzzy n-normed linear space satisfying (N7) and
(N8) and {||:,+, ..., ||a : @ € (0,1)} be a family of a-n-norms on X defined
by

||a:1,a:2, ...,a:n”a = /\{t : N(ml,xg, ...,a:,.,t) > Oz},

« € (0,1) and for all z € X. Then for z1,,Z2,, ..., Tn, are linearly inde-
pendent, a € (0,1) and fort' >0,

[|Z10s Z2gs ooy Tnglla =t #fFf N(Z19,T2gs ey Tng» ) = .
Proof. Let a € (0,1), Z14,%2g;...; Tn, are linearly independent and
t' = ||Z10, Z201 --r Znolla = A8 : N(Z19, T2g, or» Tng» 8) > }.
Since N(z1, 32, ...,Tn,") is continuous by (N8), we have
(i) N(Z19,T2g) ooy Tngy ') =

Also
N(Z19, Z29) e+ Tngs t') < N(T14,T2gy -y Tngs S)

if N(z14,%29) - Tng,8) = . If possible, let N(z1,, T2, ) Tng,t') > @,
then by the continuity of N(z1,,Z2g, ..., Tng,*) at t/, there exists t/ < ¢t
such that N (21, %2, ..., Tng, ") > a which is impossible, since ¢’ = A{s :
N(z14, T2y ey Tng, 8) = a}. Thus

(ii) N(Z14,Z2g, ey Tngyt') S .

By combining (i) and (ii) we get N(Z1, T2, .-+ Tng»t’) = . Thus
(iii) t' = ||Z10, T293 s Znolla = N(T1g, T2g5 +s Thgy t') = .
Next if N(z1y, %24, ..y Zng,t’) = @, @ € (0,1), then from definition
(iv)  ||T10s T2g; s Tnplla = A{E : N (10, T20y oey Tngy ) = @} = ¢’

(Since N(z14, Z2g, ---» Tng, *) i8 strictly increasing in

{t : 0 < N(zy,z2,...,Zp,t) < 1}). From (iii) and (iv) we have, for
T1gs T29) -y Tno aTe linearly independent, a € (0,1) and for ¢’ > 0,

2105 T2y ooy Tnglla = ' iff N(Z10, T2gy ey Tng, ') = . O
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Theorem 3. Let (X,N) be a fuzzy n-normed linear space satisfying (N7)
and (N8). Let

|21, Z2, oy Tn|la = A{E : N(Z1,22, ..., T,y t) 2 )},

a€(0,1) and N': X x --- x X x R — [0,1] be a function defined by

n
N'(z1,Z2,y ..., Tn, t)
v{a: ||z1,Z2, s Znlla < t} otherwise
= 0 if Ty T2y ey T GTE
linearly dependent and t =0
Then
() {Il's+s |l : @ € (0,1)} is an ascending family of c-n-norms on X.
(ii) N’ is a fuzzy n-norm on X.
(iii) N’ = N.

Proof. We only prove (iii) and we consider the following cases.
Let (:‘Clo, T2q, ...,:Bno,to) e X x.--xXxRand N(:Blo, T2y, ...,(L‘no,to) =

n
ao.Case L 714, T2, ---» Tn, are linearly dependent, £p < 0. Then,
N(Z1,, %20y ) Tngs t0) = N'(Z19, T29, -++) Tngs t0) = 0.
Case IL x1,,T2,, ---» Tn, are linearly dependent, to > 0. Then,
N(Z14, T20, -+s Trg> 20) = N'(Z105 205 s Tngr t0) = 1.
Case III. z1,,Z2,, ---, Tn, are linearly independent, to < 0. Then,
N(Z1g,Togs s Tngsr t0) = N'(Z19, T2 -+ Tng» t0) = 0.

Case IV. z1,, 2, .-, Tn, are linearly independent and o > 0 such that
N(xlo, T2y ey a:,,o,to) =0.
For o € (0,1),

[|Z195 Z20s +++s T ||« = At : N(21g, T2, vy Tngy £) = @}

By Lemma 1 we have N(Z1g,Z2q) - Znos ||T101 T201 ++0» Tnolla) = c for all
a € (0,1). Since N(z1,,Z2g, - Tngrt0) = 0 < @, it follows that o <
[|Z10, 205 - Tno |l for all & € (0,1). So,

N'(xlo,:z:go,...,a:no,to) = V{a : |I$1°,$2°,...,$nolla < to} =VvV@=0.
Therefore,

N((Blo,x%, ...,:z:,,o,to) = N’(Elo,wgo, ...,xno,to) =0.
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Case V. When z,,, z2,, ..., Zn, are linearly independent and ¢y > 0 such
that 0 < N(Z1,, 295 -y Tng, t0) < 1. Let N(1,, 224, -+, Tng» t0) = o. Then
0<ap <1. Now

N'(zy,z2, ...y Tn,t) = V{a : ||21,Z2, ooy Tn || < £}

when
® Z1,Z2,..., Ty are linearly independent and ¢ # 0,
(i) [l£1, Z25 .- Znlla = A{t : N(z1,22, ..., Zn,t) = a}

for all z1,2,...,2, € X and 0 < & < 1. Since N(z1,,T24, .-, Tng» o) = 0,
we have from (ii)

(lll) ”wlo: 20, ""xﬂo”cko <to.
Using (iii), we get from (i)
(2.1) N(a:l,,,xgo,...,:z:no,to).

Now from Lemma 2, we have

N'(mlo,wzo,...,xno,to) > o= N'(a:lo,argo,...,wno,to) > (iV)

N(Z19, %29, s Tngyr 80) = @0 € ||Z14, 29y o0y Trg | lao = Zo0-

Now for 1 > a > ay, let (|21, T2, ..; Znglla = ¢/, then £’ > to. Then by
Lemma 2, N(z14, 255 -y Tng,t') = a. So,

’
N(:L’lo,a:go, ey Tgy T ) =a> 0= N(:z;lo,:cgo, ...,:L‘no,to).

Since N(z1,, 2295 -+, Tng, ) is strictly monotonically increasing in Sz, = {¢ :
0 < N(219, %29, ey Tngy t) < 1}, ', 20 € Sz, and

N(:Blo, Z2gy ++e3 Ty t') > N(il:lo, L2g; -y Tngy to),

it follows that t' > to. So for 1 > @ > ao, ||T19, %29, s Znolla = ' £ to.
Hence

v) N'(Z19, 205 s Zngs to) € o = N(T1y, T2g, s Tng, t0)-

By (iv) and (v) we have N'(z1,, %20, .., Tnos t0) = N{(Z14, T20 5 -+-s Tnig» to)-
Case VI. When z,, T2, ..., Tn, are linearly independent and ¢y > 0 such
that N(z1,, Z2g, -.-» Tng, to) = 1. Note that,

(i) N'(z1,Z2, .oy Tnyt) = V{a: |21, T2, o, Znlla <t}

for z1,z,, ..., z, are linearly independent and t # 0,

(i) l1Z1, Z2y ooy Tnlla = A{t : N(z1, 22, ..., Tn, 1) > a}

a € (0,1), 2,22, ...,2, € X. It follows that, for all € (0,1),
210, T205 s Tng llae < 2o by (i) = N'(214, T2¢5 ey Tng, to) = 1 by (i).

Thus N'(Z14, 295 s Tngs t0) = N(T19, T2 ey Tngs to) = 1.
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Hence, N(zy,z2, ..., Zn,t) = N'(z1, Z2, ..., Tn, t) for all z1,22,...,2, € X
and for all £ € R. O

Definition 5. Let (X,N) be a fn-NLS and z(k) be e sequence in X.
Then xz(k) is said to be convergent if there exists a z € X such that
limg—oo N(Z1, %2y o0y Tn-1,2(k) — ,t) = 1 for every z,,%2,...,Tn_1 € X
and for allt > 0. Then z called limit of the sequence z(k) and denoted by
limz(k) = z or z(k) — z.

Definition 6. A sequence z(k) in (X, N) is called Cauchy sequence, if

llim N(z1,z2y ...y Tn-1, (k) —z(l),t) =1
4600

for every z1,%2,...,Zn—1 € X and for allt >0, k,l € N.

3. MAIN RESULTS

Throughout this paper (X, N;) and (Y, N3) are f-n-NLS over the same
field of scalars.

Definition 7. A mapping T from (X,N1) to (Y, Nz) is said to be fuzzy
continuous at z € X, if for given € > 0, a € (0,1), there exists § =
8(a,€) > 0, B = B(a,e) € (0,1) such that for all x1,%2,...,Tn-1,y € X,
Y1,¥25 0 Yn—1 € Y,

N1(5L‘1,IL'2, ey Tn-1,Y — 216) > ﬁ = Nz(yhy2’ ooy yn—l:Ty - TZ’E) > .

If T is fuzzy continuous at each point of X, then T is said to be fuzzy
continuous on X.

Definition 8. A mapping T from (X, N1) to (Y, N2) is said to be strongly
fuzzy continuous at 2 € X, if for each € > 0, there exists § > 0 such that
for all zy,z2, ..., Tn—1,¥ € X, Y1,¥2, ., ¥n-1 €Y,

NZ(ylyy% vy Yn-1, Ty — TZ,&) 2 Nl(mlyx% ey In-1,Y — 2, 5)

If T is strongly fuzzy continuous at each point of X, then T is said to be
strongly fuzzy continuous on X.

Definition 9. A mapping T from (X, Ny) to (Y, N;) is said to be weakly
fuzzy continuous at z € X, if for a given € > 0, a € (0,1), there exists
§ = 8(a, €) > 0 such that for all z1,Z2,...;Tn-1,¥ € X, Y1,¥2) -1 Yn-1 €Y,

Ni(Z1, %2, o0y Tne1,¥ — 2,0) = @ = No(y1,92, oy Yn—-1, Ty — T'2,€) 2 .

If T is weakly fuzzy continuous at each point of X, then T is said to be
weakly fuzzy continuous on X.
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Definition 10. A mapping T from (X,N1) to (Y, Nz) is said to be se-
quentially fuzzy continuous at z € X, if for any sequence z(k) in X with
z(k) — 2z implies Tx(k) — Tz, k € N. Le., for all 23,73, ...,Tn_1,y € X,
Y1,Y2,-Yn-1 €Y and for allt > 0,

kl-l-vr{olo Nl(wl,wg, oy mn_1,$(k) - z,t) = 1=

1.

Jim Na(y1,92, oy Yn—1,Tz(k) — T2,1)

If T is sequentially fuzzy continuous at each point of X, then T is said to
be sequentially fuzzy continuous on X.

Remark 2. It is easy to see that if a mapping is strongly fuzzy continuous
then it is weakly fuzzy continuous.

Theorem 4. Let (X,N;) and (Y, N>) be two fn-NLS and T : X — 'Y be
a mapping. If T is strongly fuzzy continuous then it is sequentially fuzzy
continuous..

Proof. Assume that T is strongly fuzzy continuous at z € X. Then for each
g > 0, there exists § = §(z,€) > 0 such that for all 2,2, ...,2n-1,¥ € X,

Y1, Y2, Yn-1 €Y,

(@) Na(y1,92, -0 Yn-1, Ty — Tz,€) 2 Ni(z1, T2, ooy Tn1, Y — 2,6).
Let z(k) be a sequence in X such that z(k) — z, i.e.,

(ii) klir{:oNl(xl,xg, ey Tn—1,Z(k) — 2,8) =1

for all £ > 0. Now from (i) we have,

No(y1,925 oy Un—1, Tx(k) — T2,€) > Ni(21, %2, -0y Tn1, 2(k) — 2,0)
for k=1,2,.... Then,
klingo Na(y1,y2, oy Yn—1, Tz(k)-T2,€) > kll.x{‘xo Ni(z1, %2, 00y Tn—1, 2(k)—2,6),
which implies limg_, o0 N2(y1,¥2y s Yn-1, TZ(k) — T2,€) = 1 by (ii). Since
€ > 0 is arbitrary, it follows T'z(k) — T'z. O

Theorem 5. Let (X, N1) and (Y, N2) be two fn-NLSandT: X — Y bea
mapping. Then T is fuzzy continuous iff it is sequentially fuzzy continuous.

Proof. Assume that T is fuzzy continuous at 2 € X. Let 2(k) be a sequence
in X such that (k) — 2. Let € > 0 be given. Choose a € (0,1). Since T is
fuzzy continuous at z, then there exists § = é(a,€) > 0 and 8 = B(a,€) €
(0,1) such that for all z;, 22, ...,Zpn-1,y € X and 11,%2, ..., Yn-1 € Y,

Ni(Z1,%2, 0y Tn1,Y — 2,8) > B = Na(y1,¥2, -, Un-1, Ty — T2,€) > ou.
Since z(k) — z in X, there exists positive integer ko such that
Nl(xl’z% ---)zn-—lsz(k) - %, 6) > B
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for all & > ko. Then Na(y1,¥2, -y Yn—1, T2(k) — Tz,€) > a for all k > ko.
So for a given £ > 0 and for any « € (0,1), there exists positive integer ko
such that No(y1,y2, ..., Yyn—1, TZ(k) —T'2z,€) > a for all k > ko. This implies
limg—oo N2(¥1, Y2, oy Yn—1, T'Z(k) — T2,€) = 1. Since € > 0 is arbitrary,
thus Tz(k) = TzinY.

Next we suppose that T is sequentially fuzzy continuous at z € X. If
possible suppose that T is not fuzzy continuous at z. Thus, there exists
€ > 0 and a > 0 such that for any § > 0 and 8 € (0,1), there exists w
(depending on 4, B) such that

Ni(z1, %2, ey Ta1, 2 — w,8) > B but Na(y1,¥2, -, ¥n-1,T2 — Tw,€) < o
Thus for 8 =1 - g, § = gy, k= 1,2,..., there exists w(k) such that

1 1 .

M (-'1?1,2?2, vy Zn1,2 — w(k), m) > l1—7— 6))

but N2(y11y2) () yn—liTz - T'w(k),s) < a

Taking § > 0, there exists ko such that 37 < § for all k > ko. Then,

1
Nl(xl,mz, ey p—-1,2 — 'w(k),é) Z N1 (:1:1,:1:2, vy Tp—1,% — 'w(k:), k-l-_l)

1
> 1—-—

for all k > k. Therefore limg_,00o N1{(Z1, 22, ..., Zn-1,2 — w(k),0) 2 1 =
w(k) — z. But from (i), Na(y1,¥2, - Yn—1,T2 — Tw(k),€) < a so

No(y1, 92, -y Yn—1, Tz — Tw(k),€) » 1

as k — oo. Thus Tw(k) does not convergence to Tz whereas w(k) — 2
(w.r.t Np), which is a contradiction to our assumption. Hence T is fuzzy
continuous at z. O

Definition 11. Let (X,N;) and (Y,N2) be two fn-NLS and T : X —
Y be a linear operator. T is said to be strongly fuzzy bounded on X iff
there exists positive real number M such that for all 21,2, ...,Zn-1,y € X,
Y1,Y2, - Yn—1 €Y and for all s € R,

s
N2(y1’y2v --~,yn—1,Ty, S) 2 N1 (371,312, vy Tn-1,Y, M) .
Example 3. The zero and identity operators are strongly fuzzy bounded.

Example 4. Let (X, ||, ...,*||) be an n-normed linear space. We define two
functions Ny and N from X x--- x X xR to [0,1] by
e ——

n

t ,
_ | == ¢ t>0
Nl(xlazZ)'-'smn,t) - { thay 3:1512, Znll ’L; t<0
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and

t .
Nz(-’thwz, ...,Sl!n,t) — { t+azi|z16¢2,...,z,.]| :; : Z 8
where a; and ay are two fized positive real numbers and a; > az. It is easy
to show that Ny and Ny are fuzzy n-norms on X. We define an operator
T: (X,N1) — (X,N2) by Ty = ry where r € R\{0} is fized. Clearly T
is a linear operator. If we choose a positive number M such that M > |r|,
then it can be shoun that

. t
(ll) N2($1,SL‘2, seey zn—bTya t) > Nl (3:1,:82, 3 Tn-1,Y, M")

for all zy,z3, ...,Tpn—1,y € X, and for allt € R. For all 1,22, ..., Tn—1,Y €
X, M > |r| we have a1 M > ag|r|, for allt > 0,

= oM||z1,22,.0s Ta-1,Y|| 2 02lr|||z1, Z2) o0y Tt Yl
= t+ alM”xlaIZ, '"azn—lay” 2 t+ a2|T|||£B1,:I:2, (L33} zn-lay”

t t

> ,
t+ a2|r|||:c1,a:2, ...,:z:,._1,yl| t+ a1M“$1,x2, ...,a:,...l,y”
i

t > M

t+ aol|z1, T2y oy Tam1, 7Yl T F5 + 0|21, 22, ooy T, Y|

=

=

t
= No(z1,22,....Zn-1, Ty, t) > Ny (ml,xg,...,z,._l,y, M) .

Ift £ 0 then above relation holds for all zy,%2,...,Tn-1,y € X. Hence T
is a strongly fuzzy bounded linear operator.

Definition 12. Let (X, N;) and (Y, N3) be two fn-NLS and T : X - Y
be a linear operator. T is said to be weakly fuzzy bounded on X if for any
a € (0,1), there exists My > 0 such that for all 1,%2,...,Tn-1,¥ € X,
Y1,Y2, -y Yn—1 €Y and for allt € R,

N1 (2:1,932, ey Tp—

Theorem 6. Let (X,N;) and (Y,N;) be fn-NLS and T : X — Y be
a linear operator. If T is strongly fuzzy bounded then it is weakly fuzzy
bounded but not conversely.

Proof. We suppose that T' is strongly fuzzy bounded. Thus there exists
M > 0 such that for all 3,2, ...,Zn-1,% € X, ¥1,%2,.-sYn~1 € Y and for
all t € R we have

t
No(y1, 920000y Un—-1, Ty, 1) 2 N1 (wl,xz,---,mn—l,y, M) .
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Thus for any o € (0,1), there exists Ma(= M) > 0 such that

t
Nl (‘1:17 T2,y Tn-1,Y, F) >a= NZ(ylsyZ) ---,yu—hTy,t) Za
«

for all 21,22, ..., Zn-1,¥ € X, ¥1,¥2,.-2Yn—1 € Y and for all ¢ € R. This
implies that T is weakly fuzzy bounded. O

For the converse result we consider the following example.

Example 5. Let (X, ||-,..-,-||) be an n-normed linear space. We define two
functions Ny and N» from X x --- x X xR to [0,1] by
——

n

2 —||z1,x2,.2all2
Nl(xl,zz,...,mn,t)={ ?:H—xo—ﬁ{f if > [l21, 22, 2l

Zf t _<_ “211,222,...,50"”

and

L if t>0
Nz(ml,xz,...,:z:n,t) = { t+||:n.:r:02,..-,a:n|| i; 1 <0

for all £1,%2,....,zn € X. It can be shown that Ny is a fuzzy n-norm on
X. We define a linear operator T : X — X by Ty = y. If we choose
My = 125 for all a € (0,1), we get

t
N, (a:l,mg,...,a:n_l,y, F) > a = No(z1,72, .0y Zn-1, Ty, t) > a.
(+3

Hence T is weakly fuzzy bounded. But it can be proved that T is not strongly
fuzzy bounded.

Definition 13. Let (X, N1) and (Y, N2) be two fn-NLS andT : X — Y be
a linear operator. T is said to be uniformly bounded if there exists M >0
such that for all a € (0,1),

”yl’ Y2y 00y y’n—laTy”?a < M”:Bl: T2, .5 Tn—1, y“;
for all T1,%2, .. Tn-1,¥ € X, Y1,Y2, - Yn—1 € Y, where ||,+,...,, |l and
[|y* ey *||2 are a-n-norms of N1 and N2 respectively.

Theorem 7. Let (X,N;) and (Y, N2) be two f-n-NLS satisfying (N7) and
(N8). Let T : (X, N,) — (Y, N;) be a linear operator. Then T is strongly
fuzzy bounded iff it is uniformly bounded with respect to a-n-norms of Ny
and Ng.

Proof. Let ||, ...,,||% and ||:,+,---,||% be a-n-norms of N and N; re-
spectively.

First we suppose that T is strongly fuzzy bounded. Thus there exists
M > 0 such that

S
NZ(yl,yZ: ""yn—liTya S) 2 Nl ($1,$2,~--,$n-1,y, M)
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for all z,,z2,...,20—1,¥ € X, ¥1,%2,..,¥Yn—1 € Y and for all s € R. This
implies
@ No(y1, 92, - Yn—1,TY, 8) > Ny (21, %2, ey Tn1, My, s) -
Now ||z, 2, ..., Tn—1, MY|[}, < ¢
= A{s: Ny (z1,Z2,...1Tn-1,My,s) > a} <t
= Jsg < t such that N (21,22, ...,Zn-1, My, 8) = &
= dsp < t such that No(y1,%2, .-, ¥n-1,TY, S0) = « by (i).
= |y, v2, e ¥n-1,TYI|2 < 50 < t.
Hence

”yl: Y2y a0y yn-l)Tyllg < ”zla L2y .0y Tn—1, My'ltlx = M”xh T2y o0y Tn—1, y”i
for all & € (0,1). This implies that T is uniformly bounded w.r.t. a-n-
norms, « € (0,1).

Conversely suppose that, there exists M > 0 such that

(ll) ”ylay21 -"ayn—l)Ty”?x < M”z17z2’ ooy xn—layllclx
holds foralla € (0,1) and for all 2, z2, ..., Tn—1,¥ € X, ¥1,¥2; -2 Yn—1 € Y.
Now r < Ny (z1,Z2, +..y Tn—1, MYy, s) then

T < V{a € (0,1) : [|z1,Z2, ..., Tn—1, My||} < s} by Theorem 3. Then
there exists an ap € (0,1) such that r < ap and ||y, Z2, ..., Zn_1, My||L, <
8. Therefore |[y1,¥2, ..., yn—1, TyIZ, < s by (i) which implies

No(y1,92,-049Yn—1,Ty,8) 2 ag > r. Hence
No(y1,92y o0y Yn—1, Ty, 8) = Ny (21,22, ..y Tn-1, My, s)
= N (xl,mg,...,a:,,_l,y, _Ils_l)
which shows T is strongly fuzzy bounded. O

Theorem 8. Let (X,N;) and (Y, N3) be two fn-NLS and T : X — Y be
a linear operator. Then

(i) T is strongly fuzzy continuous everywhere on X if T is strongly
fuzzy continuous at a point z € X.
(ii) T is strongly fuzzy continuous iff T is strongly fuzzy bounded.

Proof. (i) Since T is strongly fuzzy continuous at a point z € X, thus for
each ¢ > 0, there exists § > 0 such that for all z;,z,,...,zp—1,y € X,
Y1,Y2y oy Yn—1 € Y we have

N2(y11y21 ey Yn-1, Ty - TZ, 5) 2 Nl(xhxm vy Zpn-1,Y — 2, 6)'

Taking any w € X and replacing y by y + 2 — w we get
Ng(yl,yg,...,yn_l,T(y + 2z - w) — Tz, E’) > Nl(:c;,:cz, ey Tn—1, Y+ 2 —
w — z,0)
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= N2(y1:y27 "':yn-—ery +Tz—Tw— TZ, E) 2> Nl(a:l)er vy Tn-1,Y —
w, d)

= No(y1,Y2, s Yn—1, Ty — Tw, €) > Ni(z1,Z2y ...y Tn—1,y — w, ). Since
w is arbitrary, it follows that T is strongly fuzzy continuous on X.

(i) First we suppose that T is strongly fuzzy bounded. Thus there exists
M > 0 such that

Na(y1, 92y -y Yn—-1,Ty,€) 2 N1 (xl,xg, ey Tn—1,Ys %)
for all z1,%2,...; Tn-1,¥ € X, ¥1,¥2,--»Yn—1 €Y and for all € > 0, i.e,,
Na(y1,92, - Yn-1, Ty — T(0),€) 2 N (xl, 2, e Tn-1,Y = 0, %)
which implies
Na(y1,¥2, s Yn-1, Ty = T(0Q),€) = N1 (21, T2, o Tn-1,¥ — 0, 6)

where § = . This shows that T is strongly fuzzy continuous at Q and
hence it is strongly fuzzy continuous on X.

Conversely, assume that T is strongly fuzzy continuous on X. Using
continuity of 7" at y = 0, for € = 1, there exists § > 0 such that

N2($1,932, ey w‘n—laTy - T(.Q)7 1) 2 Nl (xl)m% ey Tn-1,Y — Q: 6)

for all z1,%2,...,Zn-1,¥ € X, Y1,¥2,--»Yn—-1 € Y. Suppose that y # 0 and
t > 0. Putting v = y/t then

Nz(yl,yz, vy Yn—1,tTu, t)

N (1,92, -y Yn—1, T, 1)

N1 (.’lJ]_, T2y ey Tn—1,U, 5)

N1 (.’l!l, T2y .eey Tn—1, y/t, 6)

N (331,:32, ...,m"_l,y,t/M)

N2(y11 Y25y Yn—-1, Ty! t)

i

v

where M = 1/4. So
No(y1, 92, o0 Un—1, Ty, ) = N1 (21, %2, -0 Tn-1, Y, /M)
Ify#0andt <0 then
No(y1,%2, -y Yn—1, T4, t) = 0 = N1 (Z1, 22, ..., 1, ¥, t/M) .
If y=0and t € R then T(Qx) = 0y and

N2(yl:y2, ooy yn—I;QY7 t) = Nl (581,1172, erey xn—l:QX; t/M) =1ift> 0:
Nz(yl,yz, ...,yn_l,Qy,t) = N; (a:l,:cz, ...,mn_l,gx,t/M) =0ift<0.
From the above discussion it follows that T is strongly fuzzy bounded. O

Remark 3. If T is strongly fuzzy bounded then it is sequentially fuzzy
continuous on X.
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Theorem 9. Let (X, N1) and (Y, Nz) be two fn-NLS and T : X - Y be
a linear operator. If T is sequentially fuzzy continuous at a point then it is
sequentially fuzzy continuous on X.

Proof. Suppose that T is sequentially continuous at yp € X. Let y € X be
an arbitrary point and let (k) be a sequence in X such that z(k) — y.
Then for all z3,z2,...,Zn-1,¥ € X,

klim Ni(z1,22, .00y Tn-1,2(k) —y,t) =1 for all t > 0,
— 00

ie.,

klim Ni(z1,%2, .., Tn-1, (z(k) — ¥ + Yo) — yo,t) =1 for all ¢ > 0.
—00

Since T is continuous at yp € X, then from Theorem 5 we have, for all
Y1,92, -y Yn—-1 € Y’

klirgo No(y1, 92,01 Yn—-1, T(x(k) =y + %) ~ Tyo,t) = 1 for all t > 0

= limg 00 N2(¥1,%2, oy Yn-1,T2(k) = Ty + Tyo — T'yo,t) = L for all t > 0
= limg 00 Ng(yl,yz, ...,y,,_l,Ta:(k:) - Ty,t) =1forallt>0.
Thus limg_,e0 N1(z1,2Z2, ..., Zn-1,2(k) — y,£) = 1 for all ¢ > 0 which
implies limg—oo N2(Y1,%2, ..y Yn—1,Tx(k) — Ty,t) = 1 for all £ > 0. This
shows that T is sequentially fuzzy continuous on X. a

Theorem 10. Let (X, N;) and (Y, N2) be two fn-NLS andT : X - Y be
a linear operator. Then

(i) T is weakly fuzzy continuous everywhere on X if T is weakly fuzzy
continuous at a point yp € X.
(ii) T is weakly fuzzy continuous iff T is weakly fuzzy bounded.

Proof. (i) Since T is weakly fuzzy continuous at a point yo € X, thus
for each € > 0 and a € (0,1) there exists d(c, &) > 0 such that for all
T1,22y .1 Zn-1,¥ € X, Y1,¥2, -, Yn—1 € Y we have

Nl(mI:xZ: ey Tp-1,Y — y015) > o= NZ(yl)y2a ooy yn—l,Ty - Ty076) 2 Q.
Taking any z € X and replacing y by y + yo — 2z we get

Ni(21,%2, -1 Ta—1, Y + Y — 2 —%0,0) > a=
No(y1, 92, e Un~1, T(W + yo — 2) — Tyo,€) > a, i,
Ni(z1, 22y oy Zpn—1,¥ — 2,80) > a=>
No(y1, 92,0 Yn-1, Ty — T2,6) > a.

Since z is arbitrary, it follows that T is weakly fuzzy continuous on X.



(ii) First we suppose that T is weakly fuzzy bounded. Thus for any
a € (0,1), there exists M, > 0 such that

t
Nl (551,1?2,---,1177;-1,% F) za= N2(yls Y2500y yn—hTy’ t) Za
[+ 4

for all 1,22, ...,Tn_1,9 € X, ¥1,¥2,--wYn-1 €Y and for all t € R, i.e,,

Nl (2}1,272, vy Zpn-1,¥Y — D_, ’Mt:) Za= NZ(ylay2) ceyYn-1, Ty—T(Q), t) 2
o, i.e.,

N (181,132, vy Tn-1,¥ — O, '}\5_“) o= N2(y1:y‘2: oy Yn—1, Ty_T(Q): 5) 2

a for e >0, ie,
Nl (x11w27 ey Tn—1,Y ’—Q, 6) 2 o= N2(y11y27 cery yn—lyTy—T(g)) 3) Z 24

= £
where § = 37-.

This implfes that T is weakly fuzzy continuous at z = 0 and hence

weakly fuzzy continuous on X.
Conversely, assume that T is weakly fuzzy continuous on X. Using

weakly fuzzy continuity of T' at y = 0, for ¢ = 1 we have for all a €
(0,1), there exists 6(c;,1) > 0 such that for all zy,22,...,Zn-1,¥ € X,

Y1,Y2 e Yn-1 €Y,
Nl (zlst) weyTn—1,Y — .O.i 6) 2 a= N2(yl’y2) ceey yn—lsTy - T(Q)a 1) 2 (27

ie. Ni(z1,Z2y.Tn1,¥0) = &= No(¥1,92, s ¥n-1,Ty, 1) 2 c.
Suppose that y # 0 and ¢ > 0. Putting y = u/t then

Ni (1, %2, oy Tn—1,8/t,6) = & = Na(y1,92, ..y Yn—-1,T(1/t),1) 2 &
i.e. Ny (1,22, Tno1,,80) = o => Na(¥1,¥2, -y Un-1, T t) 2 ¢, Le,,

M (wl,mg,...,:vn..l,u, ﬁ:) > a = Na(y1,¥2, -y Yn—1,Tuy t) > o where
Mg = g7y This shows that T is weakly fuzzy bounded.

Ifys#0andt <0 then

t
Nl (151,332, ey In-1, Y, ﬁ-) = N2(y13y21 ey y‘n—l)Tyi t)
[+3

for any M, > 0.
If y = 0 then for M, >0,

t .
N L1, L2y ey Tn—1,Y, —— = Nz(yl,yg,...,yn_l,Ty, t) =1ift>0,
M,

t .
N (71,22, 0000 Tn—1, Y, — = Na(y1,¥25 0y Yn—1, Ty, t) =0ift <0.
M,

From the above three cases it folows that for a € (0, 1), there exists My > 0
such that

t
M (531,22,---,%-1,% M_) > a= Ny, y2, o0 n-1,Tu,t) 2 @
o

401



for all 1,29, ...,zn-1,4 € X, y1,¥2,..,Yn—1 € Y and for all £ € R. Hence
T is weakly fuzzy bounded. (|

Theorem 11. Let (X, N1) and (Y, Na) be two f-n-NLS satisfying (N7) and
(N8). Let T : (X,N1) — (Y, N;) be a linear operator. Then T is weakly
fuzzy bounded iff T be bounded w.r.t. a-n-norms of Ny and Ny, a € (0,1).

Proof. First we suppose that T' is weakly fuzzy bounded. Thus for all
a € (0,1), there exists M, > 0 such that for all 3,23, ...,2n-1,7% € X,
Y1,Y2, .-, Yn-1 €Y, for all t € R we have

t
N (xlym% Tn-1,%, 'M—) Sa= NZ(ylxyZJ vy Yn—1, Ty, t) 2 a
o

i.e, N (21,22, ...sTn1, Moy, t) 2 @ = Na(y1,92, -, ¥n-1,TY t) > ¢, i.e.,
V{8 € (0,1):|lz1,%2 . Zn_1, Mapllp <t} 2 0= (i)
Vi € (0,1):lly1,52) s ¥n-1,Ty||3 <t} 2 0
Now we show that,
V{ﬁ € (O» 1) : ”th%"-;mn—laMay”é < t} Za
& |lT1,Z2, ey Tn—1, May||L < .
If y = 0 then the relation is obvious. Suppose y # 0. Now if
V{8 € (0,1): [z, %2, Tno1, Matllz <t} > a (ii)
= ||z1,%2, s Tn-1, Mo} < t.
If v{8 € (0,1) : |lz1,22, ..., Zn—1, Mayllj < t} = e, then there exists an
increasing sequence (o), in (0,1) such that o, T o and
l|#1, %2, ..., Zn—1, Mayl|L,, <t. Then, we have
(iii) llz1, 2, .. Tn1, Mablly < t.
Thus from (ii) and (iii) we get,
v{g € (0,1):||z1,z2, ...,a:n_l,MayH}g <t}>a (iv)
= ||z1,%2, o0y Tno1, Mallh < &

Next we suppose that ||z1,Z2,...,Tn-1, Mayl|L < t.
If ”.’21,3:2, ...,:c,._l,MayH}, < t then

(V) V{ﬂ € (O) 1) : ”$1,$2,---,$n_1, May”é < t} 2 a.

If ||z1, %2, s Tn—1, Moyl = t ie. A{s : Ni(z1,%2, .0y Tn—1, Moy, s) >
a} = t, then there exists a sequence (sx)x in R such that s; | ¢ and
Ni (21,22, .y Tn—1, Moy, k) 2 a.

This implies limg_,o0 N1 (21,22, ey Zn—1, May, 8k) = «,

then N; (3:1,:1:2, ey Tl Moy, limg_, 00 sk) > a by (N8).
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Therefore Ny (21,22, ...y Tn—1, Ma¥,t) = @, then

(vi) v{B € (0,1): ||:z:1,a:g,...,:z:,,_1,May[|}3 <t} >a.
From (v) and (vi) it follows that,
(vii) v{B € (0,1) : ||z1, z2, ...,x,._l,Mayllllg <t} 2a.
Hence,
v{B € (0,1):]|z1,Z2, s Tn-1, Matllp <t} > (viii)

« ”xlymZ’ At wn—l;May”(Ix <t

In a similar way we can show that,
(ix) \ \
v{B € (0,1) : [[y1,¥2, - Un-1, Tollg <t} 2 @ & [ly1, 92, s ¥n-1, T0lla S 2.
Therefore from (viii) and (ix) we have if

Nl (.'1:1,322, ey Tl Mayyt) 2 o= N2 (y11y21 -")y'n—hTy, t) 2 o
holds. Then

Hxl,-’b‘z, -'-:xn—hMay”i L<t= “ylyy% -~-:'yn—1aTy”<21 <t
holds. Then weakly fuzzy boundedness of T' implies
”yl:y2r ooy yn—ery”?x S Ma"$1,$2, seey xn—l:y”é;

for all o € (0,1).
Conversely suppose that for all « € (0, 1), there exists My > 0 such that

|Iy1:y2a sy Yn-1, Ty”?x < Ma“xhwm ey xn—l’y”}x

for all T1,%2, .y Zn-1,Y € X) Y1,Y2, - Yn—1 € Y.
Then for y # 0,

||z1, z2, -"axn—lrMay”}x <t =y, 2, -"ayn—l:Tylli <t
forallt >0, i.e.,
As : Ny(21,%2,00Tn-1,May,8) 2 a} <t
= As:No (1,92, Yn-1,TY,8) 2 a} < L.
In a similar way as above we can show that
As : Ny(z1,Z2) -0 Tn-1,May,8) 2 a} < t
& Ny (21,723 Tn-1, Moy, t) 2
and
A{s: Nz (¥1,92, - Yn—-1, T4, 8) = @} <t No (¥1,425 s Yn~1, T t) 2 .

Thus we have

i
Nl (xl, T2,y Tn-1,Y, M") ca= N2 (yl’y21 -~-ayn—17Ty1 t) 2«
a

403



for all Z1,%2, .y Tn—-1,Y € X’ Y1,Y2;, -1 Yn-1 € Y.
Ify#0,t<0and y =0,t> 0 then the above relation is obvious.
Hence the theorem follows. O

Theorem 12. Let (X, N1) and (Y, N2) be two f-n-NLS satisfying (N7) and
(N8). LetT : X —Y be a linear operator. If X is of finite dimension then
T is weakly fuzzy bounded.

Proof. Since (X, N;) and (Y, N:) satisfying (N7), we may suppose that
l'yy s -ll% and ||-,-,...,-||2 are the a-n-norms of N; and N, respectively.
Since X is of finite dimension, thus T : (X, ||+, )., |I3) = (Y] 7y ooy *]|2)
is a bounded linear operator for each a € (0,1). Thus by Theorem 11, it
follows that T is weakly fuzzy bounded. O
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