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Abstract
We determine the maximum Wiener index of n-vertex unicyclic
graphs with fixed maximum degree and characterize the unique ex-
tremal graph.

1 Introduction

Topological indices are numerical graph invariants that quantitatively char-
acterize molecular structure. The Wiener index is one of the oldest and the
most thoroughly studied topological indices [15, 16].

Let G be a simple connected graph with vertex set V(G). For u,v €
V(G), let dg(u,v) be the distance between u and v in G. The Wiener index
of G is defined as (8]

| wE)= >, dewv)

{uw}CEV(G)

The Wiener index found various applications including those in the structure-
property-activity modelling [1, 3, 9, 13, 14] and has also been studied ex-
tensively in mathematics [2, 4, 5, 7, 10-12].

Stevanovié [12] determined the unique n-vertex tree with fixed max-
imum degree having maximum Wiener index. In this paper, we deter-
mine the maximum Wiener index of n-vertex unicyclic graphs with fixed
maximum degree A, and characterize the unique extremal graph, where
2<A<n-1.
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2 Preliminaries

For u € V(G), and let Dg(u) be the sum of distances between u and all
vertices of G. Then W(G) = } X0, cv () Da(u).

For an edge uv of the graph G, G — uv denotes the graph obtained
from G by deleting uv, and for an edge uv of the complement of G, G + uv
denotes the graph obtained from G by adding uv.

For a graph G with a vertex v of degree at least three, a pendant path
at v of G is a path in G connecting v and a pendant vertex such that all
internal vertices (if exist) in this path have degree two.

Let P, be the path on n > 1 vertices, and C, the cycle on n > 3
vertices.

Lemma 1. Let Qy and Q2 be vertez-disjoint connected graphs with at least
two vertices. For u € V(Q1) and v € V(Q2), let Gy be the graph obtained
Jfrom @, and Q2 by joining v and v by a path of length r > 1, and G the
graph obtained from @, and Q2 by identifying u and v, which is denoted
by w, and attaching a path P, to w. Then W(G,) > W(G2).

Proof. 1t is easily seen that

WG)-W(G) = ). damy)— Y. deglsy)
z€V(Q))\{u} z€V(Q1)\{w}
vEV(Q2)\{v} vEV(Q2)\{w}

= D (doy(@u) +7+dg,(y,v))
. =€V(Q1)\(u}
vEV(Q2)\ (v}
- Z (do, (z,w) + do, (v, w))
z&€V(Q1)\{w}
veEV(Q2)\{w)
= (V@ - 1)(V(Q2)| - 1)r >0,
and then W(G;) > W(Gy). 0

Let C.(Th, T, ..., T;) be the unicyclic graph with cycle C,. = vyvs...vp1
such that the deletion of all edges on C; results in r vertex-disjoint trees
T, Ts,...,T, with v; € V(T3), and we say T; is a branch at v; for i =
1,2,...,r. If T; is trivial for some i with 1 < 7 < r, then we use — to
denote T; in C,.(T1,T2,...,T}).

We use computational techniques from [6] for the difference of the
Wiener indices of two graphs in the following lemmas.

Lemma 2. For fized integers i and j with2 < i < j < r, let Gaia; =
Co(T1,T3,...,T;), where T, = Py, 4 with an end vertez v, and ay > 0 for
s=2,...,r, and all branches not at v; and v; are fized. If a;,a; > 1, then

W(Gai,aj) < max{W(Gai+aj.0)’ W(G0.0i+aj)}'



Proof. Let G = G, o; and G) = Ga,+a;,0- Let v be the neighbor of v; in
T;. Let v} be the pendant vertex of G in T;. Obviously, G) = G —vv;+vv].
Let Z = V(T;)\ {v;}, W = V(Ti) and n = |[V(G)|. Let G2 = G —vv; +vv;
and a; = |V(T1)| — 1. Note that Zfévf' de,(z,y) = Z:eev‘f' dg,(z,y) and

Zveﬁfe(?ér) dGz (xl y) = Eveﬁ’e(??r) de'(xs y)’ Then
W(G1) -W(Ga) = Y. (dey(zy) —de,(z:y))
yEV(gngU"O
= Z a; = aia;(n—a; —aj — 1),
z€Z
VEV(ON(ZUW)
W(G2) -W(G) = Y. (o(my) - do(z,y)
veV(@N(ZUY(Cr)

and thus

= z z ai (de(vk, vi) — de(vk, v5))

TE€Z 1SkSr
ki

= a; Y ak(de(ve,v) —de(vr,v5)),
l%;?r

W(GGH'Gj ,0) - W(Gai,aj)

= aaj(n—a;—a;—1)—a; z ar (da(vk,v5) — da(ve, i) -

1€ksr
k#i

HZ’%;S" aj (dG('uk,'uj) - dg(vk,'ui)) < a,—(n—a,-—aj—l), then W(Gai,aj) <
W(Ga.~+a,~,0)- Otherwise,

v

v

W(Go,ai+a;) = W(Gaya;)
miaj(n—a;i—a;—1)+a; Y ak(da(vr,v;) — da(ve, v:))
1<k<r
kA1
aia;(n — a; — a; — 1) — ai(a; + aj)de(vi, v;)
+a; Z ar (da (v, vj) — de(vk, vi))

1€k<r
ks#j

aia,j(n —a; —aj — 1) — a;(ai + a,-)dc(vi,v,-)
+a¥(n—a; —a; — 1)
ai(a; + a;)(n — a; — aj — 1 — dg(v;,v5))

ai(a; + a;) (r—l— %) >0,
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implying that W (Ga, 4;) < W(Go,a;+44;)- O

Forn > r > 3, let Uny = Cp(Pa=r+1,—--.,—), Where v; is an end
vertex of the path Pn_y41. In particular, U, » = Cn. We have [6]

3 2 2 1
vy = (|3 e5 1)
2 2
_ilr_J+r__.’:_+£, (1)

Dy, (vz1) = I.T;-J+%(n—r)(n—7‘+l+2|_gj). @)

Lemma 3. For fived integers i and r with2 < i < |§]+1 andr > 3,
let Gi(a,r) = C(T1,T2,...,T;), where Ty is fizred, T; = P,y1 with an
end vertex v;, and all branches not at vi and v; are trivial. Let G(a,r) =
Gz)+1(a,7) and k = a+r. For fized k > 4, W(Gi(a,r)) < max{W(G(k—
3,3)),W(G(k—4,4))} ifr=4 andi=2, orifr > 5.

Proof. We first show the following claim.
Claim. W(Gi(a,r)) < W(G(a,r)) with equality if and only if Gi(a,r) =
G(a,r).

If |V(T1)| = 1 or @ = 0, then G;(a,7) is (isomorphic to) G(a,r). Sup-
pose that |[V(T})| > 2 and a > 1. Suppose that G;(a,r) # G(a,r), ie.,
i< [-;-J + 1. Let G = Gi(a,r). Let v be the neighbor of v; in T;.
Then G(a,7) = G —viv + v 5)41v. Let X = V(Ti) \ {wi}. Note that
dga,n) (T, ¥) =3 dg(z,y). Then

z€X zeX
VEV(GIN\(V(T1)\{v1}) YEV(ON(V(T\{v1})

W(G(a,r))-W(G) = Y. (de@n(®y) —de(z,y))
vEV(mé;(\(vl}

Z da (i, v)5141)

veV(n‘}'elf\(u)
= a(V(T)|-1) ([gJ +1-i) >0,

and thus W(Gi(a,r)) < W(G(a,r)). This proves the claim.

If r = 4 and i = 2, then k = a + 4, G2(a,4) # G3(a,4) = G(a,4),
and thus by Claim, W(Ga(a,4)) < W(G(k — 4,4)) < max{W(G(k —
3,3)), W(G(k - 4,4))}.

Suppose that r > 5. By Claim, we need only to show that W(G(a,r)) <
max{W(G(k — 3,3)), W(G(k — 4,4))} for a > 0. Note that Uy, is a
subgraph of G(a,r). Let Ay = V(Uria,r-2) \ {v1}, A2 = V(Urja,r) \ {v1}
and Az = V(T1) \ {v1}. Using Eqs. (1) and (2), we have

W(G(a +2,r-2)) - W(G(a,r))

]
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= (W(Urtar-2) — W(Urta,r))

+| Y doirzr-2(@:9) — Y da@n(z,y)

zEA) z€Ag
vEAg VEA3

= (W(Ur+o,r—2) - W(Ur+a,r))
+(V(TW)| = 1)(Du, 4,z (1) — Dy, . (v1))

= %2+(a—2|_gJ —n+—;-)r+ I.%ZJ
+2 [gJ (n—a)+(@a+2)(n—a—2)

_ 124 1lr— a2+ (n—4)a+2n—4 ifris even,
- -2+ gr—-a?+(n—-3)a+n-7] ifrisodd

Suppose that r iseven. Let f(r) = —%+%r—a2+(n—4)a+2n—4. Then
f(6) =(a+2)n—a®—4a—10 > (a+2)(a+6)—a?—4a—10=42+2> 0.
Let r; and rp be the two roots of f(r) = 0, where r; < ro. Note that
1 < 6 < rp. Thus f(r) 2 0for 6 < r < 7, and f(r) < 0 for r > ro.
Suppose that k is even. Then r < k. Thus W(G(a,)) is maximum only if
(a,7) = (k —4,4) for r > k, and (a,7) = (k — 4,4) or (0,k) for r2 < k. It
is easily seen that

W(G(k - 4,4)) — W(G(0, k)
- 2By (9- + E) k? — (§n+ %5) k+2n+6

24 4 2 2
= (kzz—gk+2)n—%k3+gk2—-26§k+6
> (%z—gk+2)k—-2-52k3+gk2--26—5k+6
= g—:—.%k+6>0,

and thus W(G(k—4,4)) > W(G(0, k)). Similarly, if k is odd, then r» < k—1,
W(G(a,r)) is maximum only if (a,7) = (k—4,4) or (1,k—1), and we have
by direct calculation that W(G(k — 4,4)) > W(G(1,k — 1)). Therefore
W(G(a,r)) < W(G(k — 4,4)).

If 7 is odd, then by similar arguments as above, W(G(a,7)) < W(G(k—
3,3)). O

Lemma 4. For any unicyclic graph H withu € V(H), let H(a1,a2,...,at)
be the graph obtained from H by attaching t > 2 paths P,,, Po,, ..., P,
tou, wherea; > az > --->a, > 1. For fizedk =ay+az+ -+ +ay,
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W(H(ay,a,...,0:)) S W(H(k—t+1,1,...,1)) with equality if and only
ifay=k—t+1landa; =1 fori=2,3,...,t.

Proof. Let G = H(ay,a2,...,a:). Suppose that there is some i such that
a; >2for2<i<t Let Gy = H(bl,bz,...,bg) withb = a;+1, b; =a; —1
and b; = a; for j # 1,i. Let u; and uy be the pendant vertices of G in

the paths P,, and P,,, respectively, and u3 the neighbor of 43 in G. Then
Gy =G — uguz + ujug. Let Gy = G — uguz + uuy. Then

W(G1) -W(G) = (Dg,(u2)— Dg,(u2)) + (Dag,(u2) — Deg(uz))
a1(n — a1 —2) — (a;i = 1)(|V(G)| —a: - 1)
= (a1 —a; +1)(V(G)| - a1 —a; —1) >0,

and thus W(G;) > W(G). Repeating the above transformation from G to
G, we may finally have the desired result. (|

Fora > 1, b > 0 and r = 3,4, let U, (a,b) be the graph obtained
from a graph H which is C3(—, —, Py41) for r = 3 and Cy(—, —, Py41,—)
for r = 4 by attaching n — a — b — r pendant vertices and a path P, to v;
of H. In either case, v3 is an end vertex of Pyy1. Let k=n—a—b—r.
Recall that [7]

W (Un,r(a,b))

- o DIE] (1))
()4 (4) + il rarre)
+k(l J+r+ Za(a+3) + b( H+b+3))+k(k—1).(3)

Lemma 5. Fora>1,b>0andr =3,4, lets=a+b>2 andk =n—s—r.
(?) Ifr =3, orr =4 and k = 0, then W(Uy »(a,b)) < W(Un+(s,0)) with
equality if and only if U, (a,b) = Uy, +(s,0);
(#2) Ifr =4, k=1, then W(Uy r(a,b)) < W(Up,+(s,0)) = WUy, r(1,5—-1))
with equality if and only if Up ;(a,b) = Uy »(s,0) or U, (1,5 —1);
(441) Ifr =4 and k > 2, then W(U, (a,b)) < W(U, (1, 5—1)) with equality
if and only if Up 1 (a,b) =Up, »(1,8—1).
Proof. Let u; and up be respectively the pendant vertices of Uy, ,(a,b) in

the pendant paths at v, and v3 if b > 1, and u be a pendant neighbor of v;
ifk > 1. Let Gy = Uy ,(a,b). Let w be the neighbor of u; in G;. Fora > 2,
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let Gy = G1—uwyw+uiug, G = Gy —wyw+uv; and Gy = Gy —uvyw+uivs.
Obviously, G = Up r(a — 1,b+1). Then
WU, r(a—1,b+1)) — W(Un,r(a,b))
= (Da,(u1) — Da,(w1)) + (Da(m) — Dy (w1))
+(Da,(u1) — Dg, (w1))
= blat+k+r—2)+ [ |G+a-1-8)—@-D(k+r-1+})

= (1—a+b)(k+l 21J)+kI_§J.

If r = 3, then W(Uyp 3s(a — 1,b+ 1)) > W(Un3(a,b)) if and only ifa — b <
%ﬁ“— 1mply1ng that W(U,, 3(a,b)) is maximum only if (a,b) = (1,s —1) or
(s,0). Similarly, if r = 4, then W(Up 4(a,b)) is maximum only if (e,b) =
(1,s — 1) or (s,0). Using Eq. (3), we have

LI D
Then the result follows. o
3 Results

Let U2 = U, 3(n— A,0) if 3 < A < n-—1. Let U(n,A) be the set
of n-vertex unicyclic graphs with maximum degree A, where 2 < A <
n—1. Obviously, U(n,2) = {C,,} and U(n,n — 1) = {U™"~1}. Recall that

2

wca) =25
Theorem 1. Let G € U(n,A) with3 < A <n—1. Then

W(G) < gn - n+%A3— %(n+1)A2+%(9n—5)A

with equality if and only if G = U™A.

Proof. The case A =n — 1 is trivial.

Suppose that A < n — 2. Let G be a graph with maximum Wiener
index in U(n, A). Let C be the unique cycle in G with length r. Obviously,
3fr<n—-1.

Let Ul o = Una(l,n—A —2) for 3< A <n—2, and let Uy 5 be the
unicyclic gra.ph obtained by joining a triangle and the center of the star on
A vertices by a path of length n — A — 2 if 3 < A < n — 3. Using Eq. (3),
we have

WE™) = nd- 1

1 1 1
& 6n+ 3A 2(n-l—l)A + 6(9n 5)A,
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1 19 1
WU, A) = 6n~°‘-F n+ = A3———( +1)A% + 6(9n+7)A+3,

WU, a) = W(U"A+l)+(A—2)( n—A-2).

Case 1. There is a vertex, say v; on C of degree A.

By Lemma 1, the degrees of vertices outside C are one or two, and the
degrees of vertices on C different from v; are two or three. By Lemma 2,
there is at most one vertex on C different from v; of degree three. Thus G
is a graph obtainable from the cycle C by attaching A — 2 paths to v; and
at most one path to a vertex on C different from »;. By Lemmas 3 and
4, We have G = U, r(a,b) with A =n—a—b—r + 3, where r = 3,4. If
r = 3, then by Lemma 5 (i), we have G = Uy, g(n — A,O) =U™8 Ifr =4,
then by Lemma 5 (i)-(iii), we have G = Uy, 4(n — A — 1,0) for A = 3, and
G=Una(n—A-1,0)0r U, 5 for A= 4(andn>6),andG’ Uyp,a for
A > 5. Note that

W(U™A) — W(Un a(n — A — 1,0))
W(U™) — W (Upa(n - A ~1,0))

n—4>0if A=3,
W(U™2) — W (U, )
2n—-11>0if A =4,
2(n—A)-3>0if A>5.

W(U™%) — W(Uy a)

Thus G = U™ with A > 3.
Case 2. There is no vertex on C of degree A.

There is some vertex v outside C of degree A and 4 < A < n -3,
Suppose without loss of generality that v, is the vertex on C that is nearest
to v. By Lemma 1, the degrees of vertices outside C different from v are one
or two, and the degrees of vertices on C are two or three. By Lemma 2,
there is at most one vertex on C different from v, of degree three. By
Lemma 4, there is at most one pendant path at v in G with length at least
two. Let G be the graph obtained from G by deleting the vertices of the
branch at v; except v;.

Suppose that G # C3. By Lemma 3, we have G = G(k — 3,3) or G(k —
4,4), where k = |V(G)|. Thus G = C3(—, Py—3,—) or C4(—,—, Ps_3,—),
where 4 < k <n — A. Let H be the graph obtained from C3(—, Pr_2,~)
by adding the branch at v, such that G = C3(—, Px—2,-), ie.,, G = H if
G = C3(—, Px_3,-). Let u the pendant vertex of C3(—, Px_z, —) of H. Let
w be the neighbor of v; outside the triangle in H. Let G; = H —vijw+uw.
Obviously, G € U(n,A). If G = C3(—, Pi—2,—), then by setting G2 =
H — viw 4 vow, we have

W(G:1) - W(G) (W(G1) = W(G2)) + (W(G2) - W(@))

2(k - 3)(n — k) — (k — 3)(n — k)
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= (k-3)(n—k)>0,

and if G = C4(—, —, Py—3, ), then using Eqgs. (1) and (2), and by similar
calculation of W(G(a + 2,7 — 2)) — W(G(a,r)) as in the proof of Lemma
3, we have W(H) — W(G) = k — 4, and thus

W(G1)-W(G) = (W(G)—-W(H))+ (W(H)-W(G))
= (k-3)(n—k)+(k—4)>0.
In either case, we have W(G;) > W(G), a contradiction. Thus G = Cs.
Suppose that G # U/ o. Let w be the pendant vertex of the longest

pendant path at v, and w; the neighbor of w. Then dg(v,w) > 2. Let
t= dc(v,wl) > 1. Note that n — A —t > 3. Let ;,z2,...,Za—2 be the

pendant neighbors of v. For Gs = G — vz — -+ —vza-2 +w1T1 + -+
w1Za—2 € U(n, A), we have
W(Gs)-W(G) = tln—A-t)(A-2)-t(A-2)

HA-2)(n—A—t—1),

and thus W(G3) > W(G), a contradiction. It follows that G = U} 5.
Combining Cases 1 and 2, we have G = U2 or U}/ p for4 < A <n-3,

and G = U™A for A = 3,n—2. ButW(U"A)>W(U”A)for4<A<n -3

because W(U™?) - W(U] ,) =n—3>0. Then G = UnA., O

Let f(A) = in® —fn+ A3 — F(n+1)A%+ 3(9n — 5)A, where 3 <
A < n —1. Obviously, the roots Al and A; of f'(A) =0 with A; < A,
satisfy A; < 3 a.nd Az > n — 1. Then f(A) is decreasing in A, and thus
f(A) < f(3) = —n — 6n + 2 with equality if and only if A = 3. Note
that W(Cp) < W(U" 3). It follows from Theorem 1 that among n-vertex
unicyclic graphs with n > 5, U" 3 is the unique graph with the maximum
Wiener index, equal to n3 — Zn + 2, see also [5]. Recall that connected
graphs with maximum degree at most four are known as molecular graphs
representing hydrocarbons {15]. Obviously, U™ is a molecular graph.
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