Two kinds of equipackable paths and cycles *

Liandi Zhang

Yuqin Zhang^{†‡}

Department of Mathematics Tianjin University, 300072, Tianjin, China

Abstract

A graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. In 2009, P_4 -equipackable paths and cycles, M_3 -equipackable paths and cycles have been characterized. In this paper, P_k -equipackable paths and cycles, M_k -equipackable paths and cycles are characterized.

Keywords: Equipackable, path, matching.

1 Introduction

The problem that we study stems from research of randomly packable graphs([1],[3]) and equipackable graphs([2],[4]). A graph G has order |V(G)| and size |E(G)|. The path and cycle on n vertices are denoted by P_n and C_n , respectively. A matching in the graph G is a set of independent edges in G. A matching with $k(k \ge 1)$ edges is denoted by $M_k(k \ge 1)$.

Let H be a subgraph of G. By G-H, we denote the graph left after we delete from G the edges of H and any resulting isolated vertices. A collection of edge disjoint copies of H, say H_1, H_2, \dots, H_l , where each $H_i(i=1,2,\dots,l)$ is a subgraph of G, is called an H-packing in G. A graph G is called H-packable if there exists an H-packing of G. An H-packing in G with G copies G called G is called maximal if G by G contains no subgraph isomorphic to G. An G is called G disjoint copies of G can be packed into G. Let G denote the number of G in the maximum G denote the number of G is called G and G is called randomly

^{*}E-mail addresses: yuqinzhang@126.com; zhangliandi2009@163.com

[†]Corresponding author.

[‡]Foundation items: This research was supported by National Natural Science Foundation of China (10926071,11071055,11001196).

H-decomposable if every maximal H-packing in G uses all edges in G. A graph G is called H-equipackable if every maximal H-packing in G is also a maximum H-packing in G. In 2006, Zhang and Fan([4]) characterized M_2 -equipackable graphs. In 2010, B. Randerath and P. D. Vestergaard([2]) characterized all P_3 -equipackable graphs. In 2009, P_4 -equipackable paths and cycles, M_3 -equipackable paths and cycles have been characterized ([5]).

In this paper, we investigate P_k -equipackable paths and cycles, M_k -equipackable paths and cycles.

The following lemma is important to our work:

Lemma 1. ([5]) Let G be an F-packable graph and H be an F-packable subgraph of G which satisfy: (1) H is not F-equipackable; (2) G-H is F-decomposable. Then G is not F-equipackable.

2 Main results

2.1 P_k -equipackable paths and cycles $(k \ge 3)$

Theorem 2. A path P_n is P_k -equipackable if and only if $k \le n \le 2k-2$ or n=3k-3.

Proof. It's easy to see that P_n is P_k -equipackable when $k \le n \le 2k-2$ or n = 3k-3.

Conversely, let P_n be a P_k -equipackable path, then we have five cases:

Case 1: When $n \leq k-1$, since P_n contains no copy of P_k , P_n can't be P_k -equipackable.

Case 2: When $k \leq n \leq 2k-2$, it's easy to see that $p(P_n; P_k)$ is 1. And P_n is P_k -packable, so each maximal P_k -packing is also a maximum P_k -packing. Thus P_n must be P_k -equipackable.

Case 3: When $2k-1 \le n \le 3k-4$, it's easy to see $p(P_n; P_k)$ is 2. There exists a P_k -packing H with only one copy of P_k , such that G-H has two components denoted by H_2 and H_3 with $|E(H_2)| = k-2$ and $1 \le |E(H_3)| \le k-2$. So H is a maximal P_k -packing which is not maximum. By the definition, P_n is not P_k -equipackable.

Case 4: When n = 3k - 3, it's easy to see that $p(P_n; P_k)$ is 2. And the number of every maximal P_k —packing of P_n is 2 by the Pigeonhole Principle. So P_n is P_k -equipackable

Case 5: When $n \ge 3k - 2$, there are two subcases:

Subcase 1: When $n-(2k-1)\equiv r \pmod{k-1}$ $(r=0,1,\cdots,k-3)$, the path $P_{n-2k-r+2}=P_n-P_{2k-1+r}$ has $(k-1)t(t\in Z,t\geq 1)$ edges, so the path P_n-P_{2k-1+r} is P_k -decomposable. From case 3, P_{2k-1+r} is not P_k -equipackable. By Lemma 1, P_n is not P_k -equipackable.

Subcase 2: When $n - (2k - 1) \equiv k - 2 \pmod{k - 1}$, we can easily verify that P_{4k-4} is not P_k -equipackable: the number of P_k in the maximal P_k -packing of P_n is 2 or 3. Obviously, the path $P_n - P_{4k-4}$ is P_k -decomposable, so P_n is not P_k -equipackable.

From the above, a path P_n is P_k -equipackable if and only if $k \le n \le 2k-2$ or n=3k-3.

Theorem 3. A cycle C_n is P_k -equipackable if and only if $k \le n \le 3k-4$ or n=4k-5.

Proof. It's easy to see that C_n is P_k -equipackable when $k \leq n \leq 3k-4$ or n=4k-5.

Conversely, let C_n be a P_k -equipackable cycle, then we have four cases: Case 1: When $n \leq k-1$, since C_n contains no copy of P_k , C_n can't be P_k -equipackable.

Case 2: When $k \leq n \leq 2k-3$, it's easy to see that $p(C_n; P_k)$ is 1. And C_n is P_k -packable, so each maximal P_k -packing is also a maximum P_k -packing. Thus C_n must be P_k -equipackable.

Case 3: When $2k-2 \le n \le 3k-4$, it's easy to see $p(C_n; P_k)$ is 2. And the number of every maximal P_k -packing of P_n is 2 by the Pigeonhole Principle. So C_n is P_k -equipackable.

Case 4: When $n \ge 3k - 3$, there are two subcases:

Subcase 1: When $n-(2k-2)\equiv r \pmod{k-1}$ $(r=0,1,\cdots,k-3)$, C_n-P_{2k-1+r} has $(k-1)t(t\in Z,t\geq 1)$ edges, so C_n-P_{2k-1+r} is P_{k-1+r} decomposable. By Theorem 2, P_{2k-1+r} is not P_{k-1+r} equipackable. By Lemma 1, P_{k-1+r} is not P_{k-1+r} is no

Subcase 2: When $n - (2k - 2) \equiv k - 2 \pmod{k - 1}$, there are two possibilities:

- (1) When n = 4k 5, it's easy to see $p(C_n; P_k)$ is 3. And the number of every maximal P_k -packing of P_n is 3 by the Pigeonhole Principle. So C_n is P_k -equipackable.
- (2) When $n \neq 4k 5$, $C_n P_{4k-4}$ is P_k -decomposable. By Lemma 1, C_n is not P_k -equipackable.

From the above, a cycle C_n is P_k -equipackable if and only if $k \le n \le 3k-4$ or n=4k-5.

2.2 M_k -equipackable paths and cycles

Theorem 4. A path P_n is M_k -equipackable if and only if $n = kt (t \in \mathbb{Z}, t \geq 2)$.

Proof. It's easy to see that P_n is M_k -equipackable when $n = kt (t \in \mathbb{Z}, t \geq 2)$.

Conversely, let P_n be an M_k -equipackable path, then we have four cases:

Case 1: When $n \leq 2k-1$, P_n can't be M_k -equipackable since P_n contains no M_k .

Case 2: When $2k \le n \le 3k$, there are three subcases:

Subcase 1: When n=2k, it's easy to see that $p(P_n; M_k)$ is 1. And P_n is M_k -packable, so each maximal M_k -packing is also a maximum M_k -packing. Thus P_n must be M_k -equipackable.

Subcase 2: When $2k+1 \leq n \leq 3k-1$, it's easy to see $p(P_n; M_k)$ is 2. Denote the edges of P_n by $e_1, e_2, \cdots, e_{n-1}$. In the following, we give a maximal M_k -packing of P_n with one copy of M_k , say $H = \{e_{i_1}, e_{i_2}, \cdots, e_{i_k}\}$, $1 = i_1 < i_2 < \cdots < i_k = n-1$, such that $\forall e_{i_j}, 2 \leq i_{j+1} - i_j \leq 3$. So H is a maximal M_k -packing of P_n which is not maximum. By the definition, P_n is not M_k -equipackable.

Subcase 3: When n=3k, it's easy to see $p(P_n; M_k)$ is 2. And the number of every maximal P_k -packing of P_n is 2 by the Pigeonhole Principle. So P_n is M_k -equipackable.

Case 3: When $3k + 1 \le n \le 4k - 1$, it's easy to see that $p(P_n; M_k)$ is 3. In the following, we give a maximal M_k -packing of P_n with two copies of M_k denoted by $H = \{H_1, H_2\}$.

If k is even, $H_1 = \{e_1, e_3, \cdots, e_{k-3}, e_{k-1}, e_{n-k+1}, e_{n-k+3}, \cdots, e_{n-3}, e_{n-1}\},\$ $H_2 = \{e_2, e_4, \cdots, e_{k-2}, e_k, e_{n-k}, e_{n-k+2}, \cdots, e_{n-4}, e_{n-2}\}.$

If k is odd, $H_1 = \{e_1, e_3, \cdots, e_{k-4}, e_{k-2}, e_{n-k}, e_{n-k+2}, \cdots, e_{n-3}, e_{n-1}\},\$ $H_2 = \{e_2, e_4, \cdots, e_{k-1}, e_{n-k-1}, e_{n-k+1}, \cdots, e_{n-4}, e_{n-2}\}$

Then the number of edges remained is no more than 2k-2. There exists no M_k in the 2k-2 edges. So H is a maximal M_k -packing of P_n which is not maximum. By the definition, P_n is not M_k -equipackable.

Case 4: When $n \ge 4k$, there are two subcases:

Subcase 1: When $n \equiv 0 \pmod{k}$, it's easy to see $p(P_n; M_k)$ is $\lfloor \frac{n-1}{k} \rfloor$. And the number of every maximal P_k —packing of P_n is $\lfloor \frac{n-1}{k} \rfloor$ by the Pigeonhole Principle. So P_n is M_k -equipackable.

Subcase 2: When $n \equiv r \pmod k$ $(r = 1, 2, \dots, k-1)$, the path $P_n - P_{2k+r}$ has $kt (t \in \mathbb{Z}, t \geq 2)$ edges, and it has a maximal M_k -packing which uses all its edges, so it is M_k -decomposable. Since P_{2k+r} is not M_k -equipackable, by Lemma 1, P_n is not M_k -equipackable.

From the above, a path P_n is M_k -equipackable if and only if $n = kt(t \in \mathbb{Z}, t \geq 2)$.

Theorem 5. A cycle C_n is M_k -equipackable if and only if $2k \le n \le 3k-2$, or $n = kt + k - 1(t \in Z, t \ge 2)$.

Proof. It's easy to see that C_n is M_k -equipackable when $2k \leq n \leq 3k-2$ or $n = kt + k - 1(t \in \mathbb{Z}, t \geq 2)$.

Conversely, let C_n be an M_k -equipackable cycle, we have three cases:

Case 1: When $n \leq 2k-1$, C_n can't be M_k -equipackable since C_n contains no M_k .

Case 2: When $2k \le n \le 4k - 1$, there are three subcases:

Subcase 1: When $2k \leq n \leq 3k-1$, it's easy to see that $p(C_n; M_k)$ is 2. And the number of every maximal P_k —packing of P_n is 2 by the Pigeonhole Principle. So C_n is M_k -equipackable.

Subcase 2: When $3k \leq n \leq 4k-2$, it's easy to see $p(C_n; M_k)$ is 3. Denote the edges of C_n by e_1, e_2, \dots, e_n . In the following, we give a maximal M_k -packing of C_n with two copies of M_k denoted by $H = \{H_1, H_2\}$, where $H_1 = \{e_1, e_3, \dots, e_{2k-1}\}$, $H_2 = \{e_2, e_4, \dots, e_{2k}\}$. Then the number of edges remained is no more than 2k-2. There exists no M_k in the 2k-2 edges, so H is a maximal M_k -packing which is not maximum. By the definition, C_n is not M_k -equipackable.

Subcase 3: When n = 4k - 1, it's easy to see $p(C_n; M_k)$ is 3. And the number of every maximal P_k -packing of P_n is 3 by the Pigeonhole Principle. So C_n is M_k -equipackable.

Case 3: When $n \geq 4k$, there are two subcases:

Subcase 1: When $n \equiv r \pmod{k} (r = 0, 1, 2, \dots, k-2)$, $C_n - P_{2k+1+r}$ has $kt(t \in \mathbb{Z}, t \geq 2)$ edges, and it has a maximal M_k -packing which uses all its edges, so it is M_k -decomposable. Since P_{2k+1+r} is not M_k -equipackable, by Lemma 1, C_n is not M_k -equipackable.

Subcase 2: When $n \equiv k - 1 \pmod{k}$, it's easy to see $p(C_n; M_k)$ is $\lfloor \frac{n}{k} \rfloor$. And the number of every maximal P_k -packing of P_n is $\lfloor \frac{n}{k} \rfloor$ by the Pigeonhole Principle. So C_n is M_k -equipackable.

From the above, a cycle C_n is M_k -equipackable if and only if $2k \le n \le 3k-2$ or $n=kt+k-1(t \in Z, t \ge 2)$.

References

- [1] L. W. Beineke, P. Hamberger and W. D. Goddard, Random packings of graphs, *Discrete Mathematics*, 125(1994), 45-54.
- B. Randerath and P. D. Vestergaard, All P₃-equipackable graphs, Discrete Mathematics, 310(2010), 355-359.
- [3] S. Ruiz, Randomly decomposable graphs, Discrete Mathematics, 57(1985), 123-128.
- [4] Y.Q. Zhang and Y.H. Fan, M₂—equipackable graphs, Discrete Applied Mathematics, 154(2006), 1766-1770.
- [5] Y.Q. Zhang and Y.J. Sun, H—equipackable paths and cycles for $H = P_4$ and $H = M_3$, Ars Combinatoria, 93(2009), 387-391.