Trees Which Admit No a-labelings
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Abstract

In this paper, we study the existence of a-labelings for trees by means
of particular (0, 1)-matrices called a-labeling matrices. It is shown that each
comet Sk, admits no a-labelings whenever k > 4(g — 1) and ¢ > 2. We also
give the sufficient conditions for the nonexistence of a-labelings for trees of
diameter at most six. This extends a result of Rosa’s. As a consequence, we
prove that Si 3 has an o-labeling if and only if & < 4.
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1 Introduction

Throughout this paper only simple finite graphs are considered. For convenient
notation, we denote the set of integers {i € N : s < i < t} by [s,t] for any two
integers s < t. A wertez labeling of a graph G is an assignment f of labels to the
vertices of G which induces, for each edge uv, a label depending on the vertex labels
f(u) and f(v). A vertex labeling f of a graph G with g edges is called a B-labeling
if f is an injection from the vertices of G to the set [0, g] such that, when each
edge uv is assigned the label | f(u) — f(v)|, the resulting edge labels are distinct. A
B-labeling is also known as a graceful labeling. In [6], Rosa proved that a graph G
with g edges has no B-labeling if g is congruent to 1 or 2 modulo 4 and the degree
of each vertex in G is even. However, he believes that every tree is graceful. His
conjecture inspires many researchers to focus on the study of S-labelings for trees.

Let f be a graceful labeling of G. If there exists an integer A so that, for each
edge wv € E(G), either f(u) < A < f(v) or f(v) < A < f(u), then f is called an
a-labeling of G. It is not difficult to see that a graph that receives an a-labeling
must be bipartite. For known results on a-labelings, the readers may refer to (2],
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(3], [4], (5], [7], [8] and [9]. The complete bipartite graph K is called a star or
a k-star. The comet Sy, is the graph obtained from the k-star K by replacing
each edge with a path of length g, where both £ and g are positive integers. Unlike
B-labelings, it can not be conjectured that every tree has an a-labeling. Rosa [6]
pointed out that trees of diameter four that contain the comet S32 as a subtree do
not admit a-labelings. In the present paper, we shall extend this result.

Let E = (e;;) be an m x n (0,1)-matrix. The size of E , denoted by |E|, is
the number of l-entries in E. For a positive integer k¥ € [1,m + n — 1], the set
{e; €eE:j—i+m=ki€[l,m]and j € [1,n]} is called the k-th diagonal of
E, written as E[k]. Let A be a row, column or diagonal of E. degg(A) denotes the
degree of A which is the number of 1-entries in A. A row, column or diagonal of zero
degree is called a zero row, column or diagnal, respectively. A row or a column is
sometimes called a line in this paper. In addition, E is referred to as an a-labeling
matriz if the degree of each diagonal of E is equal to one. Therefore, every m x n
o-labeling matrix has size m +n — 1 and the transpose of an a-labeling matrix is
also an a-labeling matrix.

In the present paper, we study the existence of a-labelings for trees using o-
labeling matrices. It is shown that each comet Si, admits no a-labelings whenever
k > 4(qg—1) and ¢ > 2. The sufficient conditions for the nonexistence of a-labelings
for trees of diameter at most six are also given. This extends the result of Rosa’s
[6] mentioned above. As a consequence, we show that Si3 has an a-labeling if and
only if k < 4.

2 Main Results

Through out this section, E = (e;) is an m x n (0, 1)-matrix and r; and c; represent
the i-th row and the j-th column of E respectively, for ¢ € [1,m] and j € [1,7].
We define the matriz graph of E as the bipartite graph G with partite sets the row
set {r; : i € [1,m]} and the column set {c; : j € [1,n]} of E and the edge set
E(G) = {ricj : e;; =1 for i € [1,m] and j € [1,n]}. Clearly, |E(G)| = |E|. Besides,
we let < E > denote the subgraph induced by the edge set of G. Then < E > has
no isolated vertices. Note that the edge sets of < E > and the matrix graph G of E
are the same , while the vertex sets of them may differ. The vertex set of < E > can
be obtained by removing isolated vertices from the vertex set of G. Therefore, if G
has no isolated vertices, that is, E has no zero lines, the matrix graph G is actually
identical with < E >. In the case when E is an a-labeling matrix and a graph H is
isomorphic to < E >, we say that E is an a-labeling matrix of H.

Theorem 2.1. Let H be a bipartite graph without isolated vertices. Then H admits
an a-labeling if and only if there is an a-labeling mairiz of H.

Proof. For the sufficiency, let E = (e;;) be an a-labeling matrix of H and G = (U, V)
be the matrix graph of E where U = {r; : i € [1,m]} and V = {¢; : j € [1,n]}. Then,
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H is isomorphic to < E > and |[E(G)| = |[E|=m+n—-1=| < E > | = |E(H)|.
We start by constructing an o-labeling of G as follows. Let f be a mapping from
V(G) to [0,|E(G)|] defined by f(r;) =i —1, fori € [1,m] and f(c;) =m +j -1,
for j € [1,n). Then f is a bijective mapping with f(r;) < m —1 < f(c;). For each
k € [I,m +n — 1), let e;,j, be the unique l-entry in the k-th diagonal of E, then
jx —ix +m = k and the edge ri,c;, € E(G) receives the label f(c;) — f(rs,) =
(m + jx —1) = (ix — 1) = jx — ix + m = k. This implies that the edge labels of G
are distinct integers from 1 to m +n — 1. Since < E > and G have the same edge
set, the function f|<g> is an a-labeling of < E >& H.

For the necessity, we suppose that H = (U, V) has an a-labeling f. Then there
exists an integer A such that f(u) < A < f(v) or f(v) < A < f(u) for each edge
uwv € E(H). Let m = A+ 1and n = |E(H)| —m+ 1. We define an m X n matrix
E = (e;;) as follows. For i € [1,m] and j € [1,7], e;; = 1 provided that there
exists an edge uv € E(H) such that f(u) =i—1and f(v) = A+ jand e; =0
otherwise. Clearly, H is isomorphic to < E > since H has no isolated vertices. It
remains to show that E is an a-labeling matrix. According to the way we define the
matrix E, |[E| = |[E(H)| = m + n — 1, which means that the size of E is equal to
the number of diagonals of E. It suffices to show that each diagonal of E contains
an l-entry. For each k € [1,m + n — 1], there exists exactly one edge uv € E(H)
such that f(v) — f(u) = k. This edge corresponds to an l-entry e;,;, in E with
i = f(u)+1 < mand jx = f(v) = = f(v)—m+1 < n. These values of i, and ji
give jx —ix +m = (f(v) —m+1) = (f(v) + 1)+ m = f(v) — f(u) = k, which means
the 1-entry e;,;, belongs to the k-th diagonal of E and we have the proof. a

Example 1. Figure 1 shows an o-labeling matrix and the corresponding a-labeling
of Ks.s.

3 6 9 v v, Vs
b hel V3 34 5 6 71 89
® 011 1 1
w11 1 1
w21 1 1
u, u, i,
0 2
- E
K;s
Figure 1: K33

Now, let’s consider the case when H is a tree which admits an a-labeling f. From
the construction of the a-labeling matrix E in the proof of the necessity of Theorem
2.1, we know that |E(H)| = m + n— 1 = |E| and H is isomorphic to < E >. Note
that |V (H)| = |E(H)| + 1 = m + n, meaning the number of vertices of < E > is the
same as the number of lines of E. This tells us that the tree < E > and the matrix
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graph of E have the same number of vertices. In other words, the matrix graph of
E has no isolated vertices. We can therefore conclude that the graph < E > and
the matrix graph of E are identical. We state this fact as a remark below for future
reference.

Remark 1. In the case when H is a tree, its a-labeling induces an a-labeling matrix
E so that < E > is isomorphic to H and < E > is itself the matrix graph of E.

As mentioned in the introduction, Lemma 2.1 is straightforward.

Lemma 2.1. IfE is an a-labeling matriz of a graph H, then E* is also an a-labeling
matriz of H.

For convenient notation, E[s, t}, where s,t € [1,m + n — 1], denotes the m x n
matrix obtained from E by replacing the k-th diagonal E[k] with a zero diagonal for
all k ¢ [s,t]. For a given column A of E, the matrix obtained by replacing A with
a zero column in E is written as E — A. With these notations, the following lemma
is easy to see. It will be frequently used later in the text.

Lemma 2.2. Let ¢ be the l-th column of an m X n matric E and E' = E — ¢,
1<i<n. ThenE'1,l-1]=E[l,l-1] when!>1 and E'fm+I,m+n—-1}=
Em+!,m+n—1] whenl <n.

Before we state our first main result, we need to develop some tools for proving
it. Lemma 2.3 plays an important role in the proof of Theorem 2.2.

Lemma 2.3. Let E be an m X n a-labeling matriz and s € [1,m+n—1]. Ifd; #0
and d; = 0 for all < > 3 where d; is the number of lines of degree i in E[1,s]. Then
s < [2(da/dy) + 1)2.
Proof. Let D = E[1, s] and dp/dy = r, then |D| = s and d, = rd,. Since the sum of
the degrees of all lines of D equals to 2|D| = 2s and d; = 0 for all i > 3, we have
dy + 2d; = dj + 2rd; = 2s. (1)
This gives
d=2s/(2r+1) and dp=rd; =2rs/(2r +1). 2
Now, we define the weight of an entry e;;, written as w(e;;), by w(e;;) = (m +
1-4)+jif ey =1 and w(ey) = 0if e; = 0. For each k € [I,m + n — 1),
let e;,;, be the unique l-entry of the diagonal E[k]. Then jx +m — i = k and
2 ek W(e) = w(eiz) = (m+ 1 —ix) + jx = k + 1. Since the diagonal D[k] is the
same as E[k] when k € [1, s] and is a zero diagonal otherwise, the sum of the weight
of every enrty in D is

Teen®(e) = Ti ™ Ceeppyw(e) = Ty (k+1) = s(s + 3)/2.
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Let 7} and ¢} be the i-th row and j-th column of D respectively, for i € [1,m]
and j € [1,n]. By the two-way counting,
s(s +3)/2 = 3 .epw(e)
= Y1 (m + 1 — 1) deg(rl) + 3], J deg(c})
= Y i kdeg(Tmy k) + 2ok, K deg(dh) ®3)

In order to complete our proof, we need the following fact.

Fact(*): Let S = {a1, @y, ..., ax} be a set of real numbers, and let w be a permutation
such that 7(a;) > m(a;) whenever 1 <i < j < k. Then 35, 4a; > Tk, im(as).

Let df and d¢ be the number of rows and columns of degree  in D respectively.
Thend'+c!c d;. Sinced; = 0 fori > 3, we have df = df = 0 for ¢ > 3 and
0< deg(ﬂ), deg(c’) < 2for all i € [I,m] and j € [1, n] Now applying Fact (*),
Equation (3) becormes

s(s +3)/2 = Y kdeg(rin i) + 2 i, kdeg(c,)
> (T, 2k + Zlmqfuk) +(Tid 2k + Ziiﬁl (4)
Note that Equation (1) implies that d; is even. We split the discussion into the

following two cases.
Case 1. dj is even.

d5+d} d5+-d§
s(s +3)/2 > (Tik 2k + i, 2k) + (T k + TiZgak)
> YUk + 2k) + Y2t 20
gk 4 T o
=d3/2 + d2 /4 + dydp /2 + (dy + 2d3)/2
Case 2. d, is odd.
d"
s(s +3)/2 2 (T, 2k + T3, 26) + (Tiighak + T )
- 2, do— +d d. d
2 T gk + D ok + Sk + S i
- Z(dg—l)/'a’k + Z(dg+l)/2k + z(dz—l)/2+dl/2 k+ Z(dz+1)/2+d1/2k
=d2/2+ d2/4 + dydy /2 + (dy + 2d2) /2 + 1/2

In either case, s(s + 3)/2 > d3/2 + d2/4 + didy/2 + (dy + 2d2)/2. Substituting
Equations (1) and (2) into this inequality, it turns out to be

s(s +3)/2 > [(2rs)/(2r + 1))2/2 + [(2s)/(2r + 1))2/4
+[(@rs)/(@r + D][(25)/(2r +1)]/2 + s
=[1+1/(2r +1)%s*/2 + 5.

This implies that s < (2r + 1)2. So we have the proof. O
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In order to apply Lemma 2.3, we investigate the ratio r = dy/d; used above for
some specific matrices. Let’s call the ratio of the number of lines of degree two to
the number of lines of degree one in E the two-one ratio of E. The number of lines of
degree i in E is in fact the same as the number of vertices of degree i in < E >. The
two-one ratio of the matrix E is also called the two-one ratio of the graph < E >.
The next result will be used later in the proof of Theorem 2.2. The graph kF, is
the union of k£ copies of the path P, of order q.

Lemma 2.4. Let r¢ be the two-one ratio of a subgraph G of kP,, then r¢ < (g—2)/2
fork>1andgq>2.

Proof. Among all subgraphs of F,, the one of greatest two-one ratio is P, itself
because it has the most vertices of degree two and the least vertices of degree one.
Since F, has g — 2 vertices of degree two and two vertices of degree one, we have the
result for k = 1. ]

When k > 2, let the j-th copy of the path P, in kP, be Pq(’ ) and & be the number
of vertices of degree i in GN P.,w »i=1,2and j € [1,k]. Since the subgraph GN Pq(j)
of P, has the two-one ratio dj/d] < (g — 2)/2 for each j € [1,k}, we conclude that
the two-one ratio rg of G is re = (i, )/(Lh_, d) < (¢ - 2)/2. O

Now, we are ready to give the sufficient conditions for the nonexistence of a-
labelings for a comet.

Theorem 2.2. A comet Siq fails to admit a-labelings for k > 4(g— 1) and ¢ > 2.

Proof. Suppose that a comet Sk4 has an a-labeling. Then by Theorem 2.1, there
exists an m x n a-labeling matrix E = (e;;) such that < E >= (U, V) is isomorphic
to the comet Si,. Without loss of generality, we may assume that the center is in
V. By Remark 1, < E > is itself the matrix graph of E and then

m=|U| and n=|V|=klg/2+1. (5)

Let the I-th column ¢; be the center of < E >, and E' = E — ¢. Then < E' >
is isomorphic to kP, because ¢ > 2. If l > 1, we let r be the two-one ratio of
E[},—1] = E'[1,! — 1]. Since < E'[1,] - 1] > is isomorphic to a subgraph of kP,
T < (g = 2)/2 by Lemma 2.4. On the other hand, each component of < E' > is a
path of order g, the degree of each line in E’ does not exceed two. Now we have
that E is an o-labeling matrix and each line in E'[1,{ — 1] = E[1,] — 1] has degree
less than three. Applying Lemma 2.3, we obtain

I-1<(2r+1P<(2(g-2)/2+1) = (g—1)% (6)

Ifl<nleteD=Em+!m+n—-1]=E[m+Il,m+n—1. Then D! =
E[l,n -] = (E')*[1,n — {]. Since E! is also an a-labeling matrix, by a similar
argument as above, we have

n-1<(2g-2)/2+1)7 = (g- 12 ()
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Note that Inequality (6) and Inequality (7) also holds for { = 1 and [ = n respectively.
We now combine (5), (6) and (7) and derive

kla/2] =IV|-1=n—1=(~1)+(n—1) <2q-1)

This implies k£ < 2(g - 1)%/]g/2] < 2(g - 1)*/((g - 1)/2) = 4(g — 1) and we have
the proof. O

Lemma 2.5. Let E = (e;;) be an m x n a-labeling matriz, and let D = E[1,s] =
(di;), where s € [1,m +n — 1]. Then either all 1-entries of D are in the same line
or there are three distinct 1-entries dygy,, dryy, and dz,,, of D where zop = 1, and

N =Y.

Proof. Since E is an a-labeling matrix, the entry dm; = em must be an l-entry.
Now we let R be the largest integer such that dm; = 1 for all j € [1,R], then
l1<R<nand R<s.Ifm=1lorn=1o0rs=1or R=s, then all l-entries are
in the same line of D. Now, assuming that m > 1,n > 1, s > 1and R < s, we
consider the cases as follows.

Case 1. 2 < R < s. If R =n < s, then all entries in the bottom row are 1-entries. If
R < n, then dp(g11) = 0, that is, the bottom entry in the (R+1)-th diagonal D[R+1]
is zero. In either case, there must exist an unique l-entry djj, in the diagonal
D[R+1] with ip < m. Since jo—io+m = R+1, jo = R+1—(m—io) < R. Therefore,
we have at least three distinct 1-entries diyjo, dmjo and dmj, j € [1, R] — {Jo}-

Case 2. R =1 < s. In this case, dpz = 0. So we have dm1 = dim-1y = 1. Let
t be the largest integer such that dim—i41) = 1 for all i € [1,¢], then2 <t <m
and ¢t < s. Ift = s, then all 1-entries are in the first column of D. Now, let’s
assume that ¢t < s. In the case when ¢t = m < s, all entries in the first column are
l-entries. In the case when ¢t < m, we have d_ry = 0, that is, the leftmost entry
in the (¢ + 1)-th diagonal D[t + 1] is zero. In either case, there must exist an unique
l-entry di,j, in the diagonal D[t + 1] with jo > 1 and jo — o+ m = t + 1, then
ip =m—1t+(jo—1) > m—t+1. Therefore, we have at least three distinct 1-entries
diojm diol and d;;, i € [m -t 4+ l,m] - {Zo} O

A disconnected graph G ia called a star forest if every component of G is a star.

Lemma 2.6. Let E be an m x n (0, 1)-matriz. If there ezists ans € [I,m +n —1]
such that < E[1,s] > is a star forest, then E is not an a-labeling matriz.

Proof. Suppose that E is an a-labeling matrix and s € [1,m + n — 1]. Then, by
Lemma 2.5, one of the following two conditions is satisfied.

(i) All 1-entries of < E[1, s] > are in the same line.

(ii) There are three distinct 1-entries e), ez and e3 of < E[1, s] > such that e; and
es are in the same row and e; and e are in the same column.
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If condition (i) is satisfied, then < Ef1,s] > is a star. If condition (ii) is true, then
< E[l, s} > contains a path of three edges as a subgraph. In either case, < E[1, s] >
is not a star forest. a

Before we give the sufficient conditions for the nonexistence of a-labelings for
trees of diameter at most six. Let’s review the definition of the center of a graph
G which will be used later. The eccentricity of a vertex v in G is the maximum
distance from v over all vertices in G. The center of G is the subgraph induced by
the vertices of minimum eccentricity. It is known that the center of a tree is either
a vertex or an edge.

Theorem 2.3. Suppose that T = (U,V) is a tree of size ¢ > 2 with the center
ceV. Let ), Ts,--- , T, be all the components of T — {c}. If each T; is either a
star or an isolated vertez and |E(T3)| + |E(T3)| < [V| =1 for all i,j € [1,7] and
i # j, then T admits no a-labelings.

Proof. Suppose that T has an a-labeling f. Then there exists an m x n a-labeling
matrix E = (e;;) such that < E > is isomorphic to T and < E > is itself the matrix
graph of E. So m = |U| and n = |V/|. Let the I-th column ¢; be the center of < E >.
Then < E > —{¢} is isomorphic to T ~ {c}.

Let E' = E — ¢;. Then < E’ > is a subgraph of < E > —{¢;}. Note that < E' >
has no isolated vertices, whereas < E > —{¢;} may have some. Let T},T%,---,T!
be the components of < E' >. If s = 1, then all but one component of T — {c}
are isolated vertices. The only one star component must have n — 1 edges because
|V] = n. However, this is impossible by the hypotheses. So, 2 < s < r and we have
the following two facts.

(a) 1B(T)| + |E(T))| <n—1foralli,je(l,s] and i # j.
(b) Each component of < E’ > is a star.

Now let’s split the discussion into the following three cases.

Case 1. l =n. Let D = E[l,n—1]. Then < D > has n — 1 edges and therefore it
has at least two nontrivial components by fact(a). Note that < D > has no isolated
vertices and it is a subgraph of < E’ > because Ef1,n — 1] = E'[1,n — 1}. Fact(b)
guarantees that each component of < D > is a star. In other words, < D > is a
star forest. This gives a contradiction to the assumption by Lemma 2.6.

Case 2. [ = 1. Let D be the transpose of E[m +1,m + n — 1]. Since E[m + 1,m +
n—1] = E'fm+ 1,m+ n — 1], we have D = E[l,n — 1] = (E')}{1,n — 1] . Note
that E is also an a-labeling matrix and < D > is again a subgraph of < E' >. An
argument similar to Case 1 also leads to a contradiction.

Case 3. 1 <l < n. LetD;, =E[l,l-1] and D; = E[m+!,m + n — 1], then
both < D; > and < D, > are subgraphs of < E' >. If < D; > has more than one
components, then, by fact(b), it is a star forest. This contradicts to the fact that E
and E! are a-labeling matrices. So < D; > is connected. Let T}, be the component
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of < E' > which contains < D; > as a subgraph, i = 1,2. Then |E(T} )| +|E(T},)| =
|E(< Dy >)| +|BE(< D2 >)| = |Dy| +|D2| = (1 =1) + (n — ) = n — 1. This is again
a contradiction to fact(a) and we have the proof. O

Now, the result obtained by Rosa [6] follows.

Corollary 2.1. A tree of diameter four that contains a comet S32 as a subtree does
not admit an a-labeling.

Proof. Let the tree T = (U,V) where V contains the center ¢ of T. Then each
component of T — {c} is a star or an isolated vertex. Since T' contains S3,2, T — {c}
has at least three star components. Let T3, T3, - - , T} be all the star components of
T — {c}, where r > 3. Then Y_i_, |E(T3)| = |V| — 1 and the inequality [E(T;)| +
|E(T;)| < [V] — 1 follows for all 4,5 € [1,7] and i # j. Therefore, we have the proof
by Theorem 2.3. a

The resuls we obtained so far suggest that a comet Sk, with relatively larger &
and smaller ¢ is more likely to fail to admit o-labelings. We next investigate the
existence of a-labelings for two families of comets with small .

Lemma 2.7. The comets Ssq and Sa,q have a-labelings if q is odd.

Proof. Let v o denote the center of the comet Si,q, k = 3 or 4, and let {vo,0, vi,1, Vi2, -+ Vig}
be the vertex set of the i-th path Pq(i)l of order g + 1 in Skg, i € [1,k]. Then

Siq = (U,V) where V = {0} U {vi; : 5 € [L,k],5 = 2,4,....g— 1} and U = {vy; :

i€ [1,k],5=1,3,...,q}. Define the labeling f as follows:

gk—(¢g-1), ifi=j=0;

(G-1)(g+1)/2+(G-1)/2 ifi=13andj=13,..4q
flui)) =S kg— (G-1)g/2+1—-35/2, ifi=13andj=24,..,9-1;

(g +1)/2 - (G +1)/2, ifi =2,2|k/2| and j = 1,3, ...,q;

kq—ig/2+1+3/2, ifi =2,2|k/2) and j = 2,4, ...,q — 1.

It is routine to verify that f(U) = [0, k(g+1)/2—1] and f(V) = [k(g+1)/2, kq]-
One can easily check that the induced label for the edge v; jv; 41 is g(k—i+1)—j +
(83—14)/2 when i € [1,2] and is q(k — ) + 5 + (4 —)/2 when i € [3,k], j € [1,¢ - 1].
Therefore, the set of induced edge labels on E (P(:,)l—vo,ov,-,l) is [q(k—1)+2, g(k—i+1))
for i € [1,2] and is [g(k—3) +1,q(k—i+1) — lf for i € [3,k]. In addition, the edges
V0,003,1’8, © € [, k], receive the labels g(k— 1) + 1, g(k — 2) + 1 and g(k — 1 — 1) where
1 € [1, |k/2]]. Hence, f is an a-labeling of Sq. a

For clarity, we present the a-labelings from Lemma 2.7 and the corresponding
a-labeling matrices for S3 3 and Sy 3 in Figure 2 and 3, respectively.

Finally, we give a sufficient and necessary condition for the existence of an o-
labeling for a comet S 3.
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Figure 3: Sy 3

Corollary 2.2. A comet Sy3 has an a-labeling if and only if k < 4.

Proof. Let the comet Sys = (U, V) with the center ¢ € V. Then |V| = k + 1 and
each component of T — {c} is a star K;5. By Theorem 2.3, the comet admits no
a-labeling when & > 5. In the case when k = 1 or 2, the comet is actually a path and
therefore admits an a-labeling. The case when k = 3 or 4 follows Lemma 2.7. O
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