# Trees Which Admit No $\alpha$ -labelings

Chin-Lin Shiue \* Hui-Chuan Lu †

#### Abstract

In this paper, we study the existence of  $\alpha$ -labelings for trees by means of particular (0,1)-matrices called  $\alpha$ -labeling matrices. It is shown that each comet  $S_{k,q}$  admits no  $\alpha$ -labelings whenever k>4(q-1) and  $q\geq 2$ . We also give the sufficient conditions for the nonexistence of  $\alpha$ -labelings for trees of diameter at most six. This extends a result of Rosa's. As a consequence, we prove that  $S_{k,3}$  has an  $\alpha$ -labeling if and only if  $k\leq 4$ .

Keywords: α-labeling matrix; matrix graph; comet

#### 1 Introduction

Throughout this paper only simple finite graphs are considered. For convenient notation, we denote the set of integers  $\{i \in \mathbb{N} : s \leq i \leq t\}$  by [s,t] for any two integers  $s \leq t$ . A vertex labeling of a graph G is an assignment f of labels to the vertices of G which induces, for each edge uv, a label depending on the vertex labels f(u) and f(v). A vertex labeling f of a graph G with f edges is called a f-labeling if f is an injection from the vertices of f to the set f and that, when each edge f is assigned the label f is a satisfied that, when each edge f is also known as a graceful labeling. In [6], Rosa proved that a graph f with f edges has no f-labeling if f is congruent to 1 or 2 modulo 4 and the degree of each vertex in f is even. However, he believes that every tree is graceful. His conjecture inspires many researchers to focus on the study of f-labelings for trees.

Let f be a graceful labeling of G. If there exists an integer  $\lambda$  so that, for each edge  $uv \in E(G)$ , either  $f(u) \leq \lambda < f(v)$  or  $f(v) \leq \lambda < f(u)$ , then f is called an  $\alpha$ -labeling of G. It is not difficult to see that a graph that receives an  $\alpha$ -labeling must be bipartite. For known results on  $\alpha$ -labelings, the readers may refer to [2],

<sup>\*</sup>Department of Applied Mathematics, Chung Yuan Christian University, Chung Li, Taiwan 32023. E-mail:clshiue@math.cycu.edu.tw; research supported in part by NSC 96-2115-M-033-003.

<sup>†</sup>Corresponding author; Center of General Education, National United University, Miaoli, Taiwan 36006. Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan 30010. E-mail:hjlu@nuu.edu.tw; research supported in part by NSC 97-2115-M-239-002.

[3], [4], [5], [7], [8] and [9]. The complete bipartite graph  $K_{1,k}$  is called a *star* or a *k-star*. The *comet*  $S_{k,q}$  is the graph obtained from the *k*-star  $K_{1,k}$  by replacing each edge with a path of length q, where both k and q are positive integers. Unlike  $\beta$ -labelings, it can not be conjectured that every tree has an  $\alpha$ -labeling. Rosa [6] pointed out that trees of diameter four that contain the comet  $S_{3,2}$  as a subtree do not admit  $\alpha$ -labelings. In the present paper, we shall extend this result.

Let  $\mathbf{E}=(e_{ij})$  be an  $m\times n$  (0,1)-matrix. The size of  $\mathbf{E}$ , denoted by  $|\mathbf{E}|$ , is the number of 1-entries in  $\mathbf{E}$ . For a positive integer  $k\in[1,m+n-1]$ , the set  $\{e_{ij}\in\mathbf{E}:j-i+m=k,i\in[1,m]\text{ and }j\in[1,n]\}$  is called the k-th diagonal of  $\mathbf{E}$ , written as  $\mathbf{E}[k]$ . Let A be a row, column or diagonal of  $\mathbf{E}$ . deg $_{\mathbf{E}}(A)$  denotes the degree of A which is the number of 1-entries in A. A row, column or diagonal of zero degree is called a zero row, column or diagnal, respectively. A row or a column is sometimes called a line in this paper. In addition,  $\mathbf{E}$  is referred to as an  $\alpha$ -labeling matrix if the degree of each diagonal of  $\mathbf{E}$  is equal to one. Therefore, every  $m\times n$   $\alpha$ -labeling matrix has size m+n-1 and the transpose of an  $\alpha$ -labeling matrix is also an  $\alpha$ -labeling matrix.

In the present paper, we study the existence of  $\alpha$ -labelings for trees using  $\alpha$ -labeling matrices. It is shown that each comet  $S_{k,q}$  admits no  $\alpha$ -labelings whenever k > 4(q-1) and  $q \ge 2$ . The sufficient conditions for the nonexistence of  $\alpha$ -labelings for trees of diameter at most six are also given. This extends the result of Rosa's [6] mentioned above. As a consequence, we show that  $S_{k,3}$  has an  $\alpha$ -labeling if and only if  $k \le 4$ .

### 2 Main Results

Through out this section,  $\mathbf{E}=(e_{ij})$  is an  $m\times n$  (0, 1)-matrix and  $r_i$  and  $c_j$  represent the i-th row and the j-th column of  $\mathbf{E}$  respectively, for  $i\in[1,m]$  and  $j\in[1,n]$ . We define the matrix graph of  $\mathbf{E}$  as the bipartite graph G with partite sets the row set  $\{r_i:i\in[1,m]\}$  and the column set  $\{c_j:j\in[1,n]\}$  of  $\mathbf{E}$  and the edge set  $E(G)=\{r_ic_j:e_{ij}=1\text{ for }i\in[1,m]\text{ and }j\in[1,n]\}$ . Clearly,  $|E(G)|=|\mathbf{E}|$ . Besides, we let  $<\mathbf{E}>$  denote the subgraph induced by the edge set of G. Then  $<\mathbf{E}>$  has no isolated vertices. Note that the edge sets of  $<\mathbf{E}>$  and the matrix graph G of  $\mathbf{E}$  are the same, while the vertex sets of them may differ. The vertex set of  $<\mathbf{E}>$  can be obtained by removing isolated vertices from the vertex set of G. Therefore, if G has no isolated vertices, that is,  $\mathbf{E}$  has no zero lines, the matrix graph G is actually identical with  $<\mathbf{E}>$ . In the case when  $\mathbf{E}$  is an  $\alpha$ -labeling matrix and a graph H is isomorphic to  $<\mathbf{E}>$ , we say that  $\mathbf{E}$  is an  $\alpha$ -labeling matrix of H.

**Theorem 2.1.** Let H be a bipartite graph without isolated vertices. Then H admits an  $\alpha$ -labeling if and only if there is an  $\alpha$ -labeling matrix of H.

*Proof.* For the sufficiency, let  $E = (e_{ij})$  be an  $\alpha$ -labeling matrix of H and G = (U, V) be the matrix graph of E where  $U = \{r_i : i \in [1, m]\}$  and  $V = \{c_j : j \in [1, n]\}$ . Then,

H is isomorphic to  $\langle E \rangle$  and  $|E(G)| = |E| = m + n - 1 = |\langle E \rangle| = |E(H)|$ . We start by constructing an  $\alpha$ -labeling of G as follows. Let f be a mapping from V(G) to [0, |E(G)|] defined by  $f(r_i) = i - 1$ , for  $i \in [1, m]$  and  $f(c_j) = m + j - 1$ , for  $j \in [1, n]$ . Then f is a bijective mapping with  $f(r_i) \leq m - 1 < f(c_j)$ . For each  $k \in [1, m + n - 1]$ , let  $e_{i_k j_k}$  be the unique 1-entry in the k-th diagonal of E, then  $j_k - i_k + m = k$  and the edge  $r_{i_k} c_{j_k} \in E(G)$  receives the label  $f(c_{j_k}) - f(r_{i_k}) = (m + j_k - 1) - (i_k - 1) = j_k - i_k + m = k$ . This implies that the edge labels of G are distinct integers from 1 to m + n - 1. Since  $\langle E \rangle$  and G have the same edge set, the function  $f|_{\langle E \rangle}$  is an  $\alpha$ -labeling of  $\langle E \rangle \cong H$ .

For the necessity, we suppose that H=(U,V) has an  $\alpha$ -labeling f. Then there exists an integer  $\lambda$  such that  $f(u) \leq \lambda < f(v)$  or  $f(v) \leq \lambda < f(u)$  for each edge  $uv \in E(H)$ . Let  $m=\lambda+1$  and n=|E(H)|-m+1. We define an  $m \times n$  matrix  $\mathbf{E}=(e_{ij})$  as follows. For  $i \in [1,m]$  and  $j \in [1,n]$ ,  $e_{ij}=1$  provided that there exists an edge  $uv \in E(H)$  such that f(u)=i-1 and  $f(v)=\lambda+j$  and  $e_{ij}=0$  otherwise. Clearly, H is isomorphic to  $<\mathbf{E}>$  since H has no isolated vertices. It remains to show that  $\mathbf{E}$  is an  $\alpha$ -labeling matrix. According to the way we define the matrix  $\mathbf{E}, |\mathbf{E}|=|E(H)|=m+n-1$ , which means that the size of  $\mathbf{E}$  is equal to the number of diagonals of  $\mathbf{E}$ . It suffices to show that each diagonal of  $\mathbf{E}$  contains an 1-entry. For each  $k \in [1, m+n-1]$ , there exists exactly one edge  $uv \in E(H)$  such that f(v)-f(u)=k. This edge corresponds to an 1-entry  $e_{i_kj_k}$  in  $\mathbf{E}$  with  $i_k=f(u)+1\leq m$  and  $j_k=f(v)-\lambda=f(v)-m+1\leq n$ . These values of  $i_k$  and  $j_k$  give  $j_k-i_k+m=(f(v)-m+1)-(f(u)+1)+m=f(v)-f(u)=k$ , which means the 1-entry  $e_{i_kj_k}$  belongs to the k-th diagonal of  $\mathbf{E}$  and we have the proof.

**Example 1.** Figure 1 shows an  $\alpha$ -labeling matrix and the corresponding  $\alpha$ -labeling of  $K_{3,3}$ .

1

1

1



Figure 1:  $K_{3,3}$ 

Now, let's consider the case when H is a tree which admits an  $\alpha$ -labeling f. From the construction of the  $\alpha$ -labeling matrix E in the proof of the necessity of Theorem 2.1, we know that |E(H)| = m + n - 1 = |E| and H is isomorphic to  $\langle E \rangle$ . Note that |V(H)| = |E(H)| + 1 = m + n, meaning the number of vertices of  $\langle E \rangle$  is the same as the number of lines of E. This tells us that the tree  $\langle E \rangle$  and the matrix

graph of  ${\bf E}$  have the same number of vertices. In other words, the matrix graph of  ${\bf E}$  has no isolated vertices. We can therefore conclude that the graph  $<{\bf E}>$  and the matrix graph of  ${\bf E}$  are identical. We state this fact as a remark below for future reference.

Remark 1. In the case when H is a tree, its  $\alpha$ -labeling induces an  $\alpha$ -labeling matrix E so that  $\langle E \rangle$  is isomorphic to H and  $\langle E \rangle$  is itself the matrix graph of E.

As mentioned in the introduction, Lemma 2.1 is straightforward.

Lemma 2.1. If E is an  $\alpha$ -labeling matrix of a graph H, then E<sup>t</sup> is also an  $\alpha$ -labeling matrix of H.

For convenient notation,  $\mathbf{E}[s,t]$ , where  $s,t\in[1,m+n-1]$ , denotes the  $m\times n$  matrix obtained from  $\mathbf{E}$  by replacing the k-th diagonal  $\mathbf{E}[k]$  with a zero diagonal for all  $k\notin[s,t]$ . For a given column A of  $\mathbf{E}$ , the matrix obtained by replacing A with a zero column in  $\mathbf{E}$  is written as  $\mathbf{E}-A$ . With these notations, the following lemma is easy to see. It will be frequently used later in the text.

Lemma 2.2. Let  $c_l$  be the l-th column of an  $m \times n$  matrix  $\mathbf{E}$  and  $\mathbf{E}' = \mathbf{E} - c_l$ ,  $1 \le l \le n$ . Then  $\mathbf{E}'[1, l-1] = \mathbf{E}[1, l-1]$  when l > 1 and  $\mathbf{E}'[m+l, m+n-1] = \mathbf{E}[m+l, m+n-1]$  when l < n.

Before we state our first main result, we need to develop some tools for proving it. Lemma 2.3 plays an important role in the proof of Theorem 2.2.

**Lemma 2.3.** Let E be an  $m \times n$   $\alpha$ -labeling matrix and  $s \in [1, m+n-1]$ . If  $d_1 \neq 0$  and  $d_i = 0$  for all  $i \geq 3$  where  $d_i$  is the number of lines of degree i in E[1, s]. Then  $s \leq [2(d_2/d_1) + 1]^2$ .

*Proof.* Let D = E[1, s] and  $d_2/d_1 = r$ , then |D| = s and  $d_2 = rd_1$ . Since the sum of the degrees of all lines of D equals to 2|D| = 2s and  $d_i = 0$  for all  $i \ge 3$ , we have

$$d_1 + 2d_2 = d_1 + 2rd_1 = 2s. (1)$$

This gives

$$d_1 = 2s/(2r+1)$$
 and  $d_2 = rd_1 = 2rs/(2r+1)$ . (2)

Now, we define the weight of an entry  $e_{ij}$ , written as  $w(e_{ij})$ , by  $w(e_{ij}) = (m+1-i)+j$  if  $e_{ij}=1$  and  $w(e_{ij})=0$  if  $e_{ij}=0$ . For each  $k\in[1,m+n-1]$ , let  $e_{i_kj_k}$  be the unique 1-entry of the diagonal  $\mathbf{E}[k]$ . Then  $j_k+m-i_k=k$  and  $\sum_{e\in\mathbf{E}[k]}w(e)=w(e_{i_kj_k})=(m+1-i_k)+j_k=k+1$ . Since the diagonal  $\mathbf{D}[k]$  is the same as  $\mathbf{E}[k]$  when  $k\in[1,s]$  and is a zero diagonal otherwise, the sum of the weight of every enrry in  $\mathbf{D}$  is

$$\sum_{e \in \mathbf{D}} w(e) = \sum_{k=1}^{m+n-1} \sum_{e \in \mathbf{D}[k]} w(e) = \sum_{k=1}^{s} (k+1) = s(s+3)/2.$$

Let  $r'_i$  and  $c'_j$  be the *i*-th row and *j*-th column of **D** respectively, for  $i \in [1, m]$  and  $j \in [1, n]$ . By the two-way counting,

$$s(s+3)/2 = \sum_{e \in \mathbf{D}} w(e)$$

$$= \sum_{i=1}^{m} (m+1-i) \deg(r'_i) + \sum_{j=1}^{n} j \deg(c'_j)$$

$$= \sum_{k=1}^{m} k \deg(r'_{m+1-k}) + \sum_{k=1}^{n} k \deg(c'_k)$$
(3)

In order to complete our proof, we need the following fact.

Fact(\*): Let  $S = \{a_1, a_2, ..., a_k\}$  be a set of real numbers, and let  $\pi$  be a permutation such that  $\pi(a_i) \ge \pi(a_j)$  whenever  $1 \le i < j \le k$ . Then  $\sum_{i=1}^k ia_i \ge \sum_{i=1}^k i\pi(a_i)$ .

Let  $d_i^r$  and  $d_i^c$  be the number of rows and columns of degree i in  $\mathbf{D}$  respectively. Then  $d_i^r + d_i^c = d_i$ . Since  $d_i = 0$  for  $i \geq 3$ , we have  $d_i^r = d_i^c = 0$  for  $i \geq 3$  and  $0 \leq \deg(r_i'), \deg(c_j') \leq 2$  for all  $i \in [1, m]$  and  $j \in [1, n]$ . Now applying Fact (\*), Equation (3) becomes

$$s(s+3)/2 = \sum_{k=1}^{m} k \deg(r'_{m+1-k}) + \sum_{k=1}^{n} k \deg(c'_{k})$$

$$\geq (\sum_{k=1}^{d_{2}^{r}} 2k + \sum_{k=d_{3}^{r}+1}^{d_{2}^{r}+d_{1}^{r}} k) + (\sum_{k=1}^{d_{2}^{s}} 2k + \sum_{k=d_{3}^{r}+1}^{d_{3}^{s}+d_{1}^{r}} k)$$
(4)

Note that Equation (1) implies that  $d_1$  is even. We split the discussion into the following two cases.

Case 1.  $d_2$  is even.

$$s(s+3)/2 \ge \left(\sum_{k=1}^{d_2^r} 2k + \sum_{k=1}^{d_2^c} 2k\right) + \left(\sum_{k=d_2^r+1}^{d_2^r+d_1^r} k + \sum_{k=d_2^r+1}^{d_2^c+d_1^c} k\right)$$

$$\ge \sum_{k=1}^{d_2/2} (2k+2k) + \sum_{k=d_2/2+1}^{d_2/2+d_1/2} 2k$$

$$= \sum_{k=1}^{d_2/2} 2k + \sum_{k=1}^{d_2/2+d_1/2} 2k$$

$$= d_2^2/2 + d_1^2/4 + d_1d_2/2 + (d_1 + 2d_2)/2$$

Case 2.  $d_2$  is odd.

$$\begin{split} s(s+3)/2 &\geq \left(\sum_{k=1}^{d_2^*} 2k + \sum_{k=1}^{d_2^*} 2k\right) + \left(\sum_{k=d_2^*+1}^{d_2^*+d_1^*} k + \sum_{k=d_2^*+1}^{d_2^*+d_1^*} k\right) \\ &\geq \sum_{k=1}^{(d_2-1)/2} 2k + \sum_{k=1}^{(d_2+1)/2} 2k + \sum_{k=(d_2-1)/2+1}^{(d_2-1)/2+d_1/2} k + \sum_{k=(d_2+1)/2+1}^{(d_2+1)/2+d_1/2} k \\ &= \sum_{k=1}^{(d_2-1)/2} k + \sum_{k=1}^{(d_2+1)/2} k + \sum_{k=1}^{(d_2-1)/2+d_1/2} k + \sum_{k=1}^{(d_2+1)/2+d_1/2} k \\ &= d_2^2/2 + d_1^2/4 + d_1d_2/2 + (d_1 + 2d_2)/2 + 1/2 \end{split}$$

In either case,  $s(s+3)/2 \ge d_2^2/2 + d_1^2/4 + d_1d_2/2 + (d_1+2d_2)/2$ . Substituting Equations (1) and (2) into this inequality, it turns out to be

$$s(s+3)/2 \ge [(2rs)/(2r+1)]^2/2 + [(2s)/(2r+1)]^2/4 + [(2rs)/(2r+1)][(2s)/(2r+1)]/2 + s$$
$$= [1+1/(2r+1)^2]s^2/2 + s.$$

This implies that  $s \leq (2r+1)^2$ . So we have the proof.

In order to apply Lemma 2.3, we investigate the ratio  $r = d_2/d_1$  used above for some specific matrices. Let's call the ratio of the number of lines of degree two to the number of lines of degree one in E the two-one ratio of E. The number of lines of degree i in E is in fact the same as the number of vertices of degree i in < E >. The two-one ratio of the matrix E is also called the two-one ratio of the graph < E >. The next result will be used later in the proof of Theorem 2.2. The graph  $kP_q$  is the union of k copies of the path  $P_q$  of order q.

Lemma 2.4. Let  $r_G$  be the two-one ratio of a subgraph G of  $kP_q$ , then  $r_G \leq (q-2)/2$  for  $k \geq 1$  and  $q \geq 2$ .

*Proof.* Among all subgraphs of  $P_q$ , the one of greatest two-one ratio is  $P_q$  itself because it has the most vertices of degree two and the least vertices of degree one. Since  $P_q$  has q-2 vertices of degree two and two vertices of degree one, we have the result for k=1.

When  $k \geq 2$ , let the j-th copy of the path  $P_q$  in  $kP_q$  be  $P_q^{(j)}$  and  $d_i^j$  be the number of vertices of degree i in  $G \cap P_q^{(j)}$ , i = 1, 2 and  $j \in [1, k]$ . Since the subgraph  $G \cap P_q^{(j)}$  of  $P_q$  has the two-one ratio  $d_2^j/d_1^j \leq (q-2)/2$  for each  $j \in [1, k]$ , we conclude that the two-one ratio  $r_G$  of G is  $r_G = (\sum_{j=1}^k d_2^j)/(\sum_{j=1}^k d_1^j) \leq (q-2)/2$ .

Now, we are ready to give the sufficient conditions for the nonexistence of  $\alpha$ -labelings for a comet.

**Theorem 2.2.** A comet  $S_{k,q}$  fails to admit  $\alpha$ -labelings for k > 4(q-1) and  $q \geq 2$ .

*Proof.* Suppose that a comet  $S_{k,q}$  has an  $\alpha$ -labeling. Then by Theorem 2.1, there exists an  $m \times n$   $\alpha$ -labeling matrix  $\mathbf{E} = (e_{ij})$  such that  $\langle \mathbf{E} \rangle = (U, V)$  is isomorphic to the comet  $S_{k,q}$ . Without loss of generality, we may assume that the center is in V. By Remark 1,  $\langle \mathbf{E} \rangle$  is itself the matrix graph of  $\mathbf{E}$  and then

$$m = |U|$$
 and  $n = |V| = k\lfloor q/2 \rfloor + 1.$  (5)

Let the l-th column  $c_l$  be the center of < E >, and E' = E  $-c_l$ . Then < E' > is isomorphic to  $kP_q$  because  $q \ge 2$ . If l > 1, we let r be the two-one ratio of  $\mathbf{E}[1,l-1] = \mathbf{E}'[1,l-1]$ . Since < E'[1,l-1] > is isomorphic to a subgraph of  $kP_q$ ,  $r \le (q-2)/2$  by Lemma 2.4. On the other hand, each component of < E' > is a path of order q, the degree of each line in E' does not exceed two. Now we have that E is an  $\alpha$ -labeling matrix and each line in  $\mathbf{E}'[1,l-1] = \mathbf{E}[1,l-1]$  has degree less than three. Applying Lemma 2.3, we obtain

$$l-1 \le (2r+1)^2 \le (2(q-2)/2+1)^2 = (q-1)^2.$$
 (6)

If l < n, let D = E[m+l, m+n-1] = E'[m+l, m+n-1]. Then  $D^t = E^t[1, n-l] = (E')^t[1, n-l]$ . Since  $E^t$  is also an  $\alpha$ -labeling matrix, by a similar argument as above, we have

$$n - l \le (2(q - 2)/2 + 1)^2 = (q - 1)^2. \tag{7}$$

Note that Inequality (6) and Inequality (7) also holds for l=1 and l=n respectively. We now combine (5), (6) and (7) and derive

$$k|q/2| = |V| - 1 = n - 1 = (l - 1) + (n - l) \le 2(q - 1)^2$$

This implies  $k \le 2(q-1)^2/\lfloor q/2\rfloor \le 2(q-1)^2/((q-1)/2) = 4(q-1)$  and we have the proof.  $\Box$ 

Lemma 2.5. Let  $E = (e_{ij})$  be an  $m \times n$   $\alpha$ -labeling matrix, and let  $D = E[1, s] = (d_{ij})$ , where  $s \in [1, m + n - 1]$ . Then either all 1-entries of D are in the same line or there are three distinct 1-entries  $d_{x_0y_0}$ ,  $d_{x_1y_1}$  and  $d_{x_2y_2}$  of D where  $x_0 = x_1$  and  $y_1 = y_2$ .

*Proof.* Since E is an  $\alpha$ -labeling matrix, the entry  $d_{m1} = e_{m1}$  must be an 1-entry. Now we let R be the largest integer such that  $d_{mj} = 1$  for all  $j \in [1, R]$ , then  $1 \le R \le n$  and  $R \le s$ . If m = 1 or n = 1 or s = 1 or R = s, then all 1-entries are in the same line of **D**. Now, assuming that m > 1, n > 1, s > 1 and R < s, we consider the cases as follows.

Case 1.  $2 \le R < s$ . If R = n < s, then all entries in the bottom row are 1-entries. If R < n, then  $d_{m(R+1)} = 0$ , that is, the bottom entry in the (R+1)-th diagonal D[R+1] is zero. In either case, there must exist an unique 1-entry  $d_{i_0j_0}$  in the diagonal D[R+1] with  $i_0 < m$ . Since  $j_0 - i_0 + m = R+1$ ,  $j_0 = R+1 - (m-i_0) \le R$ . Therefore, we have at least three distinct 1-entries  $d_{i_0j_0}$ ,  $d_{mj_0}$  and  $d_{mj}$ ,  $j \in [1, R] - \{j_0\}$ .

Case 2. R=1 < s. In this case,  $d_{m2}=0$ . So we have  $d_{m1}=d_{(m-1)1}=1$ . Let t be the largest integer such that  $d_{(m-i+1)1}=1$  for all  $i\in [1,t]$ , then  $2 \le t \le m$  and  $t \le s$ . If t=s, then all 1-entries are in the first column of D. Now, let's assume that t < s. In the case when t=m < s, all entries in the first column are 1-entries. In the case when t < m, we have  $d_{(m-t)1}=0$ , that is, the leftmost entry in the (t+1)-th diagonal D[t+1] is zero. In either case, there must exist an unique 1-entry  $d_{i_0j_0}$  in the diagonal D[t+1] with  $j_0 > 1$  and  $j_0 - i_0 + m = t + 1$ , then  $i_0 = m - t + (j_0 - 1) \ge m - t + 1$ . Therefore, we have at least three distinct 1-entries  $d_{i_0j_0}$ ,  $d_{i_01}$  and  $d_{i_1}$ ,  $i \in [m-t+1,m] - \{i_0\}$ .

A disconnected graph G is called a star forest if every component of G is a star.

**Lemma 2.6.** Let E be an  $m \times n$  (0,1)-matrix. If there exists an  $s \in [1, m+n-1]$  such that  $\langle E[1,s] \rangle$  is a star forest, then E is not an  $\alpha$ -labeling matrix.

*Proof.* Suppose that E is an  $\alpha$ -labeling matrix and  $s \in [1, m + n - 1]$ . Then, by Lemma 2.5, one of the following two conditions is satisfied.

- (i) All 1-entries of  $\langle \mathbf{E}[1, s] \rangle$  are in the same line.
- (ii) There are three distinct 1-entries  $e_1$ ,  $e_2$  and  $e_3$  of  $\langle E[1, s] \rangle$  such that  $e_1$  and  $e_2$  are in the same row and  $e_2$  and  $e_3$  are in the same column.

If condition (i) is satisfied, then  $\langle \mathbf{E}[1,s] \rangle$  is a star. If condition (ii) is true, then  $\langle \mathbf{E}[1,s] \rangle$  contains a path of three edges as a subgraph. In either case,  $\langle \mathbf{E}[1,s] \rangle$  is not a star forest.

Before we give the sufficient conditions for the nonexistence of  $\alpha$ -labelings for trees of diameter at most six. Let's review the definition of the center of a graph G which will be used later. The eccentricity of a vertex v in G is the maximum distance from v over all vertices in G. The center of G is the subgraph induced by the vertices of minimum eccentricity. It is known that the center of a tree is either a vertex or an edge.

Theorem 2.3. Suppose that T = (U, V) is a tree of size  $q \geq 2$  with the center  $c \in V$ . Let  $T_1, T_2, \dots, T_r$  be all the components of  $T - \{c\}$ . If each  $T_i$  is either a star or an isolated vertex and  $|E(T_i)| + |E(T_j)| < |V| - 1$  for all  $i, j \in [1, r]$  and  $i \neq j$ , then T admits no  $\alpha$ -labelings.

*Proof.* Suppose that T has an  $\alpha$ -labeling f. Then there exists an  $m \times n$   $\alpha$ -labeling matrix  $\mathbf{E} = (e_{ij})$  such that  $\langle \mathbf{E} \rangle$  is isomorphic to T and  $\langle \mathbf{E} \rangle$  is itself the matrix graph of  $\mathbf{E}$ . So m = |U| and n = |V|. Let the l-th column  $c_l$  be the center of  $\langle \mathbf{E} \rangle$ . Then  $\langle \mathbf{E} \rangle - \{c_l\}$  is isomorphic to  $T - \{c\}$ .

Let  $\mathbf{E}' = \mathbf{E} - c_l$ . Then  $< \mathbf{E}' >$  is a subgraph of  $< \mathbf{E} > -\{c_l\}$ . Note that  $< \mathbf{E}' >$  has no isolated vertices, whereas  $< \mathbf{E} > -\{c_l\}$  may have some. Let  $T_1', T_2', \cdots, T_s'$  be the components of  $< \mathbf{E}' >$ . If s = 1, then all but one component of  $T - \{c\}$  are isolated vertices. The only one star component must have n - 1 edges because |V| = n. However, this is impossible by the hypotheses. So,  $2 \le s \le r$  and we have the following two facts.

- (a)  $|E(T_i)| + |E(T_i)| < n-1$  for all  $i, j \in [1, s]$  and  $i \neq j$ .
- (b) Each component of  $\langle E' \rangle$  is a star.

Now let's split the discussion into the following three cases.

Case 1. l = n. Let D = E[1, n-1]. Then < D > has n-1 edges and therefore it has at least two nontrivial components by fact(a). Note that < D > has no isolated vertices and it is a subgraph of < E' > because E[1, n-1] = E'[1, n-1]. Fact(b) guarantees that each component of < D > is a star. In other words, < D > is a star forest. This gives a contradiction to the assumption by Lemma 2.6.

Case 2. l=1. Let **D** be the transpose of  $\mathbf{E}[m+1,m+n-1]$ . Since  $\mathbf{E}[m+1,m+n-1]=\mathbf{E}'[m+1,m+n-1]$ , we have  $\mathbf{D}=\mathbf{E}^t[1,n-1]=(\mathbf{E}')^t[1,n-1]$ . Note that  $\mathbf{E}^t$  is also an  $\alpha$ -labeling matrix and  $<\mathbf{D}>$  is again a subgraph of  $<\mathbf{E}'>$ . An argument similar to Case 1 also leads to a contradiction.

Case 3. 1 < l < n. Let  $D_1 = E[1, l-1]$  and  $D_2 = E[m+l, m+n-1]$ , then both  $< D_1 >$  and  $< D_2 >$  are subgraphs of < E' >. If  $< D_i >$  has more than one components, then, by fact(b), it is a star forest. This contradicts to the fact that E and  $E^t$  are  $\alpha$ -labeling matrices. So  $< D_i >$  is connected. Let  $T'_{j_i}$  be the component

of  $\langle E' \rangle$  which contains  $\langle D_i \rangle$  as a subgraph, i = 1, 2. Then  $|E(T'_{j_1})| + |E(T'_{j_2})| \geq |E(\langle D_1 \rangle)| + |E(\langle D_2 \rangle)| = |D_1| + |D_2| = (l-1) + (n-l) = n-1$ . This is again a contradiction to fact(a) and we have the proof.

Now, the result obtained by Rosa [6] follows.

Corollary 2.1. A tree of diameter four that contains a comet  $S_{3,2}$  as a subtree does not admit an  $\alpha$ -labeling.

Proof. Let the tree T=(U,V) where V contains the center c of T. Then each component of  $T-\{c\}$  is a star or an isolated vertex. Since T contains  $S_{3,2}$ ,  $T-\{c\}$  has at least three star components. Let  $T_1,T_2,\cdots,T_r$  be all the star components of  $T-\{c\}$ , where  $r\geq 3$ . Then  $\sum_{i=1}^r |E(T_i)|=|V|-1$  and the inequality  $|E(T_i)|+|E(T_j)|<|V|-1$  follows for all  $i,j\in[1,r]$  and  $i\neq j$ . Therefore, we have the proof by Theorem 2.3.

The resuls we obtained so far suggest that a comet  $S_{k,q}$  with relatively larger k and smaller q is more likely to fail to admit  $\alpha$ -labelings. We next investigate the existence of  $\alpha$ -labelings for two families of comets with small k.

**Lemma 2.7.** The comets  $S_{3,q}$  and  $S_{4,q}$  have  $\alpha$ -labelings if q is odd.

*Proof.* Let  $v_{0,0}$  denote the center of the comet  $S_{k,q}$ , k = 3 or 4, and let  $\{v_{0,0}, v_{i,1}, v_{i,2}, ..., v_{i,q}\}$  be the vertex set of the *i*-th path  $P_{q+1}^{(i)}$  of order q + 1 in  $S_{k,q}$ ,  $i \in [1, k]$ . Then  $S_{k,q} = (U, V)$  where  $V = \{v_{0,0}\} \cup \{v_{i,j} : i \in [1, k], j = 2, 4, ..., q - 1\}$  and  $U = \{v_{i,j} : i \in [1, k], j = 1, 3, ..., q\}$ . Define the labeling f as follows:

$$f(v_{i,j}) = \begin{cases} qk - (q-1), & \text{if } i = j = 0; \\ (i-1)(q+1)/2 + (j-1)/2, & \text{if } i = 1, 3 \text{ and } j = 1, 3, ..., q; \\ kq - (i-1)q/2 + 1 - j/2, & \text{if } i = 1, 3 \text{ and } j = 2, 4, ..., q - 1; \\ i(q+1)/2 - (j+1)/2, & \text{if } i = 2, 2\lfloor k/2 \rfloor \text{ and } j = 1, 3, ..., q; \\ kq - iq/2 + 1 + j/2, & \text{if } i = 2, 2\lfloor k/2 \rfloor \text{ and } j = 2, 4, ..., q - 1. \end{cases}$$

It is routine to verify that f(U) = [0, k(q+1)/2 - 1] and f(V) = [k(q+1)/2, kq]. One can easily check that the induced label for the edge  $v_{i,j}v_{i,j+1}$  is q(k-i+1)-j+(3-i)/2 when  $i \in [1,2]$  and is q(k-i)+j+(4-i)/2 when  $i \in [3,k]$ ,  $j \in [1,q-1]$ . Therefore, the set of induced edge labels on  $E(P_{q+1}^{(i)}-v_{0,0}v_{i,1})$  is [q(k-i)+2,q(k-i+1)] for  $i \in [1,2]$  and is [q(k-i)+1,q(k-i+1)-1] for  $i \in [3,k]$ . In addition, the edges  $v_{0,0}v_{i,1}$ 's,  $i \in [1,k]$ , receive the labels q(k-1)+1,q(k-2)+1 and q(k-1-l) where  $l \in [1,|k/2|]$ . Hence, f is an  $\alpha$ -labeling of  $S_{k,q}$ .

For clarity, we present the  $\alpha$ -labelings from Lemma 2.7 and the corresponding  $\alpha$ -labeling matrices for  $S_{3,3}$  and  $S_{4,3}$  in Figure 2 and 3, respectively.

Finally, we give a sufficient and necessary condition for the existence of an  $\alpha$ -labeling for a comet  $S_{k,3}$ .



Figure 2:  $S_{3,3}$ 

1



Figure 3:  $S_{4,3}$ 

Corollary 2.2. A comet  $S_{k,3}$  has an  $\alpha$ -labeling if and only if  $k \leq 4$ .

*Proof.* Let the comet  $S_{k,3} = (U,V)$  with the center  $c \in V$ . Then |V| = k+1 and each component of  $T - \{c\}$  is a star  $K_{1,2}$ . By Theorem 2.3, the comet admits no  $\alpha$ -labeling when  $k \geq 5$ . In the case when k = 1 or 2, the comet is actually a path and therefore admits an  $\alpha$ -labeling. The case when k=3 or 4 follows Lemma 2.7.

## References

- [1] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Elsevier North Holland, Inc. 1976.
- [2] S. El-Zanati, C. Vanden Eynden, Hung-Lin Fu, On the  $\alpha$ -labeling number of bipartite graphs, *Util. Math.* 58 (2000) 145-152.
- [3] S. El-Zanati, H. L. Fu, C. L. Shiue, On the  $\alpha$ -labeling number of bipartite graphs, Discrete Math. 214 (2000) no. 1-3, 241-243. 05C78

- [4] S. I. El-Zanati, M. J. Kenig, C. Vanden Eynden, Near  $\alpha$ -labelings of bipartite graphs, Australas. J. Combin. 21 (2000) 275-285.
- [5] J. A. Gallian, A dynamic survey of graph labeling, *Electronic Journal of Combinatorics*, www.combinatorics.org.
- [6] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationals d'études, Rome 1966 (Dunod, Paris, 1967) 349-355.
- [7] C. L. Shiue, The α-labeling number of bipartite graphs, Australas. J. Combin. 19 (1999), 123-128.
- [8] C. L. Shiue, H. L. Fu, α-labeling Number of Trees, Discrete Math. 306(2006), 3290-3296.
- [9] H. S. Snevily, New families of graphs that have  $\alpha$ -labelings, *Discrete Math.* 170 (1997), 185-194.