On the Merrifield-Simmons index and Hosoya
index of bicyclic graphs with a given girth

Renbin Sun?, Zhongxun Zhu'*, Liansheng Tan?

1College of Mathematics and Statistics, South Central University for
Nationalities, Wuhan 430074, P.R. China; 2Computer Science Department,
Central China Normal University, Wuhan 430079, PR China.

Abstract. For a graph G, the Merrifield-Simmons indez i(G) and the
Hosoya indezx z(G) are defined as the total number of independent sets and
the total number of matchings of the graph G, respectively. In this paper,
we characterize the graphs with the maximal Merrifield-Simmons index
and the minimal Hosoya index, respectively, among the bicyclic graphs on
n vertices with a given girth g.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let
G = (V, E) be a graph on n vertices and m edges. If m = n —1 +¢, then
G is called a e-cyclic graph. If ¢ = 0,1 and 2, then G is a tree, unicyclic
graph, and bicyclic graph, respectively. An independent k—set is a set of
k vertices, no two of which are adjacent. Denote by i(G, k) the number
of k—independent sets of G. It follows directly from definition that g is
an independent set. Then i(G,0) = 1 for any graph G. The Merrifield-
Simmons indez, denoted by i(G), is defined to be the total number of
independent sets of G, that is, i(G) = Y r_i(G, k). A k—matching of G
is a set of k mutually independent edges. Denote by Z(G, k) the number
of k—matchings of G. For convenience, we regard the empty edge set
as a matching. Then Z(G,0) = 1 for any graph G. The Hosoya indexz,
denoted by 2(G), is defined to be the total number of matchings, namely,

n
2(6) = A% 2(6, k).

The Hosoya index was introduced by Hosoya [9] in 1971, and it turned
out to be applicable to several questions of molecular chemistry. For ex-
ample, the connections with physico-chemical properties such as boiling
point, entropy or heat of vaporization are well studied. Similar connections
are known for Merrifield-Simmons indez. For detailed information on the
chemical applications, we refer to [7, 10, 15] and the references therein.

Since then, many authors have investigated these graphic invariants. An
important direction is to determine the graphs with maximal or minimal
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indices in a given class of graphs. As for n-vertex trees, the star is the tree
that maximizes the Merrifield-Simmons index, and that the path is the tree
that minimizes it{7, 18]. The situation for the Hosoya index is absolutely
analogous. The star minimizes the Hosoya index, while the path maximizes
it[8]. Among all unicyclic graphs of order n[2, 16, 17, 19], the maximum of
the Merrifield-Simmons index and the minimum of the Hosoya index are
attained for the graph that results from attaching n — 3 leaves to a triangle
(the only exception being n = 4, in which case the cycle C, also maximizes
the Merrifield-Simmons index). On the other hand, the maximum of the
Hosoya index and the minimum of the Merrifield-Simmons index is attained
for the cycle Cy; in the case of the Merrifield-Simmons index, the graph
that results from attaching a path to a triangle attains the maximum as
well. The maximum of the Merrifield-Simmons index among all bicyclic
graphs is 5-2"=% 4+ 1, and it is attained for a graph that results from a
star by connecting one of the leaves to two other leaves[6]. The same graph
minimizes the Hosoya index (with a value of 3n —4)[4]. On the other hand,
the minimum of the Merrifield Simmons is attained for a graph that consists
of two 3-cycles, connected by a path of length n—>5 (the Merrifield-Simmons
index of this graph is 5F,,_2)[5], while the graph that maximizes the Hosoya
index results from identifying two edges of a cycle of length 4 and a cycle
of length n — 2 (its Hosoya index is Fy 1 + F,_1 + 2F,,_3)[3], respectively.
For further details, We refer readers to survey papers [10, 11, 12, 22, 20],
especially, a recent paper by S. Wagner and I. Gutman [21], which is a
wonderful survey on this topic, and the cited references therein.

Let %B(n, g) be the class of bicyclic graph on n vertices with a given girth
g. In this paper, we characterize the graphs with the maximal Merrifield-
Simmons index and the minimal Hosoya index, respectively, in %B(n, g).

In order to state our results, we introduce some notation and terminol-
ogy. For other undefined notation we refer to Bollobés [1]. If W C V(G),
we denote by G — W the subgraph of G obtained by deleting the vertices of
W and the edges incident with them. Similarly, if E C E(G), we denote by
G — E the subgraph of G obtained by deleting the edges of E. If W = {v}
and E = g:z:y , we write G—v and G —zy instead of G— {v} and G— {zy},
respectively. We denote by P,,C, and S, the path, the cycle and the star
on n vertices, respectively. kP, means k copies of P;. Let G, H be two con-
nected graphs with V/(G) N V(H) = {v}, then let GvH be a graph defined
by V(GvH) = V(G) U V(H) and E(GvH) = E(G)U E(H). In GuSi,1,
for simplicity, let v be the center of Siy). Set N(v) = {ulww € E(G)},
N[y = N(vgul{:'v}.

_ Denote by F,, the nth Fibonacci number. Recall that F,, = F,,_; +
Fn_g,n > 2 with initial conditions Fo = F; = 1. Then i(P,) = Foa,
z(P;_) = F,,. Note that F, ., = F,F;n + F,_1F,,_;. For convenience, we
let F;, =0 for n < 0.

I;Iow we give some lemmas that will be used in the proof of our main
results.

Lemma 1.1 ([7]). Let G = (V, E) be a graph.

(i) If w € E(G), then iéG) = i(G — uwv) — (G — {N[u] U N[v]})) and

. 3G) =2(G ~uv) + 2(G -}u,'v}); .

(ii) If v € V(G), then i(G) = i(G — v) + i(G — N[v]) end 2(G) = z(G —
V) + X uenw) 2(G — {u,v});



(iii) IftGl,Gg,...,Gt are the components of the graph G, then i(G) =
[1;1(G;) end z(G) = [T;., 2(G;)-
Lemma 1.2 ([13@. Let G be a connected graph and Ti,, be a tree of

order l +1 with V(G) NV (T141) = {v}. Then i(GvTy4,) < t(GvSi41) and
2(GvTi41) 2 2(GvSyya)-

Lemma 1.3 ([14]). Let H,X,Y be three connected graphs disjoint in pair.
Suppose that u,v are two vertices of H, v’ is o vertez of X, u' is a vertex
of Y. Let G be the graph obtained from H,X,Y by identifying v with v/
and u with u', respectively. Let G’z be the graph obtained from H,X,Y by
identifying vertices v,v’,u’ and G3 be the graph obtained from H,X,Y by
identifying vertices u,v',u'. Then

(i) {(G3) > i(Q) ori(G3) > i(G);

(i) 2(C%) < 2(G) or 2(C3) < 2(&).

2. Bicyclic graphs with maximal Merrifield

-Simmons index

Let B be a bicyclic graph. The base of B, denoted by §, is the minimal
bicyclic subgraph of B. Obviously, B is the unique bicyclic subgraph of B
containing no pendant vertex, and B can be obtained from B by planting

trees to some vertices of B.

° " ) e

P,

24l

u/ qul \, v
N\ ‘Pnl /

Figure 1: The bases of 8(n, g)

It is well known that bicyclic graphs have the following three types of
bases(as shown in Figure 1):

Let B(p,q) be the bicyclic graph obtained from two vertex-disjoint cy-
cles Cp and Cy by identifying vertices u of Cp and v of Cy. For convenience,
u in B(p, q) is always the common vertex.

Let B(p,l,q) be the graph obtained by joining a new path viv .- -y
between two vertex-disjoint cycles Cp and C,, where vy € V(Cp) and v €
V(Cy).
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Let P(p,q,r) be the blcychc graph consisting of three pairwise internal
disjoint paths 1, Py+1, P41 with common endpoints.

Now we can Jeﬁne the following three classes of bicyclic graphs on n
vertices with a given girth g:

By(n,9) = {B € B(n,g)|B = B(p, g) for some p > g > 3};
Pa(n,g) = {B € #B(n,9)|B = B(p,1,9) for some p> g >3 and | >2};
B3(n,g) = {B € B(n,9)|B = P(p,q,r) for some p > g >r > 1 and

g+r=g2
Then #(n,g) = #1(n, 9) U Ba(n, g) U Bs(n, g).

Lemma 2.1. Forp>g >3,
(i) ¥(B(P,9)uSn-p-g+2) < i(B(g,9)uSn-2042). The equality holds if and
ongy ifp=g. .
(ii) z(B(p,g)uSn—p—g+2) > 2(B(g, g)uSn—2g+2). The equality holds if and
onlyifp=g.
Proof. (i) By Lemma 1.1, we have

i(E(P, g)usn—p—g+2)
= Z(B(p7 g)uS‘n—P—9+2 - u) + 7'(-B(p! g)uSn—P—9+2 - N[u])
W(Pp1 U Pg_l Un—p—g+ 1)P1) + i(Pp_a U Pg_3)
= 2"_P_g+1Fng + Fp_ng_z. (21)

Then

i(B(p, 9yuSn—p-g+2) — i(B(p +1,9)uSn_p_g41)
2PN R Fy + FpaFyg — (2P 9 Fpy1 Fy + Fp-1Fy o)
F, o2F, — F,_3F, 2 >0,

since p > g > 3. Hence

i(B(9, 9)uSn-24+2) > i(B(g+1, 9)uSn-29+1) > -+ > i(B(P, 9)uSn_p_g+2)-

So i(ﬁ(p, 9)uSn—p_g42) < i(ﬁ(g, g)uSn—24+2). The equality holds if and
only if p = g.

ii) Let vy, ++ ,Un~p-g+1 be the pendant vertices of B(p, 9uSn_p_g41.
By Lemma 1. 1 we have

2(B(P, 9)uSn—p-g12)
Z(B(p: g)uSn-—p—g+2 - 'wul) + Z(B(pv g)usn—p—g+2 - {u; vl})
z(B(p, 9)uSn—p—g+2 — uv1) + Fy_1Fp1

v I

2(B(p,9)) + (n—p—g+1)Fy_1F,y

= 2Bmg)-w+ Y, 2G—{uv})+(n—p—g+1)Fp_1Fpy
vEN(u)

= (n—p—g+2)Fy1Fp1+2F; 3Fp 1 +2Fy_1Fp (2.2)



Then

2B(p +1,9)uSn—p-g41) — 2(B(p, 9)uSn—p—g42)
(n—p—g+1)Fy1Fp+2Fy oFp+2Fy_1Fp_; —
(n—p—g+2)Fy_1Fpy +2Fy_2F, 1 + 2F;_1Fp_2]

(TL -p—g+ l)F —lF -2 Fg—lF -1+ 2F, —sz—Z + 2F, _1Fp_3
—Fg_lF -1+ 2Fg_2Fp_2 + 2F, _1Fp_3

Fg—le—3 + Fp—2(F -2 = Fg-—3) >0,

v

since p > g > 3. So
2(B(g, 9)uSn-2g42) < 2(B(g+1,9)uSn—2g41) < -+ < 2(B(p, g)uSn—p—g+2)-

Hence z(ﬁ(p, 9)uSn_p—g+2) = z(§(g, 9)uSn_244+2). The equality holds if
and only if p=g. O

Theorem 2.2. For any graph G € %1(n,g), we have

(i) i(G) < i(B(g,9)uSn-2g+2)- The equality holds if and only if G
B(g,g)us, ~2g+2-

(i) 2(G) > 2z(B(g,9)uSn—24+2)- The equality holds if and only if G =
B(g,9)uSn—_2g42.

Proof. For any graph G € #1(n, g), it can be obtained from B(p,g)(» > 9)

by planting some trees to some vertices of B(p, g). Denote G; be the graph
obtained from G by replacing each tree by a star with the same order.

(i) By Lemma 1.2, we have i(G) < i(G1). Repeatedly by Lemma 1.3,
we can move all stars to a vertex , which is a center of some star, and
the Merrifield-Simmons index is increasing. Without loss of generality, let
z € V(Cp), denote by G the graph obtained by identifying the center = of

Sn—p—g+2 With u or moving Cy to z, obviously, Ga = ﬁ(p, 9)uSn—p—g42-

By Lemma 1.3, we have i(G;) < i(G2). Then i(G) < i(B(p, 9)uSn—p—g+2)-
The equality holds if and only if G = G) = G3. Furthermore, by f.emma.
2.1, we can obtain our desired result.

Similar to the proof of (i), we can prove (ii). O

By Lemma 1.3 and Theorem 2.2, we have
Theorem 2.3. For any graph G € %Ba(n, g), we have
(i) (G) < i(B(g, 9)uSn-2q+2)-
(il) 2(G) > 2(B(g, 9)uSn-2g42).
By Lemma 1.1, we have

Lemma 2.4. For graph P(p,q,7)uSn—p—g+2, we have
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(i) i(P(p,q,T)uSn—p—g42) = 2" PItYF, FyF, + Fp_ 1 Fy_1 Fry)
p—-14q~1Lr—-1 +Fp—2Fq—2Fr—2o
(i) 2(P(p,q,7)uSn—p—gt2) = (Fg+Fy_2)Fp_1+2Fy 1 Fp_g+Fp_3F, ,F,_,
+(n—p—~g+1)(Fg1Fp_y + Fp_2Fy_1F,_y)

Lemma 2.5. Letn—p—g+12>1 and z # u,v, we have
() i(P(p,q, "')zSn-p—g+2) < i(P(Psq:T)uSn—P—9+2);
(i) 2(P(p,q,7)Sn—p-g+2) > 2(P(p,q, ) uSn—p—g+2)-
Proof. Without loss of generality, let £ € V/(Pp41), Poy1 = u...z...0, P, =
u...z,Pp=z...v,thena+b-1=p+1,a >2,b>2. Let k=n—-p—g+1.
(i) By Lemma 1.1, we have
i(P(p, q, T)xsn—p—g+2)
= 2(Fy_1Fy_1FyF, + Fo 1 FyoFy 1 Fo_y + Fy_oFy 1Fy_yF,_,
+Fe-2Fy_2Fy oF._2) + FooFy o FyF, + Fo_oFy_3Fy 1 F,_,
+Fa3Fy2Fy 1Fr1 4+ Fa3Fy 3Fy_sFr_.

Note that Foyp—2 = Fa1Fy1+Fo_oFo—2, Farp—3 = Fyu 1 Fy_o+F, o F,_3.

'L(P(p, q,r)uSn-,,_g.;.z) - ’I;(P(p, q,'r')an—p—g+2)
= 2%(Fayp2FyFy + Fayo3Fy 1 Froy) + FoypoaFy1Foy
+Fotyo-aFy—2Frg — 28(FasFom1 FyFy 4+ Fy 1 Fy_oFy 1 Fr_y
‘Fo 2Py 1 Fyo1Froy + FooFy 2 Fy_oFy_3) + Fy_oFy o F,F,
+Fo-2Fy—3Fg 1Fr1+ Fo3FyaFy 1 Fr_y + Fo3Fo3Fy_oF,_5)
2 (FacoFy—oFyF, — FaoFyoFy \Fr_y — Fy_oFy oFy oF,_5) +
FooFy oFg 1Fr 1+ FagFy_oFy oF, 5 — Fy_oFy o FyF,
Fa—2Fb-2(FqFr - F —lF -1 = Fq—2Fr—2)

Fa—2Fb—2(F —lFr—2 + Fq—2Fr—1)-

If r = 1, then ¢ > 2 since the considered graphs are simple. Similarly,
ifg=1, thenr > 2. Then F,_oFy o(Fq_1F;_5 + Fy_3F,_;) > 0. Hence
#(P(p, q,7)TSn—p—g+2) < i(P(p,q,T)USn—_p_g12).

(ii) By Lemma 1.1, we have

z(P(p,q,7)zSn-p-g+2) = 2(P(p,q,7)) + kz(P(p,q,7) — z)
= Z(P(p’ 9 T)) + k[(Fg + FQ—Z)Fa—2Fb-2 + F, —lFa-2Fb—3
+Fg1Fa3Fy o+ Fo 3Fy 3Fy_ 1 Fr i),

v

by (2.2), we have

z(P(p, q,7)xSn—p—g+2) — 2(P(p, 9, 7)uSn_p—g+2)
= k[z(P(p,q,7) — z) — 2(P(p,q,7) — u)]
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= k[(Fg + Fg—2)Fa—2Fb—2 + F, —lFa—2Fb—3 + F, —lFa—3Fb—2
+F,_sF, 3F, F, _1] - k[F 1 F —1 + Fp_qu_lF _1]

Fo oFy 9(2F, 9 — Fy_1Fy)

Fo oFy o(Fg_o+ Fyyr—a — Fq_1F,_,)

FooFy o(Fy_o+ Fy_2F;_3)

FooFy oFy 5> 0,

since a,b > 2,g > 3.
Hence Z(P(p, q, r)xsn—p—g+2) > Z(P(p,q, r)uSn—p—g+2)' O

v Il

Lemma 2.6. Forp>q>r,q+ 7 =g, we have

(i) z(P(p,q,r)uS,,_p_g.,.g) < z(P(q, 4, 7)uSn_q—g42). The equality holds if
and only 1

(ii) z(P(p,q,r)uSn._p_g.,.z) > z2(P(q,q,7)uSn—-q—g+2). The equality holds
if and only if p=q.

Proof. Note that r > 1,¢q > 2. If p=2, then p = ¢ = 2 sin
p+r>g,thenp>qsmceq+'r—-g,tha.tls,p>3q22
(i) By Lemma 2.4(i), we have

cep>qg2r. If

'l:(P(p -1,q, r)usn.-—P—9+3)
= VPR \F Fr+ FyoFy 1 Fr_y) + FyoFq 1Fry
+Fp_3F —oFy_o.

Then

i(P(p — 1,9, 7)uSn—p—g+3) — {{P(p, ¢, 7)uSn-p—g+2)
= 2n—-p~g+2(F _1FqFr+Fp_2F _lFr_1)+F —oF,_1F_y
+F, _3Fq_2Fr_.2 - [2n—p—g+1 (FquFr + F, _1Fq_1F _1)
+Fp 1 Fy 1 Froy + Fp_oFg_oF, o)
Fp..3(FqF,~ —F,  Fr1)+ Fp..4(F 1 Fr1— Fq_2Fr...2)
Fp..sF —oF. > 0.
So '&P(P 1,q,7)uSn_p_g+3) > i(P(p, g, T)USn—p—g42)-
If p— 1 = g, we obtain our desired result.
If p—1 > g, applying the above procedures repeatedly, we can also

obtain our desired result.
(if) By Lemma 2.4(ii), we have

2
>

2(P(p—1,q,7)uSn—p—g+3)
= (Fg+Fy_o2)Fp_2+2Fy 1Fp 3+ Fp 4Fq_1Fr
+(n—p—g+2)(Fg—1Fp—2 + Fp_3Fy_1Fr_1).

Then
Z(P(p7 q’r)u’gn—p-—-g-l-Z) - Z(P(p - 1’ q)'r)uSﬂ—p—g+3)
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= (Fg+ Fg_2)Fp1+2Fg 1Fp_o+ Fp_3Fy_1F,_,
+(n —p—g+ 1)(F -1+ Fp—2Fq-1Fr-1)
—[(Fg + Fg_z)Fp_g + 2F, _le_a + Fp_4F 1 Fe
+(n—p—-g+ 2)(Fg_1Fp_2 + Fp..aF 15 _1)]
> 2Fg_2Fp_3 > 0.
So 2(P(p, §,7)uSn_p-g+2) > 2(P(p - 1,4, 721“Sn—p—g+3)-

Applying the above procedures repeatedly, we can obtain our desirable
result. 0

Let
flg,r) = 2V 9YYE FF. + Fy1Fy 1Fy1) + Fy_1Fy 1 Froy
+Fq_2Fq_2F.,-_2
ha,r) = (Fo+ Fy-2)Fg-1+2Fg-1Fg 2+ FgaFy1Fr1 +
(n-—q—g+1)(F 1 Fy_1+ F,_oF,_:F, _1) (23)
Lemma 2.7. Ifqg—r > 2,
(i; qu -1,r+ lg > fsq,r}.
(ii) h{g—1,7+1) < h(q,r).
Proof. Sinceq—r>2and r > 1, then ¢ > 3.
(i) By (2.3), we have

f(q -Lr+1) = 2n_q—g+2(Fq-—1F -1Frp1 + Fq—ZFq—2Fr) + Fq—2Fq—2Fr

Then

f(q_ 1,1"+1) _f(Q:"')

= VINE \Fy 1 Fryy + FyoFy oF,) + Fy_oFy o F,
+Fq_3Fq_3F -1 = [2n—q-g+1(FquFr + Fy 1 FyaFri)
+Fg1Fg1Fro1 + Fy_oFy_oF; ]

= 2"“"”9"'1(2F,,2_1F,.+1 + 2F,,2_2Fr - FfF,. — qu_lFr_l) + qu_zF,
_qu—lF -1+ Fq2_3F1-_1 - qu_zF,._g

> (2F2 \Fry1 +2F2 3F, —F2F, — F2 \F,_1)+ F2_ ,F, - F2_|F,_,

+Fq2 3F -1 qu_2F1-_2

= (F2_1Fr+1 + Fq2 lFi‘ + 2F¢]2—2F7' - F‘?Fr) + Fq2_2FT - F2_1F -1

+Fq2_3Fr_1 - FQ2_2F1-_2
= Fl\F+F Fo\+F2 F 5+2F2,F, - F!F, + F2 ,F,_,
+FZ 3Fr 1

= 2F; \F, +2F; ,F, — F2F, + F} ,F,_, + F2 3F,_,
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]

(2qu_1 + 2Fq2_2 bl qu)Fr + qu_zF -1 + Fq2_3F -1
(Fgey — Fq_z)zFr + F2_2F -1+ Fq2_3F -1

2 qu_gp -1>0.

(ii) By (2.4), we have
h(q -1,r+ 1) = (Fg + Fg_g)Fq_z + 2F, _1Fq._3 + Fq_4Fq_2Fr
+('ﬂ —-g—g-+ 1)(F _1Fq_2 + Fq_qu_.gF,-).

Then

h(qa 7‘) - h’(q -1,r+ 1)
= (Fg+ Fy_2)Fy1+2F;1Fq_ 2+ F43Fy_1Fry

+n—g—g+1)(Fg1Fy-1 + Fy2Fg1Fr1) — [(Fg + Fy-2)Fy—2
+2Fy_1Fy_3+ Fy_sFy2F +(n—q—g+1)(Fg-1Fy—2

+Fy_3F,_oF,))
2 Fq—aF 1F1>0.
As desired. a
Theorem 2.8. For any graph G € %Ps(n,g), we have
(i) i}G) <(P([%1, 157, [£]))uSn—[g1-g+2)- The equality holds if and only
i
G = P([21, 151,13 uSa-r1-542

(ii) 2(G) = 2(P([$1, (41, |§))uSn—131-g+2)- The equality holds if and
only if 9. g
G 2= P(121, 131, 15 ) uSnerg1-gv2

Proof. For any graph G € %Bs(n,g), it can be obtained from P(p,g,7) by
planting some trees to some vertices of P(p,q,r).
(i) Using Lemma 1.2 and 1.3 repeatedly, we can obtain that
i(G) < (P(p,q,7)TSn—p—g+2),
where z € V(P(p, q,7)). By Lemma 2.5 and 2.6, we have
i(G) < i(P(g, 4, TYuSn—g-g42)-

Repeated applying Lemma 2.7, wehave 0 < g—r < 1. Sinceq > r,q+r =g,
then ¢ =[] and 7 = | £]. Hence

i(G) < i(P(E1, 121, 5 )uSnrg1-042).

The equality holds if and only if G = P([4],[4], [§])uSn-rg1-g+2-
Similarly, we can prove (ii).
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By induction, it is easy to prove Lemma 2.9.

Lemma 2.9. For any integer n, then (i) F, > n if n > 0; (ii) 2" > Fo.s
ifn > 3.

Theorem 2.10. For any graph G € B(n, g), we have
(@) «G) <i(P([51, 141, L£])usS ~141-g+2)- The equality holds if and only
if
G = P(I21, 121, 12 DuSucigrgie

(i) 2(G) = 2(P([§1,[§1, |§))uSn_[81-g+2). The equality holds if and
only if

¢ = P31, 131, 2 Dusaip1gse
Proof. (i) By Theorem 2.2, 2.3 and 2.8, we have
i(G) < max{i(B(9, 0)uSn2g42), i(PZ1, 121, 12 ))uSu_g1-642)}.
By (2.1) and Lemma 2.4, we have
i(B(g, 9)uSn—2g42) = 2" WHF2 L F2 (2.4)
(P11, 151, 12 ))uSn—g-rg142)
= N FRy Fig) + Figy_(Flg)-1) + i Figo
+Fig1-2Fig)-2 (2.5)
Case 1. g is even. By (2.5) and (2.6), we have

i(P(5, 5 3VuS,_sp.42) — (B(9, 9)uSn—294)

2 ¥4UF] + F}_y)+ Fj_, + F§_,— [+ F2 1 FL

2"—29“[2%1?2 + 2*—"‘2_1 —-F+F_ + F§_,—F},

2EF§ +28F} | - F2+ F} +F§_,-F2,

[Fg42F§ + FgaF§_, — Fj1+ F§_, + F§_,— F2 y(by Lemma 2.9)

(Fg—1+2Fg)F§ + (Fg_, +2F3)Fj_, - (F§+F; )%+ F§_,

+Fg_,—Fo,

(Fg—1+Fy_o)*+Fg_ F§ +2FyF§_, —2F§F} | +F}_ +F}_,

—(F§ 1 +F3—2)2

= [(F§_y+F§_ o) +2Fg_1Fy o]+ Fg_,F} +2F3F}_, - 2F3F}_,
+Fg_y +F§_, — (F§_, + F§_,)

v v

474



= ((F§_1+F3_2)* +4Fy 1 Fy_o(F§_; + F§ o) +4F]_ F} )]
+F§_1F§ + 2FgF§_1(F§_1 —Fy)
+F_y+ F} o — (F§_y+ F} 5)

= 4Fg_ng...2 + 4Fg._1Fg_2 + 4F§_1Fg2__2 + F%—IFE + 2F%F§_l
—2F3F} \Fy o+ F}_ +F}_,

= 2F}  Fy (2Fy_ ) — Fg)+4Fg F} , +4F_\F§_,+F3_\F§
+2F§F§_1 + Fg—l + F§_2

= 2F} \Fy oFy 3+4Fg 1F}_,+4F}_\F§ ,+F3 . Fj
+2FgF}_\ +F}_,+Fj_,

> F§_;>0

Case 2. g is odd. Similar to case 1, we have

+1 g+1 1 P
z(P(g 7 g ) g yuS, ?J;ﬂ+2) —i(B(g, 9)uSn—2g+2)

_ 2,,__31.1.4.1(1;;21 ﬂ_—rl'l'F—‘ "%—“)+F“ 3_3_3+F_3 258

—[r2HIF2 4 F2,|
= "R (FL, Foot + F2y Faga) = F2)+ Fioa Facs
+F3_;_8 .'L'i'_s—Fg—-Z
ngé-_:ng_;_x_Fg_-ﬁ-_l'i-Fg_t_gFi;_l 35_3_(F152‘1F%'—‘+F31}1F3';'§)2
~(Faza Fags + Faga Faga)* + Fia Faga + Fira Facs

= (F‘*-l FE,?F o)+ (FoFags + Fusa Fiog = 2Fua Foo Faca)

> F?_;_ng%q > 0.

Then i(P([£], (41, |£])uSn—g_rg14+2) > i(B(g, 9)uSn-2¢+2)-
(ii) By Theorem 2.2, 2.3 and 2.8 and Lemma 2.9, we have

v

2(G) 2 min{2(B(g, 9)uSn-2g+2), (P51, T3], 13 YuSn_r41-542)}
By (2.2) and Lemma 2.4, we have

z(B(0,9)uSn—2g42) = (n—29+2)Fy_1Fy_1+4F,_1Fy (2.6)
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Ly

(hg - Bag— hag - hatad - o Ry havs
B PR ¥ R F s F B # A F L F =ikt =
("~ Ea — 20—
=g bg S - 1Bty + (o Ehy - Byt Eg <
[ R (1 + 5_39 —u) - 8=y -hy — efyg - TR+
=g 8g) S — 1By t-y + Bt (g + bg - W] Ey =
s Fzg— —u)— =B gi-f 7 —e-bp—
- J% ST L (R T Lt (AT et ¥ i
z—%-dl-g_,{(l + E —u)— e—%dl—éd e L
- 5‘.5“5& - %.:I“ av+ SR 0 (g + b‘z -u) =
R R (4 g~ ) — Ry Ry — Rty e+ 55—
- ""JI’-I- % (g +6¢ —u) + 82 (g + 65 — w)]'~ J}‘ <
Eha(i+ —5% —u) = g0 (1 + ﬁ% —u)-
e-ﬁdt—%d e-fg1-677 — 1—f 2677
E 10y — SRy + Ry + TR+ a - w) =
[(—RgT—Bg-hg+
- r1-80)(1 + Ezé —u)+ 1-Eyr-bye-dy 4 b p-bg4
(50 + )] — [y + O 0 (e 4 B - ) =
(+Hgn(E L L))z - (eroe-ugn(s0)g)e
aney om ‘(8°g) PUe (17) AQ Uand 51 6 ° 25D
(g) (-TELpt-LElge-LEly 4 =B r1-6,0) (1 +6 — lg | —u)+
=181 LBl ge- 8Ly + e-LBl 1607 4+ 1Bl (267 + 87) =

(B n(§ g gm =

(eHtEI-s-gn(1 €14\ &) € ) )e



= Fy[FyFy_y(Fy - 5)+ Fy1Fyo(Fg - 1)
+F}_ (4Fg —3)+2Fy_5(2F}_, — F3_5) > 0.
Case 2. gisodd. If g =3,

= g+1 g+1 g-—1
2(B(g, 9)uSn—2g+2) — 2(P( 5 g g )uSn_sJ#+2)=n—4>0,

since n > 2g — 1. If g > 5, we have

B9, 9)uSn-2042) — 2(P(I5—=, T5=, To)uS,_sapa 1)

-3
= (n—20+2)F2, — Fyo1Fazs — Fos %4]+9 (Fo1Fazs

2
+Fg_;3F3_;_1) + 4F, _1Fg_2 - (Fg + Fg_g)ng—_l - 2Fg_1Fg_;_:i
- ﬂ___51:'2_l

7T 5

> F2y+4Fy1Fo2— (Fy+ Fy2)Fam1 — 2F; 1Fos — _.,__rsF,?_;_l

= (ng_, + ng_a)z +4(F§1}, +F§;_,)(FH.T1F,5_3 + Fozs Fu_s)
~(Fagps Fazs + Faza oo + Fo1 Focs + Foca Focs ) Fana
~2(Fis + Fps)Faga — Fazs Fgﬁ__l

= (3FiaFugs —3Fa) + (4F s Fazs Fazs — 4F51 Fass)
HFip Fass — Faga FagoFage) + (Figs = Faa Faga)
+(2F3_;_,F§_5_3 — F2.1Fqs) +4FL;_1F§_;_3 +4F3 s Fas +F;‘_§_3

2
> F;‘_E_a>0.

Then z(B(g, g)uSn-2g+2) > 2(P([§1, [§1, 1§])uSn—g-rg142)- O
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