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Abstract
Kiihn and Osthus [2] proved that for every positive integer £,
there exists integer k(£) < 2'* - 3£2, such that the vertex set of every
graph G with §(G) > k(£) can be partitioned into subsets S and T
with the properties that 6(G[S]) 2 £ < 6(G[T]) and every vertex of
S has at least £ neighbors in T'. In this note, we improve the upper
bound to k(£) < 2% - 172,

Key words and phrases: Graph partitions; minimum degree.
AMS Subject Classifications (2000): 05C35, 05C75

Given a graph G, a partition of G is a famlly of pairwise disjoint subsets
Vi,..., Vi of V(G) such that V(G) = U5_, V. Graph partition problems
ask for a partition of a graph with various requirements.

Let S and T be a partition of a graph G. We use (S, T)¢ to denote the
bipartite subgraph of G consisting of the edges between S and T'. It is well
known that the minimum degree of the bipartite subgraph (S,T)¢ of G
can be greater than half the minimum degree of G. So it is an interesting
problem that whether G[S], G[T) and (S,T)¢ have large minimum degree
simultaneously. In [2], Kiihn and Osthus gave a negative answer to this
question (see Proposition 6 in [2]). In light of this negative result, one
may relax the constraints and ask that only one side of (S,T)¢ has large
minimum degree while both the minimum degree of G[S] and G[T] are
large. Kiihn and Osthus answered it affirmatively.

Theorem 1. (Kihn and Osthus [2]) For every £ € N, there exists an
integer k(£€) < 21 3£2 such that 6(G) 2 k(£) guarantees the existence of a
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partition of V(G) into S and T such that 6(G[S]) > £ < §(G[T)) and every
vertez of S has at least £ neighbors in T.

In this note, we improve Kiihn and Osthus’s bound, and prove the
following theorem.

Theorem 2. For each pair of positive integers s and t with s > t, there
ezists an integer k(s,t) < 17 - 24st such that 5(G) > k(s,t) guarantees
the ezistence of a partition of V(G) into S and T such that 6(G[S]) and
0(G(TY)) are at least s+ 1 and t, respectively, and every vertez in S has at
least t neighbors in T'.

The proof technique of Theorem 2 is the same as that used by Kiihn
and Osthus but with a much sharper analysis. All graphs considered in
this paper are finite, undirected and simple. For a graph, we denote by
V(G), E(G), d(G) and §(G) the vertex set, edge set, average degree and
the minimum degree of G, respectively. We use e¢(G) to denote the number
of edges in a graph G. For a vertex z € V(G), we use N(z) to denote the
neighbor set of z in G. For a subset S C V(G), we use G[S5] to denote the
subgraph of G induced by S, and use e(S) to denote the number of edges in
G|S]. For two disjoint subsets S and T of V(G), we use e(S,T) to denote
the number of edges in (S, T)¢.

In [3], Stiebitz proved that for integers s,t > 1, each graph G with
6(G) =2 s+t + 1 admits a partition of V(G) into S and T such that
6(G[S)) = s and 6(G[T]) > t. As per Proposition 1.2.2 of [1], each graph
G with d(G) > 2k has a subgraph of minimum degree at least & + 1.
Combining this result, we obtain the following conclusion in the spirit of
Lemma 10 of [2] by replacing 3¢ with s +¢ 4 1.

Lemma 3. Let G be a graph with §(G) > s+t+1, where s > t. Then V(G)
can be partitioned into two non-empty sets S and T such that §(G) > s,
0(G) > t and for every subgraph H C G[S] has average degree §(H) <
2(s +1t).

A technical lemma (Lemma 11) in [2] plays a very important role. With
the same argument as that of [2], we reduce the requirement on the mini-
mum degree of G from 28¢cfr to 23cér by a sharper analysis. This improve-
ment enables us to reduce the bound 21! - 3¢2 of Theorem 1 to 17 - 24¢2.

Lemma 4. Let ¢ > 2 be a real, k,¢,r be positive integers such that £ > v
and k > 23¢lr. Let G be a graph of minimum degree at least k and let
S,T be a partition of V(G) such that d(G[S]) > £, 6(G[T)) = r and every
subgraph of G[S] has average degree less than cf. Then there exists S’ C S
such that, writing T' = V(G)\S', every verter in S’ has at least r neighbors
inT", d(G[S"]) = ¢/8 and §(G(T")) > r. Moreover, T' can be obtained from
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T by successively adding vertices having at least r neighbors in the superset
of T already constructed.

Proof. We start by defining sets as in the proof of Lemma 11 of [2]. These
sets, shown in Fig. 1, are as follows: A = {a € S | |[N(a) N S| > 4ct},
C=S\A,B={beS|IN®O)NT| <7}, B'={be B||IN®B)NC|>r},
Ay = B\ B’ and A; = A\ Ay, C = Uzep' N, where N; C N(z) and
[Ne| =7, C'=C\C.

INB)ACL > r IN(b) O Az| > Tk/8
N\
A 42 BI Ai
I LA A
IN(a) N S| > 4t B 1 «——[NONT|<r

Figure 1: The set-up of the proof of Lemma 4.

We may suppose that A # @ and B # 0 (one can see more details in [2]).
By the definitions, we have e(A)+e(S) > 2e(A)+e(A4, C) > 4cl|A| > 8e(A),
i.e.

e(A) < @ (1)
Since §(G) > k > 23¢fr, k —r > 4cf, and thus B C A. By (1),
(k=r)IB| < 2(B)+e(S\B, B) < e(B)+¢(S) < e(4) +e(5) < 2. (2)

Let es(C) be the number of edges in G[S] which have at least one end in C.
Since each vertex of C has fewer than 4¢f neighbors in S, and k—7r > -lzécer
asc> 2,

es(C) < |B'|r-4ct < |Blr - 4c£ < 8e(S) oo < 526(S)

= 7(k—r) = 105 ° (3)

Where the third inequality follows equation 2.

Different from [2], replacing 1 with £, we define that A} = {a € 4, |
|N(a) N A2] > Z}. By an argument analgous to that in [2], there exists a
subset Aj of A, such that

(i) every vertex of A} has at least r neighbors in Aj, and
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() e(A3,C") < 2e(A,,C")/13.
Put T"=TUA, U4 UC, §'=V(G)\T'. Now, we show that G[)
has large average degree. If e(A4},C’) > %?, then

e(5') 2 e(Az \ A3, C') = e(42,C") — e(4},C") 2 %l'e(A'z,C') > eng)

Otherwise, e(45,C’) < %%2. Since ¢ > 2, k > 23cfr, and by (2),

e(41,0") < |Bfr < 7(k8_:r)e(s) = 7(161? = Siég)' (4)

And thus
e(S') > e(S) —e(A) —es(C) — e(A1,C") — e(43,C")

> o(s)- 20 Fe) 2B _B) 1y (1), (3) and (0
. 49)
),

Thus we obtain that d(G[S’]) > ¢/8 since d(G[S]) > ¢. Furthermore,
every vertex of S’ C S\ (B\ B’) has at least r neighbors in CUT C T",
and it is easy to show that §(G[T"]) > t. As for the final statement in the
lemma, we can verify the last claim of the Lemma similar as that in [2). n
Proof of Theorem 2. Since 16s +t + 1 < 17 - 16st, by Lemma 3, we may
partition V(G) into S”,T" such that §(G[S"]) > 16s, §(G[T"]) > t and
every subgraph of G[S”] has average degree less than 32s + ¢ < 34s. Ap-
plying Lemma 4 to the partition S”,T" with parameters £ = 16s, r = ¢
and ¢ = 4, we can find a partition S, T’ of V/(G) such that d(G[S"]) > 2s,
d(G[T"]) > t and each vertex of S’ has at least ¢ neighbors in 7. Since
d(G[S']) > 2s, G[S'] contains a subgraph H of minimum degree at least
8+ 1 (see Proposition 1.2.2 [1]). Then S = V(H),T = V(G)\ S is a
partition as required. |
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