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Abstract

In this paper, we present a unified and simple approach to ex-
tremal acyclic graphs without perfect matching for the energy, the
Merrifield-Simmons index and Hosoya index.
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1. Introduction

Let G = (V,E) be a simple connected graph. For a vertex v of G,
we denote the neighborhood and the degree of u by Ng(u) and dg(u),
respectively. Denote Ng[u] = Ng(u)U {u}. A pendant vertez is a vertex
of degree 1. The mazimum degree of G is denoted by A = A(G). We also
use G'—u or G — uv to denote the graph that arises from G by deleting the
vertex u € V(G) or the edge uv € E(G). Similarly, G + uv is a graph that
arises from G by adding an edge uv ¢ E(G), where u, v € V(G). A pendant
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chain PB =y - - - U5 Of the graph G is a sequence of vertices vy, vy, ++, s
such that vg is a pendant vertex of G, dg(v1) = - - - = dg(vs—1) = 2 (unless
s = 1) and dg(vs) > 3. We also call that v, and s the end-vertex and the
length of the pendant chain P?, respectively. If s = 1, then the pendant
chain P? is a pendant edge. If a graph G has components G;,Ga,...,G,
then G is denoted by U:=1 G;. We denote by P, the path of order =.

Let T be a tree. If there is a unique vertex u € V(T') such that dp(u) =
k > 3 and for any other vertex v € V(T), d(v) < 2, then we call that
T is a k-tree. Let T;;« (,5,k > 1) (see Figure 1) be a 3-tree such that
T 5k —uw = P; U P; U Py, where u is the vertex of degree 3.
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Figure 1

The Hosoya index 2(G) and the Merrifield-Simmons index o(G) of a
graph G are two prominent examples of topological indices which are of
interest in combinatorial chemistry. They are defined as the number of
matchings (independent edge subsets) and the number of independent ver-

tex subsets of a graph, respectively.

The Hosoya index was introduced by Hosoya [10] in 1971, and it turned
out to be applicable to several questions of molecular chemistry. For exam-
ple, the connections with physico-chemical properties such as boiling point,
entropy or heat of vaporization are well studied. Similar connections are
known for the Merrifield-Simmons index, introduced by Merrifield and Sim-

mons (18] in 1989. For detailed information on the chemical applications,
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we refer to [2, 4, 18, 20] and the references therein.

Let G be a graph of order n and A(G) the adjacency matrix of G. Then
the characteristic polynomial of A(G), denoted by ¢(G) = |zI — A(G)|,
is called the characteristic polynomial of G. The n roots of the equation
&(G) = 0, denoted by A, Az, ..., An, are called the eigenvalues of G. Since
A(G) is real and symmetric, all eigenvalues of G are real. The energy of G,
denoted by e(G), is defined as

o) = 3" IAil.

i=1
This concept was introduced by I. Gutman and is intensively studied in
chemistry, since it can be used to approximate the total w-electron energy

of a molecule (see, e.g., [3], [4]). It is well-known (see [4]) that for a bipartite

graph G of order n,
in/2}
$(G) = |zl — A(G)| = ) (=1)*(G, k)",
k=0

where b(G,k) is the number of k-matchings of G. Note that 2(G) =
Z,lci{) b(G, k). The energy of bipartite graph G can be expressed as the
Coulson integral formula (see [12])

L Ln/2]
e(G) =7 / Sin |1+ > HG, k)| .

k=1

—00
It is easy to see that e(G) is a strictly monotonously increasing function
of b(G, k). This fact inspired Gutman to define a quasiordering = or =< to
compare the energies for trees and further for a set of graphs. Let G, and

G> be two bipartite graphs of order n, whose characteristic polynomials are

n/2] /2]
$(G1) = 3 (~1)Fb(G1, k)™ and $(G2) = Y (~1)*b(Ga, k)z"~%.
k=0 k=0
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If b(G1, k) > b(Ge, k) holds for all k > 0, we call G; > G or G2 <X G;. If
G1 = G2 and there is a k such that b(Gy, k) > b(Ga, k), we call G; > Gs.
By the strict monotonicity of e(G) and the definition of 2(G), we have

if G1 = Ga, then e(G1) > e(G2) and z(G1) > z(G2);
if G; » G2, then e(Gl) > e(Gz) and Z(G1) > Z(Gz).

Recently, there are a lot of results on e(G), o(G) and z(G) (see [6}-
[9], [11]-[13], [15]-[17], [19], [21]-[31]). In [14], Li and Zheng put forward a
problem, which asked for a more unified approach that can cover extremal
result for as many as chemical indices as possible. Here, we present a
unified and simple approach to extremal tree without perfect matching for

the energy, the Merrifield-Simmons index and Hosoya. index.

Let 9, = {T : T is a tree of order n}. It had been shown that P, is the
unique extremal graph that has maximal energy, maximal Hosoya index
and minimal Merrifield-Simmons index in the set J},. Note that the path
P, contains no perfect matching if » is odd, and hence while studying the
extremal trees without perfect matching for these indices one need only
consider the case that the trees have even order. Let 9 = {T€ J, : T
contains no perfect matching and n is even}. In this paper, the maximal en-
ergy, maximal Hosoya index and minimal Merrifield-Simmons index of trees
in the set J;' are characterized. Moreover, the second maximal energy, the
second maximal Hosoya index and the second minimal Merrifield-Simmons

indexof trees in the set J, are also characterized.
2. Preliminaries

According to the definition of Merrifield-Simmons index, we immedi-

ately obtain the following results.
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Lemma 2.1 (see [4]). Let G be a graph and uv be an edge of G. Then
0(G) = (G — w) — 0 (G — (Ng[u] U Ng[])) .
Lemma 2.2 (see [4]). Let v be a vertex of G. Then
o(G) = o(G — v) + o(G — Ng[v]).

From Lemma 2.2, if v is a vertex of G, then o(G) > o(G —v).

Lemma 2.3 (see [4]). If G1,Ga,...,G; are the components of a graph
G, then o(G) = [I'-, 0(Gi).

Let F, be the nth Fibonacci number. Note that o(P,) = Fny1 and
2(P,) =F,. Since Fp=F, =1and F,, = F,_; + F,,_3 (n > 2), we have

FoFy0i — Foi oFn_9iva = —Fu_git1, (1)

Foiy1Fngic1— FoiaFroign = Faogia. (2)

From Lemmas 2.2, 2.3 and the fact o(P;) = Fj41, we can obtain the
following result by calculations.

Lemma 2.4. Let T; j x be a graph shown in Figure 1. Then

o(Ti5x) = FirrFj1 Fey1 + FiFFy.

Let Hy, H, be two connected graphs with V(H;) N V(Hz) = {v}. Let
G = HyvH, be a graph defined by V(G) = V(H;) U V(H;) and E(G) =
E(H;)U E(H,).

Lemma 2.5 [5]. Let G be a graph, and let P, = vivz---v, be a path
of order n. Then, forn=4k+1,i€ {-1,0,1,2}, k>1,

Pn’le' = P3G > --- > angk.HG - anng bl Pn'vzk_ga e Pn’sz'.

3. Operations

Now we first define three kinds of operations on graphs as follows.
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Let G be a graph with two pendant chains P? = uou; ---us (us =
w), P? =wvovy---v; (v = w), where w € V(G) and s, > 1 (see Figure 2).

(i) Set

G1 =G — wug—1 + Vous-1,

then we say that G; is obtained from G by Operation 1.
(i) Ifs>3,1>1but!+#2and

G2 = G — us_ous-3 + VoUs-—3,

then we say G» is obtained from G by Operation II.
(i) If s— ! >3 and

G3 = G — uyus + vous,

then we say Gj is obtained from G by Operation II1.

-1 VUp Ug—1 U1 YUp

.G s o ¢ O

G
V-1 V-2 U1 W

o Gr——

U
-

LI e Sy
Us_1Us_2 U3 U2
Gs

Figure 2

Lemma 3.1. If G; is obtained from G by Operation I, then
() G- G;
(%) o(G1) < o(G).
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Proof. (i) The proof follows by Lemma 2.5.

(ii) By Lemma 2.2, we have

o(G) — o(G1)
= 0(G ~w) +0(G - Ng[w]) - 0(G1 —w) — ¢(G1 — Ne, [w])
= FonrFip10(H — w) + FsFio(H — Ny (w))

—Fyy1410(H — w) — Fypio(H — Ny[w])

= (Fet1Fi41 — Foprp1)o(H — w) + (FoFy — Foi)o(H — Ny (w])

= Fs_1Fi_1(o(H —w) — o(H — Ng[w])) > 0.

Lemma 3.2. If G5 is obtained from G by Operation 11, then
(%) G2 > G;
(i) o(G2) < 0(G).

Proof. (i) The proof follows by Lemma 2.5.

(ii) If I, s > 3, then

a(G) (G — w) + o(G — Ng[w]),
= F,1F10(H —w) + F.Fio(H — Ng[w))
O'(Gg) = O'(G2 bl w) - O'(Gz - NG2 [w])

= F3Fs+l_1o'(H — w) + F2F3+1_20'(H - NH[w]).
Hence

0(G) —0(G2) = (Fo1Fi41 — F3Fsqi1)o(H — w)
+H(FsF, — FoFoqi-2)o(H — Ny[w])
F,_3F,_3lo(H —w) — o(H — Ng[w])] > 0.

Ifl=1,s >3, then

0(G) = o(G—w)+0(G~ Nglw)])
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= Fep1Foo(H —w) + Fso(H — Nylw)])
O'(Gz) = O'(G2 - 'w) + 0'(02 - NGa [w])
= F3F,0(H — w) + FoFy_10(H — Ng[w)).

Thus
o(G) — 0(Gz)
= (ForrFs — FaF)o(H — w) + (Fs — FyFe_1)o(H — Nig[ul])
= Fs_3lo(H —w)—o(H — Ng[w])] > 0. ]

Lemma 3.3. If G3 is obtained from G by Operation I1I andl is odd,
then

(i) Gs > G;
(ii) o(Gs) < o(G).
Proof. (i) The proof follows by Lemma 2.5 and ! # 2.
(if) Since ! is odd, ! 4+ 2 is odd and I + 1, I + 3 are even. Thus by (1)
and (2),
FiysFoy — FipaFopn = —Fsa,
FyoF; o —FRF, = F,_ ;3.
By Lemma 2.2, we have
a(G) — a(Gs)
= 0(G - w) +0(G — Ng[w]) — 0(G3 — w) — 0(Gs — Ng,[w))
= o(H —w)(Fi41Fs41 — Fiy3Fs-1)
+o(H — Np[w])(FiFs — Fi32F,-2)
— [o(H = w) - o(H = Nuluwl)] Fauis > 0. .

4. Main Results
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By Lemmas 3.1 and 3.2, we first obtained the following result.
Theorem 4.1. Let T € I, \ {Prn,T2,2,n-5}, n > 6. Then

(i) Toon-s>T;

(i) a(T) > o(T2,2,n-5)-
Proof. We only give the proof of (ii) here. The proof of (i) is similar.
We choose T' € F,\{Pn, T2,2,n—5} such that o(T) is as small as possible.

First we show the following result.
Claim A. T is a k-tree, 3 < k < A.

Proof of Claim A. Since T' ¢ P,,, T has maximum degree A = A(T) >
3. Thus there is a vertex u € V(T') with dp(u) =k and 3< k < A.

Let V/(T) ={v : ve V(T) - {u}, 2 <dr(v) < A}.
If V/(T) # 0, then let w € V/(T") with dp(w) = s > 3. By Lemma 3.1,
we can obtain a tree T* from T by Operation [ such that o(T™) < o(T'), a

contradiction with our choice. Therefore V/(T) =0, i.e., T is a k-tree. =

Note that a (k — 1)-tree can be obtained from a k-tree by Operation I,
and hence, by Lemma 3.1 and Claim A, T is a 3-tree.

Since T' % To,2,n—5 and T2 2,n—5 can be obtained from a 3-tree by Op-

eration II at most twice, we have (T2 2n—5) < 0(T) by Lemma 3.2. =

Lemma 4.2. Let T; jx be a graph shown in Figure 1. If k—j > 2 and

j is odd, then
() Tij+2,k—2 > Tijks
(%) o(Tij+2.k-2) < 0(Tijk)-
Proof. The lemma follows by Lemma 3.3. n

Lemma 4.3. Let T be a tree of order 2k with A >3 and V/(T)={v €
V(T) : 2<dr(v) < A} #0. If there is only one odd component of T — v
Jor any v € V/(T'), then T has a perfect matching.
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Proof. @ We proceed by induction on &k > 3. If k. = 3, then T €
{T1,2,2, K1,5, 54}, where Sy is a tree of order 6 obtained from K, 4 by at-
taching a vertex to one pendant vertex of K 4. It is easily checked that
T = Ty22 and thus T has a perfect matching. We now suppose that
k > 4 and the result holds for smaller than k. Since there is only one
odd component of T' — v for any v € V'(T'), every vertex of V is adjacent
to at most one pendant vertex. Let P = upu;...us be a longest path in
T. Then dr(up) = 1, dp(v1) = 2, dr(us) = 1 and dr(us—1) = 2. Let
T* =T - {uo,u1} and T** = T — {u,,us—1}. Then [V(T*)| = 2(k - 1),
[V(T**)] = 2(k — 1) and V'(T™) # @ or V/(T**) # 0@ as k > 4. Assume,
without loss of generality, that V/(T™*) # 0. By the induction hypothesis,
T* has a perfect matching M’. Let M = M’ U {ugu,}. Then it is easy to
see that M is a perfect matching in T". Therefore the proof of the lemma

is complete. (]

Note that if ¢k and i+ j+ k& +1 are even, then the 3-tree T} ; x contains
perfect matching. Thus we may assume that 5k is odd. Let T} be a 3-tree
Tk with |i — §| < 2, | — k| £ 2 and |k — 4| < 2. In Figure 3, we have
drawn Tg, T}, and T7,.

D e D e

Iy T T,
Figure 3
Theorem 4.4. Let T € I\ {T;}, n>4. Then
() T >T;
(i) o(Ty) < o(T).
Proof. We only give the proof of (i) here. The proof of (ii) is similar.
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SinceT € I, T % P,. Thus A(T) >23. Let V!(T) = {v e V(T) : 2<
dr(v) < A}. Then V/(T) 5 9. If there is only one odd component of T'— v
for any v € V/(T'), then, by Lemma 4.3, T has a perfect matching. This
contradicts to T € J,*. Thus we can assume that there are at least three
odd components of T' — v for some vertex v € V/(T). By an argument
similar to the proof of Theorem 4.1, there is a 3-tree T; j «, ¢jk is odd, such
that T jx > T. Note that T ;x € 7. when ijk is odd. Since T ;x # T,
we may assume that k > j+ 2 > 3 and n > 6. Since ijk is odd, we
have i(j + 2)(k — 2) is odd. Thus T jiok-2 € ;. So, by Lemma 4.2,
T:j+2k—2 > Tijk If Tijeok—2 ¥ Ty, then, repeating the above step, we
obtain

Trx=->Tjpok—2>Tije=T.

Therefore the proof of the theorem is complete. n
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