Integer-Magic Spectra of Sun Graphs

Chin-Mei Fu, Nan-Hua Jhuang and Yuan-Lung Lin Department of Mathematics, Tamkang University, Tamsui, Taipei County 25137, Taiwan, R.O.C.

October 11, 2011

Abstract

Let N be the set of all positive integers, and $Z_n = \{0, 1, 2, \cdots, n-1\}$. For any $h \in \mathbb{N}$, a graph G = (V, E) is said to be Z_h -magic if there exists a labeling $f: E \to Z_h \setminus \{0\}$ such that the induced vertex labeling $f^+: V \to Z_h$, defined by $f^+(v) = \sum_{uv \in E} f(uv)$, is a constant map. The integer-magic spectrum of G is the set $IM(G) = \{h \in \mathbb{N} | G \text{ is } Z_h\text{-magic } \}$. A sun graph is obtained from attaching a path to each pair of adjacent vertices in an n-cycle. In this paper we showed that the integer-magic spectra of sun graphs are completely determined.

1 Introduction

Let G = (V, E) be a connected simple graph. Let A be a nontrivial abelian group with identity 0. A mapping $f : E \to A \setminus \{0\}$ is called an edge labeling of G. Any such labeling induces a map $f^+ : V \to A$, defined by $f^+(v) = \sum_{uv \in E} f(uv)$ for each $v \in V$. If there exists an edge labeling f whose induced map f^+ on V is a constant map, then f is an A-magic labeling and G is an A-magic graph. The corresponding constant is called an A-magic value. If $A = Z_h$, then we call G Z_h -magic or h-magic in short. The integer-magic spectrum of G is the set $IM(G) = \{h \in \mathbb{N} | G \text{ is } h$ -magic $\}$, where \mathbb{N} is the set of all positive integers. By convention, Z-magic graphs are considered to be Z_1 -magic.

The original concept of an A-magic graph is due to J. Sedláček [11,12], who defined it to be a graph with a real-valued edge labeling such that (i) distinct edges have distinct nonnegative labels, and (ii) the sum of the

^{*}This research is supported by NSC 98-2115-M-032-005-MY3.

Email: cmfu@webmail.tku.edu.tw †Email: samzhung@pchome.com.tw

labels of the edges incident to a particular vertex is the same for all vertices. A characterization of magic graphs is given by Jenzy and Trenkler [4]. A graph G is called non-magic if G is not A-magic for any abelian group A. Some classes of non-magic graphs are presented in [1]. Z-magic graphs were considered by Stanley [14,15]. Recently, there has been considerable amount of research articles on graph labeling. Interested readers can refer to [2,16]. Research related to IM(G) can be found in [5 \sim 10]. The aim of this paper is to find the integer-magic spectra of sun graphs.

2 Definitions and Preliminaries

Let $m \geq 3$ and $t \geq 2$. An m-cycle C_m with vertices v_1, v_2, \cdots, v_m and edges $v_1v_2, v_2v_3, \cdots, v_mv_1$ is denoted by (v_1, v_2, \cdots, v_m) . A t-path P_t with vertices u_1, u_2, \cdots, u_t and edges $u_1u_2, u_2u_3, \cdots, u_{t-1}u_t$ is denoted by $\langle u_1, u_2, \cdots, u_t \rangle$. A graph is called a $sun\ graph$ of $index\ n$ if it is formed by attaching a path of length at least 2 to the end vertices of each edge of an n-cycle. Let $C_n = (v_1, v_2, \cdots, v_n)$ and for each $i, 1 \leq i \leq n$, let $H_i = \langle u_{i,1}, u_{i,2}, \cdots, u_{i,t_{i+1}} \rangle$ be a path of length $t_i \geq 2$. For each $i = 1, 2, \cdots, n$, attach H_i to the cycle C_n by identifying v_i and v_{i+1} with $u_{i,1}$ and $u_{i,t_{i+1}}$ respectively, we obtain a sun graph with index n and parameters (t_1, t_2, \cdots, t_n) , denoted by $C_n(t_1, t_2, \cdots, t_n)$. It is easy to see that a sun graph $C_n(t_1, t_2, \cdots, t_n)$ can be partitioned into n edge-disjoint cycles $H_i \cup \{v_i v_{i+1}\}$ of length $t_i + 1$.

In this paper, if f is an A-magic labelling of $C_n(t_1,t_2,\cdots,t_n)$ with A-magic value m, for some abelian group A, we define $f(v_iv_{i+1})=x_i$ if $v_iv_{i+1}\in E(C_n)$ and $f(u_{i,j}u_{i,j+1})=y_{i,j}$ if $u_{i,j}u_{i,j+1}\in E(H_i)$, for each $j=1,2,\cdots,t_{i-1}$ and $i=1,2,\cdots,n$. Then $x_i,y_{i,j}\in A\setminus\{0\}$ and the following conditions hold:

$$\begin{cases} y_{i,j} + y_{i,j+1} = m \\ x_i + x_{i+1} + y_{i,t_i} + y_{i+1,1} = m \end{cases}$$
 (*)

In [13], Shiu and Low obtained the following result.

Theorem 2.1. ([13]) Let $G = C_n(t_1, t_2, \dots, t_n)$. If n is even and $t_i \geq 1$, then $IM(G) = \mathbb{N}$.

Since $C_n(t_1,t_2,\cdots,t_n)$ is an even graph, there is an eulerian circuit e_1 , e_2,\cdots,e_p , where $p=|E(C_n(t_1,t_2,\cdots,t_n))|$, passing through all edges of $C_n(t_1,t_2,\cdots,t_n)$. Let g be an Z_h -magic labeling of $C_n(t_1,t_2,\cdots,t_n)$. If p is even, then define $g(e_i)=a$ and $g(e_{i+1})=-a$ where $a\in Z_h\setminus\{0\}$. Then we have a labeling of $C_n(t_1,t_2,\cdots,t_n)$ which is h-magic with magic value 0. Thus we have the following result.

Lemma 2.2. Let $G = C_n(t_1, t_2, \dots, t_n)$. If n is odd and $\sum_{i=1}^n t_i$ is odd, then $IM(G) = \mathbb{N}$.

Next we consider the case when n is odd and $\sum_{i=1}^{n} t_i$ is even. From [13], we have the following:

Lemma 2.3. ([13]) Let $G = C_n(t_1, t_2, \dots, t_n)$. If n is odd and $t_i \in 2\mathbb{N}$, then $IM(G) = \mathbb{N} \setminus \{3\}$.

A vertex of degree k is called a k-vertex. Suppose u and v are two adjacent 2-vertices of G. Let w be another vertex adjacent to v. Let $G|_{u,v}$ be the graph obtained from G by deleting two edges uv and vw and identifying u and w. In [13], Shiu and Low used this shrinking technique to prove the following result.

Theorem 2.4. ([13]) Let A be an abelian group and G a graph, where u and v are two adjacent 2-vertices of G. Then G is A-magic with A-magic value m if and only if $G|_{u,v}$ is A-magic with A-magic value m.

From the above result, any sun graph $G = C_n(t_1, t_2, \dots, t_n)$ can be shrunk to a sun graph $G' = C'_n(t'_1, t'_2, \dots, t'_n)$ where $t'_i \in \{2, 3\}$ for each i such that the integer-magic spectrum of G is equal to the integer-magic spectrum of G'. Thus in what follows we will consider the sun graph $C_n(t_1, t_2, \dots, t_n)$ where $t_i = 2$ or 3, for each $i = 1, 2, \dots, n$. Let $\psi_2(G) = \{i | t_i = 2\}$ and $\psi_3(G) = \{i | t_i = 3\}$. The final case that we need to consider is that $|\psi_2(G)|$ is odd and $|\psi_3(G)|$ is even with $n \geq 2$.

Lemma 2.5. ([13]) Let $G = C_n(t_1, t_2, \dots, t_n)$. If n is odd with $n \ge 5$ and $\sum_{i=1}^n t_i$ is even, then G is not Z_3 -magic for $|\psi_2(G)| = 3$, 5, or 7.

After this result, Shiu and Low[13] gave a conjecture:

Conjecture A. Let $G = C_n(t_1, t_2, \dots, t_n)$. If n is odd with $n \geq 5$ and $\sum_{i=1}^n t_i$ is even, then G is not Z_3 -magic for $|\psi_2| \geq 9$.

3 Main results

In this section, we try to show that Conjecture A is true for the sun graph of index n, $C_n(t_1, t_2, \dots, t_n)$, with $t_i \in \{2, 3\}$ for each $i = 1, 2, \dots, n$.

Lemma 3.1. Let n be odd and $G = C_n(t_1, t_2, \dots, t_n)$ with $\sum_{i=1}^n t_i$ even. If $3 \in IM(G)$, then G is Z_3 -magic with magic value 0.

Proof. Suppose G is Z_3 -magic with magic value 1 or 2. If G is Z_3 -magic with magic value 1, then each $y_{i,j}$ must be 2 for $1 \le j \le t_i$ and $x_i + x_{i+1} \equiv 0 \pmod{3}$ for $1 \le i \le n$. Similarly, if G is Z_3 -magic with magic value 2, then

each $y_{i,j}$ must be 1 for $1 \le j \le t_i$ and $x_i + x_{i+1} \equiv 0 \pmod{3}$ for $1 \le i \le n$. Without loss of generality, we may assume that $x_1 = 1$, then $x_i = 1$ for i odd and $x_i = 2$ for i even. Since n is odd, it results in $x_n + x_1 \equiv 2 \pmod{3}$ contradicting $x_i + x_{i+1} \equiv 0 \pmod{3}$.

Figure 1. Labeled $C_3(2,3,3)$

Lemma 3.2. $IM(C_3(2,3,3)) = 2\mathbb{N}$.

Proof. Let $C_3(2,3,3)$ be Z_h -magic for some positive integer h with the magic value m. We label $C_3(2,3,3)$ as in Figure 1. Since $y_{2,1}+y_{2,2}=y_{2,2}+y_{2,3}=m$, we have $y_{2,1}=y_{2,3}$. Similarly, $y_{3,1}=y_{3,3}$. Since $x_1+y_{1,2}+x_2+y_{2,1}=m=x_2+y_{2,3}+x_3+y_{3,1}$, we get $x_1+y_{1,2}=x_3+y_{3,3}$. Since $x_3+y_{3,3}+x_1+y_{1,1}=m$ and $y_{1,1}+y_{1,2}=m$, it implies $2x_1\equiv 0\pmod h$. Thus h should be a multiple of 2, i.e, $IM(G)\subseteq 2\mathbb{N}$. If we label each edge with h/2, we will get a Z_h -magic labelling of $C_3(2,3,3)$. Therefore we have $IM(G)=2\mathbb{N}$.

Let $G=C_n(t_1,t_2,\cdots,t_n)$ be a sun graph of index n. Then G can be partitioned into n edge disjoint cycles and each cycle contains exactly one edge of C_n . The sun graph $G'=C_{n-(j-i)}(t_1,t_2,\cdots,t_{i-1},t_j,\cdots,t_n)$ of index n-(j-i) is derived from G by deleting the cycles which contain one of the edges in $\{v_iv_{i+1},\ v_{i+1}v_{i+2},\ \cdots,\ v_{j-1}v_j\}$ and identifying two vertices v_i and v_j . Thus if n-cycle in G is $C_n=(v_1,v_2,\cdots,v_n)$, then the n-(j-i)-cycle in G' is $(v_1,v_2,\cdots,v_i,v_{j+1},v_{j+2},\cdots,v_n)$. In short, we will just say that $G=C_n(t_1,t_2,\cdots,t_n)$ with $C_n=(v_1,v_2,\cdots,v_n)$ is shrunk to $G'=C_{n-(j-i)}(t_1,t_2,\cdots,t_{i-1},t_j,\cdots,t_n)$ with the n-(j-i)-cycle in G' being $(v_1,v_2,\cdots,v_i,v_{j+1},v_{j+2},\cdots,v_n)$.

Lemma 3.3. Let n be odd with $n \geq 5$ and $\sum_{i=1}^{n} t_i$ is even. If there exists k, $1 \leq k \leq n$ such that $t_k = t_{k+1} = 3$, then $G = C_n(t_1, t_2, \dots, t_n)$ is Z_h -magic if and only if $G' = C_{n-2}(t_1, t_2, \dots, t_{k-1}, t_{k+2}, t_{k+3}, \dots, t_n)$ is Z_h -magic.

Proof. Let f be the magic labelling of G as in (*). If $G=C_n(t_1,t_2,\cdots,t_n)$ is Z_h -magic with magic value m and there exists $k,1\leq k\leq n$ such that $t_k=t_{k+1}=3$, then we have $y_{k,1}=y_{k,3}$ and $y_{k+1,1}=y_{k+1,3}$. From the following equalities: $x_{k-1}+y_{k-1,t_{k-1}}+x_k+y_{k,1}=m,\ x_k+y_{k,3}+x_{k+1}+y_{k+1,1}=m,\ \text{and}\ x_{k+1}+y_{k+1,3}+x_{k+2}+y_{k+2,1}=m,\ \text{we obtain that}\ x_{k-1}+y_{k-1,t_{k-1}}+x_{k+2}+y_{k+2,1}=m.$ Thus we delete the two cycles which contain one of the edges in $\{v_kv_{k+1},v_{k+1}v_{k+2}\}$ and identify the two vertices v_k and v_{k+2} in G. We obtain $G'=C_{n-2}(t_1,t_2,\cdots,t_{k-1},t_{k+2},t_{k+3},\cdots,t_n)$ with (n-2)-cycle $C_{n-2}=(v_1,v_2,\cdots,v_k,v_{k+3},v_{k+4},\cdots,v_n)$. Define a labelling f' of G' as f'(e)=f(e) for e an edge of G'. Then f' is an h-magic labelling of G' with magic value m.

Let $G'=C_{n-2}(t_1,t_2,\cdots,t_{n-2})$ be a sun graph with (n-2)-cycle $C_{n-2}=(v_1,v_2,\cdots,v_{n-2})$ and the attaching path to the edge v_iv_{i+1} be H_i with length t_i . If G' is Z_h -magic with magic value m, let f' be the magic labelling of G' as in (*), then $x_i+y_{i,t_i'}+x_{i+1}+y_{i+1,1}=m$, for each $i=1,2,\cdots,n-2$. Consider the graph $G=C_n(t_1,t_2,\cdots,t_i,3,3,t_{i+1},\cdots,t_{n-2})$ with n-cycle $C_n=(v_1,v_2,\cdots,v_i,v_{i+1},w,v_{i+1}',v_{i+2},\cdots,v_{n-2})$ where the path H_{i+1} is attached to the edge $v_{i+1}'v_{i+2}$ and the paths $\langle v_{i+1},v_{i+1,2},v_{i+1,3}',w\rangle$ and $\langle w,u_{i+2,2}',u_{i+2,3}',v_{i+1}'\rangle$ are attached to the edges $v_{i+1}w$ and wv_{i+1}' respectively. Define a labelling f of G as follows: f(e)=f'(e) for e an edge of G',

$$\begin{cases} f(v_{i+1}w) = f(v'_{i+1}v_{i+2}) = x_{i+1}, f(wv'_{i+1}) = x_i \\ f(v'_{i+1}u_{i+1,2}) = y_{i+1,1}, f(v_{i+1}u'_{i+1,2}) = f(u'_{i+1,3}w) = y_{i+1,1} \\ f(u'_{i+1,2}u'_{i+1,3}) = m - y_{i+1,1}, f(wu'_{i+2,2}) = f(u'_{i+2,3}v'_{i+1}) = y_{i,t_i} \\ f(u'_{i+2,2}u'_{i+2,3}) = m - y_{i,t_i}. \end{cases}$$

Then f is an h-magic labeling of G. Therefore G is Z_h -magic. \Box

From Lemma 3.3, we can reduce $G = C_n(t_1, t_2, \dots, t_n)$ to a new $G' = C_m(t'_1, t'_2, \dots, t'_m)$ such that m is odd and $t'_i + t'_{i+1} \in \{4, 5\}$ for each i and $|\psi_2(G')| > |\psi_3(G')|$.

From Lemma 3.2 and Lemma 3.3 we have the following result.

Theorem 3.4. If k is odd, then $IM(C_k(2,3,3,\dots,3)) = 2\mathbb{N}$.

Next, we consider the case that there are at least three paths of length 2 attached to the edges of the cycle.

Lemma 3.5. Let $G = C_n(t_1, t_2, \dots, t_n)$ where $t_i + t_{i+1} \in \{4, 5\}$ for each i and $|\psi_2(G)| > |\psi_3(G)|$. If n is odd and $|\psi_2(G)|$ is odd with $|\psi_2(G)| \geq 3$, then $3 \notin IM(G)$.

Proof. From Lemma 2.5, $3 \notin IM(C_n(t_1, t_2, \dots, t_n))$ for n odd, $t_i \in \{2, 3\}$ for each i, and $|\psi_2|$ is 3, 5, or 7. Suppose that there is a \mathbb{Z}_3 -magic labelling f for $G = C_n(t_1, t_2, \dots, t_n)$ and $|\psi_2(G)| = k, k > 7$. Since n is

odd and $|\psi_2(G)|$ is odd, $\sum_{i=1}^n t_i$ is even. By Lemma 3.1, the magic value must be zero. Thus $x_i, y_{i,j} \in \{-1,1\}, x_i + y_{i,t_i} + x_{i+1} + y_{i+1,1} = 0$ and $y_{i,j} + y_{i,j+1} = 0$ for $1 \le i \le n$ and $1 \le j \le t_i - 1$. Consider the cardinality of $\psi_3(G)$. By Lemma 2.3 we know that $|\psi_3(G)| > 0$, that is $|\psi_3(G)| \geq 2$. From the definition of $G = C_n(t_1, t_2, \dots, t_n)$, we know that $\psi_3(G)$ contains no consecutive integers. Then there exists some j such that $(t_j, t_{j+1}, t_{j+2}, t_{j+3}) = (2, 2, 3, 2)$ and the graph can be labelled as in Figure 2.

Figure 2

From this labeling of G, we can apply the reduction process to obtain new sun graphs as follows.

(i) if $x_j = a$ and $y_{j,1} = -a$ where $a \in \{-1,1\}$, then we can get a subgraph of G labelled as in Figure 3, where $b, c, d \in \{-1, 1\}$. If we shrink the sun graph G of index n to a sun graph $G' = C_{n-2}(t_1, t_2, \dots, t_{j-1}, t_{j+2}, \dots, t_{j-1}, \dots, t_{$ \cdots, t_n) of index n-2 with (n-2)-cycle $C_{n-2}=(v_1, v_2, \cdots, v_j, v_{j+3}, v_{j+3}, \cdots, v_n)$ v_{j+4}, \dots, v_n), then $|\psi_2(G')| = |\psi_2(G)| - 2$ and G' is Z_3 -magic.

Figure 3

(ii) if $x_j = a$ and $y_{j,1} = a$ where $a \in \{-1,1\}$, then we obtain a subgraph of G labelled as in Figure 4.

Figure 4

If $t_{j+4} = 3$, then we can get a subgraph of G labelled as in Figure 5, where $b, c, d \in \{-1, 1\}$. If we shrink the sun graph G of index n to a sun graph $G' = C_{n-4}(t_1, t_2, \dots, t_j, t_{j+5}, \dots, t_n)$ of index n-4 with (n-4)-cycle $C_{n-4} = (v_1, v_2, \dots, v_{j+1}, v_{j+6}, v_{j+7}, \dots, v_n)$, then $|\psi_2(G')| = |\psi_2(G)| - 2$ and G' is Z_3 -magic.

Figure 5

If $t_{j+4} = 2$ and $t_{j+5} = 2$, then we can get a subgraph of G labelled as in Figure 6, where $b, c, d \in \{-1, 1\}$. If we shrink the sun graph G of index n to a sun graph $G' = C_{n-2}(t_1, t_2, \dots, t_{j+3}, t_{j+6}, t_{j+7}, \dots, t_n)$ of index n-2 with (n-2)-cycle $C_{n-2} = (v_1, v_2, \dots, v_{j+4}, v_{j+7}, v_{j+8}, \dots, v_n)$, then $|\psi_2(G')| = |\psi_2(G)| - 2$ and G' is Z_3 -magic.

Figure 6

If $t_{j+4} = 2$ and $t_{j+5} = 3$, then $t_{j+6} = 2$. we can get a subgraph of G labelled as in Figure 7, where $b, c, d \in \{-1, 1\}$. If we shrink the sun graph G of index n to a sun graph $G' = C_{n-6}(t_1, t_2, \dots, t_j, t_{j+7}, \dots, t_n)$ of index n-6 with (n-6)-cycle $C_{n-6} = (v_1, v_2, \dots, v_{j+1}, v_{j+8}, v_{j+9}, \dots, v_n)$, then $|\psi_2(G')| = |\psi_2(G)| - 4$ and G' is Z_3 -magic.

Figure 7

If $|\psi_2(G')| > 7$, we can keep doing the above reduction until $|\psi_2(G)| \le 7$, then we will get a contradiction to the result in *Lemma* 2.5. Therefore, The proof is complete.

The above Lemma showed that Conjecture A is true. Next, we will show that $C_n(t_1, t_2, \dots, t_n)$ can be Z_h -magic labelled for h > 3.

Lemma 3.6. Let n be odd and $G = C_n(t_1, t_2, \dots, t_n)$ and $|\psi_2(G)|$ is odd with $|\psi_2(G)| \geq 3$, then $IM(G) \supseteq \mathbb{N} \setminus \{3\}$.

Proof. Let $|\psi_2(G)| = \kappa$. If $i_1, i_2, \cdots, i_{\kappa} \in \psi_2(G)$ and $i_1 < i_2 < \cdots < i_{\kappa}$. Since $t_i \in \{2,3\}$ and $t_i + t_{i+1} = 4$ or 5 for each i, the difference $i_{r+1} - i_r = 1$ or 2. Let $H'_k = H_k \cup \{v_k v_{k+1}\}$, for each k. Then H'_k is a 3-cycle or 4-cycle. Since κ is odd, we can partition the set $\psi_2(G) \setminus \{i_1, i_2, i_3\}$ into two element subsets $\{i_t, i_{t+1}\}, t = 4, 6, 8, \cdots, \kappa - 1$. Corresponding to this partition, we define graphs $I_1 = H'_{i_1} \cup H'_{i_1+1} \cup \cdots \cup H'_{i_3}, \ I_2 = H'_{i_4} \cup H'_{i_4+1} \cup \cdots \cup H'_{i_{\kappa}}.$ Then G is partitioned into edge disjoint graphs $I_1, I_2, \cdots, I_{(\kappa-1)/2}$ and some 4-cycles. The graph I_1 is one of the graphs in Figure 8 and $I_k, k > 1$, is one of the graphs in Figure 9. We can give a magic labelling with magic value 0 for the graphs in Figure 8 and Figure 9, and the remaining 4-cycles labelled by $x_i = 1, y_{i,1} = -1, y_{i,2} = 1, y_{i,3} = -1$. Hence G has a Z_h -magic labelling with magic value 0 for h > 3. Since G is an even graph, G is Z_2 -magic. Therefore, $IM(G) \supseteq \mathbb{N} \setminus \{3\}$.

Combining Lemma 3.5 and Lemma 3.6, we have the following result.

Proposition 3.7. Let n be odd and $G = C_n(t_1, t_2, \dots, t_n)$. Then $IM(G) = \mathbb{N} \setminus \{3\}$ provided $|\psi_2(G)| \geq 3$ is odd.

Combining the above results, we have shown the following:

Theorem 3.8. Let $G = C_n(t_1, t_2, \dots, t_n)$ be a sun graph of index n and $\psi = \{i | t_i \text{ is even}\}$. Then

- (a) $IM(G) = \mathbb{N}$ if n is even;
- (b) $IM(G) = \mathbb{N}$ if n is odd and $\sum_{i=1}^{n} t_i$ is odd;
- (c) $IM(G) = 2\mathbb{N}$ if n is odd, $|\psi| = 1$, and $\sum_{i=1}^{n} t_i$ is even;
- (d) $IM(G) = \mathbb{N} \setminus \{3\}$ if n is odd, $|\psi| > 1$, and $\sum_{i=1}^{n} t_i$ is even.

Acknowledgement

The authors wish to thank the reviewer for his very valuable advice and constructive criticism.

References

- G. Bachman and E. Salehi, Non-magic and K-Nonmagic graphs, Congressus Numerantium 160 (2003), 97-108.
- [2] J. Callian, A Dynamic Survey in Graphs Labeling (ninth edition), *Electron. J. Comb.* (2005).
- [3] R. Fruncht and F. Harary, On the Corona of Two Graphs, Aeuationes Mathematicae 4 (1970), 322-325.
- [4] S. Jezny and M. Trenkler, Characterization of Magic Graphs, Czech. Math. J. 33 (108), (1983), 435-438.
- [5] S.-M. Lee and E. Salehi, Integer-Magic Spectra of Amalgamations of Stars and Cycles, *Ars Comb.* 67 (2003), 199-212.
- [6] S.-M. Lee, E. Salehi, and H. Sun, Integer-Magic Spectra of trees with Diameter at most Four, *JCMCC* 50 (2004), 3-15.
- [7] S.-M. Lee and H. Wong, On Integer-Magic Spectra of Power of Paths, JCMCC 42 (2002), 187-194.

- [8] S.-M. Lee and E. Salehi, Integer-Magic Spectra of Functional Extension of Graphs, JCMCC 64 (2008), 127-139.
- [9] R.M. Low and S.-M. Lee, On the Integer-Magic Spectra of Tessellation Graphs, Australas. J. Comb. 34 (2006), 195-210.
- [10] E. Salehi, Integer-Magic Spectra of Cycle Reated Graphs, Journal of Mathematical Sciences and Informatics 1 (2006), 53-63.
- [11] J. Sedláček, On Magic Graphs, Math. Slov. 26 (1976), 329-335.
- [12] J. Sedláček, Some Prorperties of Magic Graphs, in Graphs, Hyper-graph, Bloc Syst. 1976, Proc. Symp. Comb. Anal. Zielona Cora (1976), 247-253.
- [13] W.C. Shiu, R.M. Low, Integer-magic spectra of sun graphs, J Comb Optim 14 (2007), 309-321.
- [14] R.P. Stanley, Linear Homogeneous Diophantine Equations and Magic Labelings of Graphs, *Duke Math. J.* 40 (1973), 607-632.
- [15] R.P. Stanley, Magic Labelings of Graphs, Symmetric Magic Squares, Systems of Parameters, and Cohen-Macaulay Rings, *Duke Math. J.* 43 (1976), 511-531.
- [16] W.D. Wallis, Magic Graphs, Birkhäuser Boston, Inc., Boston, MA, 2001.