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Abstract

Let N be the set of all positive integers, and Z,={0,1,2,-:- ,n—
1}. For any h € N, a graph G = (V,E) is said to be Zp-magic
if there exists a labeling f : E — Zj \ {0} such that the induced
vertex labeling f* : V — Z, defined by f*(v) = Yowwer f(wv), isa
constant map. The integer-magic spectrum of G is the set IM{(G) =
{h € N|G is Zy-magic }. A sun graph is obained from attaching a
path to each pair of adjacent vertices in an n-cycle. In this paper we
showed that the integer-magic spectra of sun graphs are completely
determined.

1 Introduction

Let G = (V, E) be a connected simple graph. Let A be a nontrivial abelian
group with identity 0. A mapping f : E — A\ {0} is called an edge
labeling of G. Any such labeling induces a map ft : V — A, defined by
ft*() = X veg f(uv) for each v € V. If there exists an edge labeling
f whose induced map f*+ on V is a constant map, then f is an A-magic
labeling and G is an A-magic graph. The corresponding constant is called
an A-magic value. If A = Z;,, then we call G Z;,-magic or h-magic in short.
The integer-magic spectrum of G is the set IM(G) = {h € N|G is h-magic
}, where N is the set of all positive integers. By convention, Z-magic graphs
are considered to be Z;-magic.

The original concept of an A-magic graph is due to J. Sedldéek [11,12],
who defined it to be a graph with a real-valued edge labeling such that
(i) distinct edges have distinct nonnegative labels, and (ii) the sum of the
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labels of the edges incident to a particular vertex is the same for all vertices.
A characterization of magic graphs is given by Jenzy and Trenkler [4]. A
graph G is called non-magic if G is not A-magic for any abelian group A.
Some classes of non-magic graphs are presented in [1]. Z-magic graphs
were considered by Stanley [14,15].Recently, there has been considerable
amount of research articles on graph labeling. Interested readers can refer
to [2,16]. Research related to JM(G) can be found in [5~10]. The aim of
this paper is to find the integer-magic spectra of sun graphs.

2 Definitions and Preliminaries

Let m > 3 and t > 2. An m-cycle C,, with vertices v, v, , v, and
edges v1v2, v2v3, *++, Unv; is denoted by (vy,v2,-: ,vm). A t-path P,
with vertices uy,us, - - - ,u; and edges ujug, ugus, - -+ , ug—1u; is denoted by
(u1,uz2, - ,us). A graph is called a sun graph of indezx = if it is formed
by attaching a path of length at least 2 to the end vertices of each edge
of an n-cycle. Let C, = (v;,v2,---,v,) and for each i,1 < i < n, let
H; = (ui1,ui2, -+ ,uiz,+1) be a path of length ¢; > 2. For each i =
1,2,---,n, attach H; to the cycle C;, by identifying v; and vy with u;,
and u; 4, +1 respectively, we obtain a sun graph with index n and parameters
(t1,t2,+ - ,tn), denoted by Cpn(t1,ta,--- ,tn). It is easy to see that a sun
graph Cyp(t1,%2,-- ,t,) can be partitioned into n edge-disjoint cycles H; U
{viviy1} of length ¢; + 1.

In this paper, if f is an A-magic labelling of Cp(t1,%2,-- ,t,) with
A-magic value m, for some abelian group A, we define f(vvi41) = x; if
ViVip1 € E(C,.) and f(u,,u,,,.‘.l) = yij if u;jui541 € E(H;), for each
j=12,---,ti_; and i = 1,2,---,n. Then z;,y;; € A\ {0} and the
followmg condltlons hold:

Yij t Y41 =m *
Ti +Tip1 + Yie; T Yir11=m

In (13}, Shiu and Low obtained the following result.

Theorem 2.1. ([13]) Let G = Cp(t1,t2,+- ,tn). Ifn is even and t; > 1,
then IM(G) =

Since Cy(t1,%2,- -+ ,tn) is an even graph, there is an eulerian circuit e;,
€, ,ep, Where p = |E(Cp(t1,t2, -+ ,tn))|, passing through all edges of
Cn(t1,t2,++- ,tn). Let g be an Zp-magic labeling of Cp(t1,t2,-- ,t,). If p
is even, then define g(e;) = a and g(ei41) = —a where a € Z,, \ {0}. Then
we have a labeling of C,(t,%2,- - ,t,) which is h-magic with magic value
0. Thus we have the following result.
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Lemma 2.2. Let G = Cp(t1,t2, - ,tn). If n is odd and E7_,t; is odd,
then IM(G) = N.

Next we consider the case when n is odd and X7_,t; is even. From [13],
we have the following:

Lemma 2.3. ([13]) Let G = Cp(t1,t2,"* ,tn). If n is odd and t; € 2N,
then IM(G) = N\ {3}.

A vertex of degree k is called a k-vertex. Suppose u and v are two
adjacent 2-vertices of G. Let w be another vertex adjacent to v. Let
Glu,» be the graph obtained from G by deleting two edges uv and vw and
identifying v and w. In [13], Shiu and Low used this shrinking technique
to prove the following result.

Theorem 2.4. ([13]) Let A be an abelian group and G a graph, where u
and v are two adjacent 2-vertices of G. Then G is A-magic with A-magic
value m if and only if G|y, is A-magic with A-magic value m.

From the above result, any sun graph G = Cp(t1,%2,--- ,t,) can be
shrunk to a sun graph G’ = C/ (t,,t5,- -+, t,) where t; € {2,3} for each
i such that the integer-magic spectrum of G is equal to the integer-magic
spectrum of G’. Thus in what follows we will consider the sun graph
Cn(t1,t2, + ,tn) Where t; = 2 or 3, for each i = 1,2,--- ,n. Let ¥2(G) =
{i|t; = 2} and ¥3(G) = {iJt; = 3}. The final case that we need to consider
is that [¢2(G)] is odd and [|3(G)| is even with n > 2.

Lemma 2.5. ([13]) Let G = Cp(t1,t2, -+ 1ta). If n is odd withn > 5 and
L7, t; is even, then G is not Zz-magic for |2(G)|= 3, 5, or 7.

After this result, Shiu and Low[13] gave a conjecture:

Conjecture A. Let G = Cp(ty,t0, - ,tn). If n is odd with n > 5 and
B2 .t is even, then G is not Z3-magic for || > 9.

3 Main results

In this section, we try to show that Conjecture A is true for the sun graph
of index n, Cp(t1,t2,- - ,1n), with t; € {2,3} foreachi=1,2,.-. ,n.

Lemma 3.1. Let n be odd and G = Cpr(t1,t2,: - ,t,) with ¥ ,t; even. If
3 € IM(QG), then G is Z3-magic with magic value 0.

Proof. Suppose G is Z3-magic with magic value 1 or 2. If G is Z3-magic
with magic value 1, then each y; ;j must be2for 1 < j <t;and z;+z;41 =0
(mod 3) for 1 <4 < n. Similarly, if G is Z3-magic with magic value 2, then
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each y;; must be 1 for 1 < j <t; and z; + 243 =0 (mod 3) for 1 <i < n.
Without loss of generality, we may assume that z; = 1, then z; = 1 for ¢
odd and z; = 2 for ¢ even. Since n is odd, it results in z, + z; = 2 (mod

3) contradictng z; + z;4+31 = 0 (mod 3). O
9,1 Y1,2
T
Ys3,3 y2,1
3 T2 ?
Ys,2 ¥2,2
Y31 Y2,3

Figure 1. Labeled C3(2,3,3)

Lemma 3.2. IM(C3(2,3,3)) =2N.

Proof. Let C3(2,3,3) be Z,-magic for some positive integer h with the
magic value m. We label C3(2,3,3) as in Figure 1. Since y2,1 + ¥2,2 =
y2,2+y2,3 = m, we have y2 1 = y2,3. Similarly, y3,1 = y3,3. Since z1+y1,2+
T2 +y2,1 = m = T3 + Y2,3 + 3 + ¥3,1, We get T1 + y1,2 = T3 + Y3,3. Since
Z3+y3,3 + 21 +y1,1 = m and y1,1 + y1,2 = m, it implies 2z; =0 (mod k).
Thus h should be a multiple of 2, i.e, IM(G) C 2N. If we label each edge
with h/2, we will get a Zj,-magic labelling of C3(2, 3, 3). Therefore we have
IM(G) =2N. O

Let G = Cp(t1,t2,-*- ,tn) be a sun graph of index n. Then G can be
partitioned into n edge disjoint cycles and each cycle contains exactly one
edge of C,. The sun graph G' = Cp_(j—i)(t1,t2,** ,tim1,tj, -+ ,tn) of
index n — (§ — i) is derived from G by deleting the cycles which contain
one of the edges in {v;vit1, Vit1vis2, -+, vj—1v;} and identifying two
vertices v; and v;. Thus if n-cycle in G is C, = (v1,v2,++ ,vn), then the
n—(j—1i)-cyclein G’ is (v1,v2,+ - , i, Vj+1,Vj+2,°* * ,¥n). In short, we will
just say that G = Cp(t1,t2,- - ,tn) with C, = (v1,v2,+ - ,vy,) is shrunk to
G = Cn_(j_,-)(tl,tz, “ev ytic1,tj,- -, tn) With the n — (§ — 2)-cycle in G
being (017'021 0y Uiy Vi1, V542 000 'Un)-

Lemma 3.3. Let n be odd with n > 5 and 7., t; is even. If there exists k,
1 < k < n such that ty = tpy1 = 3, then G = Cr(ty,t2,- - ,tn) 18 Zp-magic
if and only if G' = Cn—a(t1,t2, - , tk—1,tk+2,tk43,° ** s tn) 8 Zp-magic.
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Proof. Let f be the magic labelling of G as in (*). If G = Cp(t1,t2,- - ,tn)
is Zp-magic with magic value m and there exists &k, 1 < k < n such that
tx = tkp1 = 3, then we have yx) = ¥k,3 and ¥k41,1 = Ykt1,3. From
the following equalities: Zx—1 + Yk—1,60—, + Tk + Yk,1 = M, Tk + Y3 +
Th41 + Ykt1,1 = M, and Te41 + Yet1,3 + Tea2 + Yry2,1 = M, we obtain that
Tk—1+ Yk—1,tx_y +Zht2 + Yk+2,1 = m. Thus we delete the two cycles which
contain one of the edges in {vxVk+1,Ve+1Vk+2} and identify the two vertices
vk and ve42 in G. We obtain G = Cn_z(tl, to,- s lk—1, k42, tu43, - ,tn)
with (n — 2)-cycle Cp—2 = (V1,v2,"** , Uk, V43, Vk4d, -+ ,¥n). Define a la-
belling f’ of G’ as f'(e) = f(e) for e an edge of G'. Then f’ is an h-magic
labelling of G’ with magic value m.

Let G' = Cp2(t1,t2,- -+ ,tn—2) be a sun graph with (n — 2)-cycle C,,_2 =
(v1,v2,+++ ,Un—2) and the attaching path to the edge v;v;41 be H; with
length ¢;. If G’ is Zp,-magic with magic value m, let f’ be the magic labelling
of G’ as in (¥), then z;+y; it +Tiy1+¥i+1,1 = m, foreachi =1,2,... ,n—-2.
Consider the graph G = Cy(t1,%2, " ,ti,3,3,ti41, -+ ,tn—2) With n-cycle
Cn = (V1,v2,° "+ , Ui, Vig1,W, Vi 1, Vit2, " s Un—2) Where the path H;y, is
attached to the edge v, ,vi42 and the paths (viy1,u{;, 0, uit; 3, w) and
(w, w5 9, U493, Viy,) are attached to the edges vi11w and wv;y, respec-
tively. Define a labelling f of G as follows: f(e) = f'(e) for e an edge of G,

Fvigaw) = f(VigVise) = Tiga, f(woiy,) = 25

Fla%ir1,2) = Yit1,1, F (Vi1 ,2) = Fuif1,3w) = ¥it1,1

f (u§+1,2u§+1,3) =m—Yi+1,1, f (wu§+2,2) =f ("$+2,3"’£+1) = Yiu

f (“§+2,2“§+2.3) =M — Ui,
Then f is an h-magic labeling of G. Therefore G is Z,,-magic. O

From Lemma 3.3, we can reduce G = Cy(t1,%2, -+ ,tn) to a new

G' = Cp(t),th,--- ,th,) such that m is odd and t; + t{,, € {4,5} for
each i and |¥2(G’)| > s (G')).

From Lemma 3.2 and Lemma 3.3 we have the following result.
Theorem 3.4. If k is odd, then IM(Ci(2,3,3,---,3)) =2N.

Next, we consider the case that there are at least three paths of length
2 attached to the edges of the cycle.
Lemma 3.5. Let G = Cy(t1,t2,- - ,tn) where t; + tiy1 € {4,5} for each
i and |¥2(G)| > |¥3(G)]. If n is odd and |[p2(G)) is odd with |[2(G)| > 3,
then 3 € IM(G).
Proof. From Lemma 2.5, 3 € IM(Cp(t1,t2,- - ,tn)) for n odd, t; € {2,3}
for each %, and [y2| is 3, 5, or 7. Suppose that there is a Z3-magic la-
belling f for G = Cy(t1,t2, - ,tn) and [¥2(G)| = k, k > 7. Since n is
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odd and |¢2(G)| is odd, I ,t; is even. By Lemma 3.1, the magic value
must be zero. Thus z;,y;; € {—1,1}, =i + ¥is, + Zit1 + Yi+1,1 = 0 and
Yij+¥ij41 =0forl <i<nandl < j <t —1. Consider the car-
dinality of 93(G). By Lemma 2.3 we know that |¢3(G)| > 0, that is
|%3(G)| > 2. From the definition of G = Cp(t1,%2,- - - ,t,), We know that
%3(G) contains no consecutive integers. Then there exists some j such that
(tj,tj+1,tj+2,tj+3) = (2,2,3,2) and the graph can be labelled as in Figure
2.

Yi42,2

\ K Yit1 /\ Yit2, \ A Yi+d l
Yj—1, tj—1 / ;
PP TP VAR '-—¢¢J+1 —iq+z-—¢%+s—¥%+¢-¢

Vs Vj+1 Vj+2 Uj43 Vj+4

Figure 2

From this labeling of G, we can apply the reduction process to obtain
new sun graphs as follows.

(i) ifz; = aand yj; = —a wherea € {—1, 1}, then we can get a subgraph
of G labelled as in Figure 3, where b,¢,d € {—1,1}. If we shrink the
sun graph G of index n to a sun graph G’ = Cp_2(t1, %2, - ,tj—1,tj42,

-, tn) of index n — 2 with (n —2)-cycle Cr_2 = (v1,v2," - ,vj,Vj43,
Vjtd, - ,Un), then [2(G')| = |92(G)| —2 and G’ is Z3-magic.

\_d _/\a /\
o—-dLa —A i
Yj Vj+1 ‘UJ+2 Vj+3 Vjtd

Figure 3

(ii) if z; = e and y;,1 = a where a-€ {—1,1}, then we obtain a subgraph
of G labelled as in Figure 4. .

\_ /\_ _/\ _”\_b /\_b _c/
Figure 4

If tj;4 = 3, then we can get a subgraph of G labelled as in Figure
5, where b,c,d € {—1,1}. If we shrink the sun graph G of index n
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to a sun graph G' = Cp_4(ty,t2," - ,tj, tjys, -+ ,tn) of index n — 4
with (n — 4)-cycle Cp—q = (v1,v2,"** ,¥j4+1,Vj+6, Vj47,° - ,Vn), then
[%2(G")| = |%2(G)| —2 and G’ is Z3-magic.

ANANRFAN _’_\ I\, I\
";L_-"_“\L._\.L_ _;/___’_x/__\éd_.

Vi+1 Vj+2 Yj+3 Vi+4 Vji+5 Vj+6

Figure 5

If tj44 = 2 and ¢;;5 = 2, then we can get a subgraph of G labelled as
in Figure 6, where b,c,d € {—1,1}. If we shrink the sun graph G of
index n to a sun graph G’ = C’n_z(tl,tz, oyt Eit6y Ej4Ty s En)
of index n — 2 with (n — 2)-cycle Cp_s ('01,'02, <ty Vjtd, Vj4T,
Vj+8,*** 2 Un), then [Pho(G')| = |[¥2(G)| — 2 and G' is Z3-magic.

N\ AL _/\ f‘\ /\ _/\
N \/u _\(.d_.

Uj ”J+1 ‘Uy+2 1’J+3 Vjta vy+5 Uj+6 Uj+7

Figure 6

If t;44 = 2 and t;45 = 3, then ;46 = 2. we can get a subgraph of G
labelled as in Figure 7, where b,¢,d € {—1,1}. If we shrink the sun
graph G of index n to a sun graph G’ = Cp_g(t1,%2, - ,tj,tjt7, " s tn)
of index n — 6 with (n — 6)-cycle Cr_s = (v1,v2,- - ,Vjs1,Vj+8,
Vj49,** yUn), then [$2(G’")| = |¥2(G)| — 4 and G’ is Z3-magic.

N\, A _/\f\ AN NN
N NN Y

Uj Ua+1 Uj+2 1b+3 Uj+d  Vi+5  Vjre  Vji7 Vj48

Figure 7

If [2(G’)| > 7, we can keep doing the above reduction until [42(G)| < 7,
then we will get a contradiction to the result in Lemma 2.5. Therefore,
The proof is complete. (]
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The above Lemma showed that Conjecture A is true. Next, we will
show that Cp,(¢1,%2,- - ,t,) can be Z,-magic labelled for A > 3.

Lemma 3.6. Let n be odd and G = Cp(t1,t2, - ,tn) and |2(G)| is odd
with [12(G)| = 3, then IM(G) 2 N\ {3}.

Proof. Let I';/)z(G)' = k. If i1,49,+++ ,ic € ‘¢2(G) and i) < dg < +00 < 4.
Since t; € {2,3} and t;+¢i41 = 4 or 5 for each i, the difference ip43 —ir =1
or 2. Let H; = Hy U{vrvk41}, for each k. Then Hj, is a 3-cycle or 4-cycle.
Since « is odd, we can partition the set ¥2(G) \ {i1,%2,%3} into two element
subsets {i¢,i:41},t =4,6,8,--- ,£— 1. Corresponding to this partition, we
define graphs I = H UH’I_,_1 U---UH;,=H; UH] U---UH],
Iz = H VH! g1 UH", . I(,;_l)/g = H{n UH’ 1+1U UH' Then
Gis part1t10ned into edge disjoint graphs Il,Iz, w2 Ie—-1)/2 and some 4-
cycles. The graph I, is one of the graphs in Figure 8 and I, k > 1, is
one of the graphs in Figure 9. We can give a magic labelling with magic
value O for the graphs in Figure 8 and Figure 9, and the remaining 4-cycles
labelled by =; = 1, ¥i3 = —1, yi,2 =1, i3 = —1. Hence G has a Z,-magic
labelling with magic value 0 for A > 3. Since G is an even graph, G is

Za-magic. Therefore, IM(G) 2 N\ {3}. g
1) —{\ 2
1._\L_s¥_ AN

1
2) -1/\1 —1,—\—1 —lAl —2/\
NN

® N AN,
I_M-s_y_Q_\L_ZA

/\)"‘\/\f‘*\/\

(4) 11A/—1 1—1\4—13A’_2 Va R
Figure 8
1
(1) A —1/\1 (2) A ﬁ Al
/—1—\/—-14 L _A.(__l_\./_lA
Figure 9
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Combining Lemma 3.5 and Lemma 3.6, we have the following result.

Proposition 3.7. Let n be odd and G = Cy (81,82, -+ ,tn). Then IM(G) =
N\ {3} provided |¢2(G)| > 3 is odd.

Combining the above results, we have shown the following:

Theorem 3.8. Let G = Cp(t1,22,* ,ts) be a sun graph of index n and
P = {i|t; is even}. Then

(a) IM(G) =N if n is even;

(b) IM(G) =N if n is odd and X7_;t; is odd;

(c) IM(G) =2N ifn is odd, || = 1, and L ,t; is even;

(d) IM(G) =N\ {3} if n is odd, || > 1, and X7_,t; is even.
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