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Abstract

Let G be a graph with diameter d. An antipodal la-
beling of G is a function f that assigns to each vertex a
non-negative integer (label) such that for any two ver-
tices u and v, |f(u) — f(v)| = d — d(u,v), where d(u,v)
is the distance between u and v. The span of an antipo-
dal labeling f is max{f(u) — f(v) : w,v € V(G)}. The
antipodal number for G, denoted by an(G), is the mini-
mum span of an antipodal labeling for G. Let C, denote
the cycle on n vertices. Chartrand et al. [4] determined
the value of an(C,,) for n = 2 (mod 4). In this article we
obtain the value of an(Cy,) for n = 1 (mod 4), confirming
a conjecture in [4]. Moreover, we settle the case n = 3
(mod 4), and improve the known lower bound and give
an upper bound for the case n = 0 (mod 4).
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1 Introduction

Radio k-labeling was motivated by the frequency assignment
problem (cf. [7]). Let k be a positive integer. A radio k-labeling
(or k-labeling for short) for a graph G is a function, f : V(G) —
{0,1,2,---}, such that the following is satisfied for any vertices

BAY ) = £ 2 k41— d(u,v).

where d(u,v) denotes the distance between v and v. The span
of such a function f, denoted by sp(f), is defined as sp(f) =
max{f(u) — f(v) : u,v € V(G)}. The minimum span over all
k-labelings of a graph G is called the ®;-number and denoted
by ®x(G).

For the special case that £k = 1, the 1-labeling is indeed
the conventional vertex coloring and we have ®,(G) = x(G) -1,
where x(G) is the chromatic number of G. Another special case
is when k£ = 2, the 2-labeling is the same as the distance two
labeling (or L(2,1)-labeling) which has been studied extensively
in the past years (cf. [1, 2, 3, 9, 10, 11, 12, 14]). The ®2-number

is known as the A-number of G. )
The radio k-labeling for large values of k£ has also been in-

vestigated by several authors. Let G be a connected graph. The
maximum distance among all pairs of vertices in G is the diame-
ter of G, denoted by diam(G). The radio labeling (or multi-level
distance labeling) is a radio k-labeling when k& = diam(G). The
Pgiam(c)-number of G is called the radio number of G, denoted
by rn(G). The radio number for different families of graphs has
been investigated in [6, 8, 15, 16, 17, 18, 19]. For instance, the
radio number for paths and cycles has been studied in [6, 8, 19]
and was recently settled in [18].

When k = diam(G) — 1, a k-labeling is called an antipodal
labeling. That is, an antipodal labeling (or radio antipodal color-
ing) for G is a function, f: V(G) — {0,1,2,---}, such that the
following is satisfied for any two vertices u and v:

|/ (w) = F(v)] 2 diam(G) — d(u, v).

The antipodal number for G, denoted by an(G), is the minimum
span of an antipodal labeling admitted by G. Notice that a radio
labeling is a one-to-one function, while in an antipodal labeling,
two vertices of distance diam(G) apart may receive the same
label (this is where the name “antipodal” came from).
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The antipodal labeling for graphs was first studied by
Chartrand et al. [4, 5], in which, among other results, gen-
eral bounds of an(G) were obtained. Khennoufa and Togni [13]
determined the exact value of an(P,) for paths P,. The an-
tipodal labeling for cycles C,, was studied in [4], in which lower
bounds for an(C,) were shown. In addition, the bound for the
case n = 2 (mod 4) was proved to be the exact value of an(C),
and the bound for the case n = 1 (mod 4) was conjectured to
be the exact value as well [4].

In this article, we confirm the conjecture mentioned above.
Moreover, we determine the value of an(C,) for the case n = 3
(mod 4). For the case n = 0 (mod 4), we improve the known
lower bound [4] and give an upper bound. It is conjectured that
the upper bound is the exact value.

2 Lower Bounds

In this section, we establish lower bounds for an(C,). These
bounds were proved by Chartrand et al [4]. We present here
a different proof which includes techniques that will be used in

later sections. | ) i
In an antipodal labeling, the number assigned to a vertex

is called a label. Notice that as we are seeking for the mini-
mum span of an antipodal labeling, without loss of generality
we assume that the label 0 is used by any antipodal labeling.
Consequently, the span of f is the maximum label used.

In the following we introduce notations to be used through-
out this article. Denote V(Cy) = {vo,v1,"**,VUn-1}, ViVi1 €
E(Cy) for 0 < i < n—2, and vp—1v0 € E(Cy). The diameter of
C. is denoted by d, where d = [n/2]. Every antipodal labeling
f for C, gives an ordering (which may not be unique) of the
vertices according to the labels assigned . Denote the ordering
by (zo, %1, Zn-1), Where {Zo,Z1,"**, 21} = V(Cy) and

0 = f(zo) < f(z1) < f(m2) < -+ < f(@n1)-
Note, the span of f is f(Zn-1)-
Fori=0,1,---,n—2, we define the distance gap and label
gap, respectively, by:

di = d(zi, Tia), fi= f(@ir1) — f(=i).
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By definition, it holds that f; > d — d;.

Proposition 1 For any three vertices u, v and w on a cycle

ny

d(u,v) + d(v,w) + d(u,w) < n.

Proof. Without loss of generality, assume d(u,v),d(v,w) <
d(u,w). If all the three vertices lie on one half of the cycle, then
d(u,v) + d(v,w) + d(u, w) = 2d(u,w) < n. Otherwise, we have
d(u,v) + d(v,w) + d(u, w) = n. m]

Lemma 2 Let f be an antipodal labeling for C,, n > 3, with
labels f(zo) < f(z1) £ -+« £ f(zn-1). Let n = 4k +r for some
0<r<3. Then forany0<i<n-3,

f(@i2) = f(&:) = fi + fin 2 { :’_'_ 1, :}c: : g’ 1,3;

Proof. By definition, we have f(ziy1) — f(z:) > d—d(zit1, T:),

f(@iv2) — f(Zir1) = d — d(Tiye, Tiv1), and f(Zige) — flz:) >
d — d(Zit2,2;). Summing up these three in-equalities and by
Proposition 1, we get

2f(zir2) — f(z)) 2 3d = (d(=i, Tiv1) + d(@is1, Tiva)
+d(z:, Tiv2))
> 3d-—n.

Therefore, fi+ fir1 = f(zire) = f(z:) > [(3d—n)/2]. The
r%sults then follow by immediate calculations for different values
ol n. O

Corollary 3 [4] Letn =4k +7 for somen >3 and 0 < r < 3.
Then

k(2k - 1), ifr=0;
2k2, ifr=1;

2k(k+1), ifr=2;
k(2k+1), ifr=3.

an(Cp) >



Proof. Let f be an antipodal labeling for C,. The span of f is

f(@n-1) = fo+ fr+- + fae.

By Lemma 2, the results follow by pairing up the terms in the
above summation and leaving the last term f,—o (if n is even)

which is at least 0. ]
In [4], it was proved that the equality in Corollary 3 holds

for the case n = 2 (mod 4), and conjectured that the equal-
ity also holds for the case n = 1 (mod 4). This conjecture is
confirmed in the next section.

3 n=4k+ 1

Let f be an antipodal labeling for a cycle C, with 0 = f(zo) <
f(z1) £+ < f(zn-1)- In the rest of this article, we denote the
permutation 7 on {0,1,2,---,n — 1} generated from f with

Ti = Un(s)-

For an integer z and a positive integer y, we denote “z mod y”
as a binary operation which outputs an integer z with z = =
(mody)and 0 <2<y — 1.

In this section, we prove the following result:

Theorem 4 Ifn = 4k + 1 for some integer k > 1, then
an(Cy) = 2k%.
Proof. By Corollary 3, it suffices to find an antipodal la-

beling with span 2k?. Two cases are considered. Recall d =
diM(C‘;]H.l) = 2k.

ICase 1. kis oddl First, we label the 2k + 1 vertices zo, Z2,
*+*y Tak DY

7(24) = ki mod n, and f(xe) = ki, for i =0,1,2,---,2k.

For instance, m(2) = k (i.e., zo = w) and f(z2) = k; and
m(4k) = 2k — 551 and f(zar) = 2k2.

Secondly, we label the remaining vertices z;, z3, -, T4k—1
by m(1) = m(4k) + &k = 3k — &2; and 7(2i + 1) = (v (2 — 1) + k)
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mod n, for ¢ = 1,2,..-,2k — 1, with labels f(z2i41) = (k —
1)/2 + ki for i = 0,1,---,2k — 1. See Figure 1 for an example.
In Figure 1 (and all other figures), the number inside the circle
for each vertex is the label assigned to that vertex.

(@) (23) () (s0) () (o) (o9)

) Vg U7 Ve Us (2
(ze) (z1) (o) (z4) (712) (27)

Figure 1: An antipodal labeling for Ci3 with minimum span
an(C13) = 18.

To see that 7 is a permutation of {0,1,---,n —1}, we ob-
serve that 7(0),m(2), -, m(4k), n(1),7(3), ---,7w(dk — 1) is a
list of vertices winding around C, by jumping k vertices between
any two consecutive terms. Since ged(n,k) = 1, so 7 is a per-
mutation of {0,1,---,n — 1}. In addition, one can easily check
that for every 7 the following hold:

f(xixa) = f(z:) 2 d — d(zi41,73),
f(@iv2) = f(z:) =k =2k — k = d — d(Tis2, T:),
fzirs) — fz:) > 2k > d — d(xi4s, i), for s > 4.

Hence, to show that f is an antipodal labeling, it suffices to
verify f(ziys) — f(z:i) > 2k — d(ziys, ;). This is true since
d§7i-§3) z;) = (k+1)/2, and f(zirs) — f(z:) € {(8k—1)/2, 3k +
1)/2}.

[Case 2. k is even| Similar to Case 1, we first label the 2k+1
vertices o, T2, - « -, Zak, by m(2¢) = ki mod n, fori =0, 1,---, 2k,
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using labels f(z2;) = ki. Note that since 2k2=n-— g (mod n),
we have Tqx = Un—(x/2)-
Secondly, we label the remaining vertices by w(1) = 2k+1,
f ($1) = 0) and
. | (2t —-1)+k) mod n, if i is odd,;
m(2i+1) = { (m(2i — 1)+ k+1) mod n, ifiiseven,

with labels
oy ] f(maia) +E, if 4 is odd;
f@an) = { f(zoim1) + k+1, ifiiseven.

See Figure 2 for an example.

U7 Vs Vo 0 Vg
(z3) (zs) (z0) (zs) (22

@) (@) (@) (@)

Figure 2: An antipodal labeling for Cy with minimum span
an(Cg) = 8.

By calculation, (1) = 2k + 1 = —2k (mod n), and for
1<i<2-1,

gisn={ (mod n), if i is odd;

et =1 —=(t+2)k (modn), ifiiseven.

Since 7 (2¢) = ki mod n, for 0 < i < 2k, we conclude
{n(i):0<i <4k} ={jk mod n: -2k < j < 2k}.

Since ged(n, k) = 1, 7 is a permutation. Similar to Case 1, it is
straightforward to check that f is an antipodal labeling, and we
shall leave the details to the reader. =]
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4 n=4k+3

As it turned out (Theorem 5), the exact value of an(Cyxys) is
greater than the lower bound established in Corollary 3.

Theorem 5 For every integer k > 0, an(Cyx3) = 2k? + 2k.

Note, when k& = 0 in Theorem 5, it is trivial that an(C3) =
0. The following lemma will be used to prove Theorem 5 for
k>1.

Lemma 6 Let f be an antipodal labeling for C, where n = 4k+
3, k>1 If fi+ fiy1 =k for some 0 < i < n—3, then the
following hold:

(1) d(zi, Tiy2) = k + 1,

(2) fi=t disy =k+t+1, and d; = 2k —t + 1, for some
te{0,1,---,k}.

Proof. Recall d = diam(Cyk+s) = 2k+1. Assume fi+ fiy1 =k
for some i. By definition,

d(zi, Tiva) = d — (f(zir2) — f(2:)) d— (firr + fi)

(2%k+1)—k=k+1

On the other hand, by Proposition 1 and definition, we have

d(i, Tia) < (4k+3) = (di + diga)
< (4k+3)—(d-fi+d— fin)
— (4k+3)— (dk+2—k)
k+1.

This verifies (1).

Let f; =t for some ¢t € {0,1,---,k}. By (1), the second
equality in the above holds, which implies that d; = d — f; and
dit1 = d — fiy1. Therefore, (2) follows as d = 2k + 1. m]

Lemma 7 Let f be an antipodal labeling for C,, where n = 4k+3
Jor some integer k > 1. Then for any 0 <i<n—35,

fit finn+ fisa + fira 2 2k + 1.
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Proof. Assume to the contrary that for some %, f; + fiq1 +
fire + firs < 2k. By Lemma 2, fi + fiy1 = fira + firs = k.
By symmetry and by Lemma 6 (1) without loss of generality,
assume Z; = vg, Ti+2 = Vk+1 and Ziyq = va(k41). By Lemma 6
(2), fi =t for some 0 < t < k and d; = 2k — t+ 1. Note, Ti1q #
Vok—_t41, for otherwise it would be diy1 = d(ziy1, ZTiya) = k t,a
contradiction. Hence, we conclude T;y1 = Vp_(2k—t+1) = Vak+t+2-
This implies d(z;4+4, ;) = t. Because f is an antipodal labeling,
we have

2k —t = fi1 + five + firs f(@ita) = f(@ig1)
2k+1— d($i+4, a:,-.,.l)

2% +1-—t,

v i

a contradiction. O
Theorem 8 For every integer k > 1, an(Cyxy3) > 2k% + 2k.

Proof. By Lemmas 2 and 7, the span of an antipodal labeling
f for C4k+3 has

fo +fit o+ faen
= Z (fai + faiy1 + fair2 + faiva) + far + farenr
> k(2k+1)+k 2k? + 2k.

O

Proof of Theorem 5. For k = 0, an(C3) = 0 is trivial as
mentioned earlier. For k > 1, it remains to find an antipodal
labeling for Cjyx43 with span equal to the desired number. First,
we label the vertices xo, T2, - - -, Zak+2, by w(0) = 0 and f(zo) =
0;and for 1 <i<2k+1,

(%) = (m(26—2)+k+1) modn, ifiisodd;
T (w(28 —2) + k) mod n, if i is even,

flaw) =17 (z2ic2) + k,  ifiis odd;
27 flzaize) +k+1, ifiis even.

Secondly, we label the remaining vertices by (1) = 2k +2
and f(z;) =0; and for 1 <17 < 2%k,

m(2%+1) = (n(2i ~1) + k+ 1) mod n, and f(z2i4+1) = i(k+1).
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Vg V10 Vo n V2

(x3) (z8) (wo) (x5) (%10)
o=\

D—0—O—@

(TN ) 0)
D——O—O—O0—C

(@) (z0) (@) (zn) (an) (a2)

Figure 3: An antipodal labeling for Cj; with minimum span
aIl(Cu) = 12.

See Figure 3 for an example.
By some calculation, one gets

m(2i + 1) = (i +2)(k + 1) (mod n), for 0 < i< 2k, and
(2) = —(t—2)(k+1) (mod n), ifzis odd;
TEI=1 =ik +1) (mod n), if i is even,
for 0 <1 <2k + 1. Hence, we conclude
{n(@):0< i< 4k+2} ={j(k+1) mod n: -2k < j < 2k+2}.

Because ged(n, &k + 1) = 1, « is a permutation. Similar to the
proof of Theorem 4, it is straightforward to show that f is an
antipodal labeling, and we shall leave the details to the reader.
This completes the proof of Theorem 5. a

5 n =4k

Note, it is trivial that an(Cy) = 1. For cycles with n = 4k nodes,
k > 2, we improve the lower bound in Corollary 3 and give an
upper bound.



Theorem 9 For every integer k > 2,
2k% — |k/2] < an(Cu) < 2k% — 1.

The following lemma will be used to prove the lower bound
for an(Cy) in Theorem 9. Recall that d = diam(Cy) = 2k.

Lemma 10 Let f be an antipodal labeling of Cax, for some in-
teger k > 2. If fi+ fix1 = k for some 0 < i < n — 3, then
d(:l:,',(vi+2) = k.

Proof. Assume f; + fix1 = k for some 0 < i < n — 3. Then
d(zi, Tiv2) = d — (fi + fi+1) = k. On the other hand, by Propo-
sition 1 and definition,

d(zi, Ziy2) < n—(di+din1)
< 4k—-(d—fi+d— fin)
= k.

a

Lemma 11 Let f be an antipodal labeling of Cyr, k > 2. Then
forany0<i<n-9,

.
> firg =4k + 1
§=0

Proof. Assume to the contrary, for some 0 < ¢ < n—9, we

7

have ZO fi+j < 4k. By Lemma 2, fi+ fit1 = fivo + fi+3 =
J=

fira + fies = fire + fier = k. By Lemma 10, d(zi, Zir2) =

d(Tir2, Tiva) = d(Tia, Tive) = d(Tite, Tits) = k. Since n = 4k,

}t lils impossible that all these four equations hold. So the result

ollows. (]

Lemma 12 Let f be an antipodal labeling of Cax, k > 2. The
following are true.

(1) If fi + fix1 =k for some 0 < i< n—4, then fira > fi.
(2) If fi + fix1 =k for some 1 <i<n—3, then fi.1 2 fir1.
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(3) If fi + fis1+ fira + fixs = 2k for some 0 <i < n—6, then
iva 2 fi 2 1.

. .
(4) If ¥ fi+j = 4k+1 for some 0 < i < n—10, then firg > fi.
J=0
7
(5) If 3 fiv; = 4k+1 for some 0 < i< n-—10, then fi,g > 1.
§=0
4
(6) For any 0 <i<mn—6, zof,-.,.j >2k+1.
J:

8
(7) For any 0 <7 <n— 10, zofi-l-j > 4k + 2.
j=

Proof. To prove (1), assume fi+ fi+1 = k forsome 0 < i < n—4.
By Lemma 2, fiz2 + fiy1 = k = fis1 + fi, hence fio > f, (2)
follows by a similar argument.

To prove (3), assume f; + fiy1 + fire + fira = 2k for some
0 <i<n—6. Then by Lemma 2, f;+ fit1 = five+ fiys = k. By
Lemma 10, d(zi, Tive) = d(:z:,+2,x,+4) = k, so d(z, Tit4) = 2k.
This lmphes that d; < 2k, as n = 4k. By definition of antipodal
labeling, f; > 1. Hence, by (1) we have fi4 > fire > fi > 1.

To prove (4), assume ZOfm' = 4k + 1 for some 0 < i <
J:

8 7
n — 10. By Lemma 11, _Zlfﬂ.,- > 4k+1= Zofi+j, hence
= 2=
firs 2 fi.
To prove (5), assume Z fiv; = 4k + 1 for some 0 < i <

n — 10. By Lemma 2, we have fi+ fixn = fire+ fira =k or
fira + firs = fire + f1+7 = k. For the former case, the result
follows by (4) and (3); for the latter case, the results follows by
3).

(6) follows by (3) and Lemma 2; and (7) follows by (5) a.nd
Lemma 11.

Corollary 13 For any integer k > 2, an(Cy) > 2k% — |k/2].
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Proof. For k = 2, by Lemma 2 and Lemma 12 (6), the span of
an antipodal labeling f for Cg has f(z7) = (fo+ fi+---+ fa) +
(fs + fo) > 5+ 2 =2k%* — |k/2].

For k£ > 3, by Lemmas 2, 11 and 12 (7), the span of an
antipodal labeling f for Cy; has

-9)/8}
f(Zak-1) =z_§_8%)fi [(41:;)8 (Z(fsm))

+ fa(ak-1)/8)+1 T+ So|@k—1y/8j+2 + *  * + far—2

o [ (4 +2) + 262 — (11/2)k — 3/2] + k, k is odd
(4k + 2) + [2k? — (15/2)k — 2] + 3k, k is even

= 2k — |k/2).

(]
Proof of Theorem 9. It remains to find an antipodal labeling
for Cy with span 2k2 — 1. First, we label the vertices zg, T2,
*y Zak—9, by m(0) = 0 and f(xo) =0; and for 1 <¢ < 2k -1,
(2%) = (m(2—2)+ k) mod n, if ¢ is odd;
M= (2 —2)+k+1) modn, ifiiseven,

N _ | f(z2i-2) + &, if 4 is odd;
flon) = { f(zoi—2) + k+1, if iis even.

. Secondly, we label the remaining vertices by: For 0 < <
2k — 1,

(26 + 1) = (w(2¢) + 2k) mod n, and f(z9i41) = f(z2).

See Figure 4 for an example.
By calculation, one gets the followmg for0<i<k-1:

7 (47) = i(2k+1) (mod n).
n(di+1) = (i+2k)(2k+1) (mod n).

. [ (i+3k)(2k+1) (modn), ifk is odd;
T4i+2) = G1R)(2k+1) (g:gd n; if  is oven.
r(i+3) = (t+k)(2k+1) (modn), ifk is odd;

(i +3k)(2k+1) (mod n), ifk is even.
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(@) (o)) (o) (z0) (9 (=)

(@) (z) (@) (m) (o) (2

Figure 4: An antipodal labeling for Cj2 with minimum span
an(C’m) =17.

Therefore, we conclude
{m(@):0<i<4k—-1} = {j(2k+1) mod n:0< j < 4k —1}.

Because ged(n, 2k + 1) = 1, 7 is a permutation. Similar to the
proof of Theorem 4, it is straightforward to show that f is an
antipodal labeling, and we shall leave the details to the reader.
This completes the proof of Theorem 9. ]

We conjecture that an(Cjyy) is equal to the upper bound in
Theorem 9.

Conjecture 1 For any k > 1, an(Cy) = 2k% — 1.

A case analysis has confirmed the above conjecture for k& < 5.
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