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ABSTRACT

Graphs which are derived from the same graph are called homeomor-
phic graphs or simply homeomorphs. A Kj-homeomorph denoted by
Ky(a,b,c,d, e, f) is obtained by subdividing the six paths of a complete
graph with four vertices into a, b, ¢, d, €, f number of segments, respectively.
In this paper, we shall study the chromaticity of K4(a,b,c,d, e, f) with ex-
actly two non-adjacent paths of length two. We also give a sufficient and
necessary condition for all the graphs in this family to be chromatically
unique.

Keywords : Chromatic polynomial, Chromatic uniqueness, Kjy-
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1 Introduction

All graphs considered here are finite, undirected and simple. For such a
graph G, a polynomial in ) is the number of vertex colouring in not more
than A colours. This polynomial is called the chromatic polynomial of G
denoted by P(G, ) or simply P(G). The chromaticity of graphs is the
term used referring to the question of chromatic equivalence and chromatic
uniqueness of graphs. Two graphs G and H are chromatically equivalent or
simply x—equivalent, denoted by G ~ H, if P(G, \) = P(H, A) (or simply
P?G’) = P(H )}l A graph G is chromatically unique Cgor simply x—unique)
if g‘ any graph H such that H ~ G, we have H 22 G, i.e, H is isomorphic

The chromaticity of K4(a, b, ¢, d, e, f) (see Figure 1) with at least two paths
of length one has been studied by many authors (see [4,8,9,14,16]). The
study of the chromatic uniqueness of K4(a, b, ¢, d, e, f) where there do not
exist three distinct numbers in the set {a,b,c,d, e, f} has been done by
Whitehead and Zhao in [16]. Ren and Zhang (15] and Li [8] discussed
the chromatic uniqueness of K4(a,b,c,d, e, f) where exactly four numbers
among {a,b,c,d, e, f} are the same. In [13], Ren fulfilled the study of the
chromaticity of K4(a,b,¢,d, e, f) where exactly three of {a,b,c,d, e, f} are
of the same length and greater than 2. Peng Yanling fulfilled the study
of the chromaticity of Ky(a,b,c,d,e, f) which have exactly two paths of
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Figure 1: K4 - Homeomorphs

length 1 (see [12]). In (5], Dong, Koh and Teo summarized some known
results on the chromaticity of K,-homeomorphic graphs and presented the
following problems:

(1) Study the chromaticity of K4-homeomorphs for exactly 2 paths of length
5§22

l(2) Slt;udy the chromaticity of K4-homeomorphs for exactly one path of
ength 1.

Motivated by such problems, we shall investigate the chromaticity of K,-
homeomorphic graphs with exactly one path of length one and exactly two
non-adjacent paths of length two, that is, K4(1,b,2,d,2, f) (see Figure 1).
As a consequence of this study, we shall bring into completion the study of
the chromaticity of K4-homoemorphs with exactly two non-adjacent paths
of length two.

2 Preliminary results
In this section, we give some known results used in the sequel.

Lemma 2.1 Assume that G and H are x—egquivalent. Then the following
statements are proven to be true.

) [V(G)| = [V(H)I, |E(G)| = |E(H)]| (see [7]);

(2) Let g(G) and g(H) denote the girths of G and H, respectively. Then
9(G) = g(H) and G and H have the same number of cycles with
length equal to their girth (see [17]);

(3) If G is a K4-homeomorph, then H must itself be a K4-homeomorph
(see [3]);
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(4) Let G = Ky(a,b,c,d,e, f) and H = Ky(a', V', ,d', €, f'), then

(i) min {a,b,c,d,e, f} = min {a',V',c,d', €, f'} and the number
of times that this minimum occurs in the list {a,b,c,d,e, f} is
equal to the number of times that this minimum occurs in the
list {a',V',c,d', €, f'} (see[16]);

(i) if {a,b,c,d,e, f} = {a',V,,d',€, f'} as multisets, then H = G
see [8]).

Lemma 2.2 (Ren and Liu [1{]) Let G = Ky(a,b,c,d, e, f)(see Figure 1)
when ezactly three of a,b,c,d, e, f are the same. Then G is not chromat-
ically unique if and only if G is isomorphic to K4(r,r,7 — 2,1,2,7) or
K4$?r —2,7,2r—2,1,7) or K4(t,t,1,2t,t+ 2,t) or Ky(t,t,1,2¢,t—1,1)
or Ka(t,t+1,t,2t+1,1,t) or K4(1,¢,1,8+1,3,1) or K4(1,1,%,2,t+2,1),
wherer > 3,t > 2.

Lemma 2.3 (Ren and Zhang [15] and Li [8]) The graph K4(a,b,c,d,e, f)
is x—unique if ezactly four numbers among a,b,c,d,e,f are the same.

Lemma 2.4 (Whitehead, Jr. and Zhao [16])The graph K4(a,b,c,d, e, f)
is x—unique if the positive integers a, b, ¢, d, e, f assume no more than two
distinet values.

Lemma 2.5 (Li (8] and Whitehead and Zhao [16]) The chromatic polyno-
mial of G = Ka(a,b,c,d, e, f) is P(G,)) = 3z (—1)"w[w™ ! + Q(G,w) —
(w + 1)(w + 2)], wherew = m — 1, m =| E(G) |, Q(G,w) = —(wotfte 4
,wa+b+e +wb+c+d+wd+e+f _|_,wa,+d +wb+f+wc+e)+(1+w)(wa+wb+wc+
w; a— w® +wf). Q(G,w) or simply Q(G) is called the essential polynomial
of G.

Lemma 2.6 (Li £8]) Two K4-homeomorphs with the same order are x-
equivalent if they have the same essential polynomial.

Lemma 2.7 (Guo and Whitehead Jr.
[6]) Ks—homeomorph qu%, b,c,1,¢e, f) is not x—unique if and only if it
is Kq(1,t+2,¢,1,2,2) or K4(1,5+1,5+3,1,2,5) or K4(1,5+2,¢,1,2,5),
where s > 2,t > 1, and

Ka(1,t+2,t,1,2,2) ~ Ka(3,1,1,2,t,t+ 1),
Ks(l,s+1,54+3,1,2,8) ~ Ky4(s+1,1,1,s,3,5+ 2),
Ky(l,s+2,t,1,2,5) ~ K4(s +1,1,1,¢,3,3).

Lemma 2.8 (Peng and Liu [12]) Ks—homeomorph Ky(a,1,1,d,e, f)
where min{a,d, e, f} > 2, is not x—unique if and only if it is Ka(s,1,1,s+
t+1,t,t+1), K4§(s,1,1,t,t+2,s+t), Ky(s+1,1,1,5+3,2,5), Ka(s+
2,1,1,5,2,s+2), K4(3,1,1,2,t,t+1), Ka(s+1,1,1,5,3,5+2) or K4(s+
1,1,1,¢,3,s), where s > 2,t > 2, and



Lemma 2.9 (Catada-Ghimire, Roslan and Peng [1]) K,-homeomorph
Ky(a,b,2,d,2, f), where mz’n{a,b, d,f} > 3, is x-unique if and only
if it is not isomorphic to K4(3,4,2,4,2,6) or K4(3,4,2,4,2,82 or
I§4(3,4, 2,8,2,4). Moreover, each of the following sets is x—equivalence
class:

3 Main result

The following are notations that will be used in the sequel.

L} = set of the exponents of the positive terms in the left hand
side of equation £,

L7 = set of the exponents of the negative terms in the left hand
side of equation ¢,

R} = set of the exponents of the positive terms in the right
hand side of equation ¢,

Ry = set of the exponents of the negative terms in the right

hand side of equation t,
—L; = left side of Equation ¢ with negative terms,
L, = left side of Equation ¢t with positive terms.

Elements can be repeated in a set.
We now give the main result of the paper.

Theorem 3.1 Let G be a K4-homeomorph with exactly two non-adjacent
paths of length two. Then G is x-unique if and only if it is not isomor-
phic to K4(4,1,2,1,2,4) or K4(1,5+2,2,1,2,) or K4(3,4,2,4,2,6) or
K4(3,4,2,4,2,8) or K4(3,4,2,8,2,4) or K4(1,t,2,4,2,4), where s > 3,
t > 3. Moreover, each of the following sets is x—equivalence class:

K4(4,1,2,1,2,4), K4(2,1,1,5, 2,3)},
K4(1,84+2,2,1,2,5),K4(s +1,1,1,2,3,5)},
K4 3,4) 124 ;
Ky(3.4, Ky

Ky(3,4 , Ky
Ky(1 » K

H

2,4,2,
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Proof.

Let G = K4¥a,b,2,d,2,f), where a # 2, b # 2, d # 2, f # 2. We shall
cor;,sigerf the following types of G according to the conditions on the paths
a’ ) ) . °

?) Type 1: All four paths are of length one, e.i., G = K4(1,1,2,1,2,1),

ii) Type 2: Three paths are of length one and one path is of length greater

than two, e.i., G = K4(a,1,2,1, 2,1), where a > 2,

(iii) Type 3: Two paths are of length one and two paths are of length

greater than two, ei., G : K4(a,1,2,1,2, f), where a > 3, f > 3, or

G: Ky(1,5,2,1,2, f), where b> 3, f > 3,

gi(v) Type 4: Four paths are of length greater than two, e.i., Gs :
4(,b,2,d,2, f), wherea >3,6>3,62>3,d>3, f >3,

(v) Type 5: One path is of length one and three paths are of length greater

than two, e.i., G = K4(1,5,2,d,2, f), where 5 >3,d > 3, f > 3.

We then obtain the following

i) If G is the graph of Type 1, then by Lemma 2.3, G is x—unique;

ii) If G is the graph of Type 2, then by Lemma 2.2, G is x—unique;

iii) If G is the graph of Type 3, then by Lemmas 2.7 and 2.8, G is not
x—unique if and only if it is isomorphic to K4(4,1,2,1,2,4) or K4(1,s+
21, 2,1,2,s), where s > 3 and each of the following sets is x—equivalence
class:

Ki(4,1,2,1,2,4), K4(2,1,1,5,2,3)},

Kl s+2,2,1,2,5), Ka(s +1,1,1,2,3,5)};

(iv) If G is the graph of Type 4, then by Lemma 2.9, G is x-unique if

and only if it is not isomorphic to K4(3,4,2,4,2,6) or K4(3,4,2,4,2,8) or

K4(3,4,2,8,2,4), and each of the following sets is x—equivalence class:
K4 3’4:2’4v2;6 ’K4 315)4’27215 ’
Ka(3.4,2,4,2,8), K4(3.4,2,7,5,2)},
K4(3,4,2,8,2,4),K4(3,4,2,5,7,2

To complete the study on the chromaticity of G = K4-homeomorphs with
exactly two non-adjacent paths of length two, we need to consider G of

Type 5.
If there exists a graph H such that H ~ G, by Lemmas 2.1(1),(3) and

2.6, we know that H is a K ;-homeomorph and
|E(G)| = |E(H)|, Q(G) = Q(H) L

Let H = K4(i1, j1, k1,11, m1, n1), without loss of generality, we assume that
1) = min {'il,jl,kl,ll,ml,nl} = 1. We define R’ = {jl,kl,ll,ml,nl} and
R'={jii+1,k1+1,h+1,m+1,nm+1}

Let G = K4(a,b,2,d,2, f) = K4(i,7,2,k,2,1). Without loss of generality,
let ¢ =min {%,3,2,%,2,{} and by Lemma 2.1(4), ¢ = ¢; = 1. Then after
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simplification, Equation (1) yields

d+j+k+l=gi+ki+h+mi+n (2)
OO0 S R g LSS T L TS 5SS L SN ST S S
wh 4 w? +w? o+ wl + wtl wd b wh e d gl = gl _

wltmiti _ g kitidh _ whrtmth _ o 14+h g mti o kvt +
wi _|_,w’l¢ + wll + w;n + 'U)? + w.11+1 + ,wk1+1 + w'1+1 + .wm1+1 +
whH 3)

where Rf = R'UR".

In Equation (3), the positive terms (resp. negative terms) in the left hand
side can only be canceled by the negative terms (resp. positive terms) in
the left hand side or by the positive terms (resp. negative terms) in the
right hand side. Since 2,2,3,3 are not equal to the exponents in L3 or
simply 2,2,3,3 ¢ L3, we have 2,2,3,3 € R}, where R} = R'U R". Note
that the two lowest terms in the left hand side of Equation (3) are equal to
w?. So, 2,2 € R’ and 3,3 € R".Observe that the term —w? € —L, can be
canceled by the terms w?, w¥, w!, wt!, wk+!, w**! in La. If one of the
exponents j + 1, k+1, [ 41 is equal to 4 then correspondingly one of j, k,
! is equal to 3 which implies that 3,3,3U RF. This is a contradiction. Let
us now consider one of j, k, ! being equal to 4.

There are six cases to be considered, namely, Case 1: 2 < j < k <[, Case
2:2<j<I<kCased: 2<k<j<l,Cased 2<k<I<j, Caseb:
2<1<j<k Caseb: 2<I<k<j.

Table 1 shows the possible values of exponents belonging to L7 in re-

lation to the values of some exponents in Ly following the assumptions in
Case 1.

Case 1. Claim: 2< j <k <.

Subcase 1.1 If | =4 then by our claim2 < j <k <l,j=3o0orj=4.
Subcase 1.1.1 Suppose j =3. Then k=3 or k= 4.
Subcase 1.1.1(a) Let j = 3, k = 3 and | = 4. Then we have

G = K4(1,3,2,3,2,4), where g(G) = 6. Since {l,k+ 1} C L3, we
e {2,2,3,3,l+ 1,5, + 1,k} C Rf. So R' = {2,2,j,l+1,k—1} =
}(2, 2,3,5,2}. By Lemma 3.2, the only case of H which is not x-unique is
4(1,2,2,2,3,5), where K4(1,2,2,2,3,5) ~ K4(1,2,2,2,4,2). Obviously,
4(1,3,2,3,2,4) is not isomorphic to
K4(1,2,2,2,4,2). This is a contradiction. For all other cases of H being
Xx-unique, since H ~ G, H 2 G. But H is not isomorphic to G. This is
again a contradiction.

Subcase 1.1.1(b) Let j = 3, ¥k = 4 and |l = 4. Then G =
K4(1,3,2,4,2,4), where g(G) = 6 and G has only one cycle of length
six. We have R’ = {2,2,5,l+ 1,k -1} = {2,2,3,5,3}. There are four
non-isomorphic cases of H, namely: Ky4(1,2,3,2,5,3), K4(1,2,3,2,3,5),

Q
|
=
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Subcase | j+3 | j+k+2

1.1 l
1.2.1 1+1 k
1.2.2 l+1 k
1.2.3 l k
1.2.4 l k
1.3.1 I+1 j
1.3.2 k I+1 j
1.3.3 k J
1.3.4 I+1 7
1.3.5 l 7
1.3.6 k l j
1.3.7 l j

Table1l: 2<j<k<l

K4(1,2,3,3,5,2) and K4(1,2,3,3,2,5). Thus, we obtain a solution for
Equation (3) where G = K4£1,3,2, 4,2,4) and H = K,(1,2,3,2,3,5). For
brevity, throughout the proof, the algebraic solution to show whether Equa-
tion (3) is satisfied or not by the cases of H and G shall be left to the reader.

Subcase 1.1.2 Suppose j = 4. Then by our claim 2 < j < k < |,
we have £ = | = 4, G = K4(1,4,2,4,2,4), 9(G) = 7 and G has
two cycles of length seven. We consider R’ = {2,2,,l+ 1,k -1} =
{2,2,4,5,3}. By Lemma 2.1(2), g(H) = 7 and H must have two cycles
of length seven as well. The following are the non-isomorphic cases of H:
K4(1,2,4,3,2,5), K4(1,2,4,2,3, 152 Therefore, we obtain a solution where
G = K4(1,4,2,4,2,4) and H = Ky(1,2,4,2,3,5). Note that this solution
can be verified by Lemma 2.2.

Subcase 1.2 If k = 4 then j = 3 or j = 4, where |l > 4. Since k,k+1 €
L3, we have j,j +1,1,1+1,2,2,3,3 € R}. Thus, R = {2,2,5,k,1}.
Hence, {i,2,2,7,k,1} and {iy, j1, k1,11,m1,71} are the same as multisets.
l{3y Lemhr:n?} 2.1(4(ii)), G = H. Let us now consider conditions where R’ #

2, 2’j’ ) .

Subcase 1.2.1 Suppose k =4 andl+1=j+2+k,ie,!=3+5 Then
G =Kuy(1,7,2,4,2,7+6), g(G) = j +3 and G has only one cycle of length
j+3, where j = 3,4. Since k,!+1,k+1 € L3, we havel, j,j+1,2,2,3,3 €
R}. So, R' ={2,2,j,1-1,k+1} = {2,2, j,j+4, 5} and the non-isomorphic
cases of H are: K4(1: 2»j1 2,j+4, 5)) K4(1»23j,2v 5,7+4), K4(11 2,7,53+
4, 2): K‘l(ly 2’.7'1 5, 27.7 + 4); K4(11 2rj7j + 4) 2: 5) and K4 1’21j)j + 41 5:2)'
Equgtion (3) is not satisfied by any of these cases of H for the values of
Jj=3,4.
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Subcase 1.2.2 Suppose k = 4 and ! +1 = j+3. Then! = j+ 2,
G = Ky(1,5,2,4,2,j+ 2), g¢(G) = j+ 3 and G has only one cycle
of length j + 3, where j = 3,4 We have R' = {2,2,5,l - 1,k +

= {2,2,7,7 + 1,5}. The following are the non-isomorphic cases
of H: 4(13 2:.1: 21.7 + 115): K4(1a 27j$ 21 5:.7 + 1?7 K4(1s 2;.7.) Svj + 11 2)1
K4(1’ 2,5,9,2,j+1), K4(1) 2,7,J+1,2, 5) and K, 1,2,5,j+1,5, 2)' Equa"
tion (3) is not satistied by any of these cases of H for the values of j = 3, 4.

Subcase 1.2.3 Suppose k =4 andl = j+2+k =j+6. Then G =
K4(1,5,2,4,2,5+486), g(G) = 7+ 3 and G has only one cycle of length j+3,
where j = 3,4. We know that k,l,k+1 € L3, thus, 5,5+1,14+1,2,2,3,3 €
R}. So, R' = {2,2,j,l+1,k—1} = {2,2,5,7 + 7,3}. By Lemma 2.1(2),
g(H) = j+3 and H must have only one cycle of length j+4-3. The following
are the non-isomorphic cases of H: Ky(1,7,2,2,3,7+7), K4(1,5,2,3,2,5+
7), where j = 3,4; K4(1,5,2,2,7+7,3), K4(1,4,2,3,5+7,2), where j = 3.

one of these cases of H satisfies Equation (32[Ifor the values of j = 3, 4.

Subcase 1.2.4 Suppose k = 4 and ! = j+3, Then G = K4(1,5,2,4,2,5+
3), 9(G) = 7 + 3 and G has only one cycle of length j + 3, where j = 3,4.
We have R’ = {2,2,5,l+ 1,k — 1} = {2,2,4,j + 4,3}. The following are
the non-isomorphic cases of H: K4(1,3,2,2,3,54+4), K4(1,5,2,3,2,5+4),
where j = 3,4; K4(1,5,2,2,7 + 4,3), K4(1,5,2,3,5 + 4,2), where j = 3.
Equation (3) is not satisfied by any of these cases of H for the values of
j=3,4.

Subcase 1.3 If j = 4 then we can consider the following subcases.

Subcase 1.3.1 Suppose l +1 = j+k+2. Thenl =k +5, G =
K4(1,4,2,k,2,k+5), where k > 4, g(G) = 7 and G has only one cycle of
length seven. We know that j,k+1,04+1 € L7, so, j +1,k,l € RY. Thus,
R = {j+1,k-1,1,2,2} = {5, k—1,k+5,2,2} or R’ = {j+1,k,1-1,2,2} =
{5,k,k+4,2,2}.
Let R' = {5,k — 1,k +5,2,2}. g(H) =7 when k = 4,6. If £ = 4 then
R' = {5,3,9, 2,2} and the non-isomorphic cases of H are: K4(1,2,9,3,2,5),
K4(1,2,9,2,3,5), K4(1,3,9,2,2,5). Therefore, we obtain a solution where
G = Ky4(1,4,2,4,2,9) and H = K,4(1,2,9,2,3,5). If k = 6 then R =
{5,5,11,2,2} and it is not possible to have cases of H where g(H) =17.
Let R' = {5,k,k+4,2,2}. g(H) =7 when k =4, ie, R' = {5,4,8,2,2}.
We have the following non-isomorphic cases of H: Ky(1,2,4,2,8,5),
K4 la 2, 4, 2) 5$8 ) K4(1)2)41572, 8), K4(1: 2) 41 51 81 2): K4 1, 2’ 41 81 5:2 )
54 . Equation (3) is not satisfied by any of these cases of

Subcase 1.3.2 Suppose I +1=j+k+2and k= 35+ 3. Then k =7,
I =12, K4(1,4,2,7,2,12), where g(G) = 7 and G has only one cycle of
length seven. We know that j,l+1,k,k+1 € L3, so, j+1,1,2,2,3,3€ R}.
Thus, R' = {j+1,k,1-1,2,2} = {5,7,11,2,2}or R’ = {2,2,j+1,l,k—1} =
{2,2,5,12,6} or R’ = {2,2,5,1— 1,k +1} = {2,2,4,11,8}.
In the first and second cases of R’, namely, R’ = {5,7,11,2,2} and R’ =
{2,2,5,12,6}, respectively, g(H) # 7, a contradiction to Lemma 2.1(2).
If R = {2,2,5,l— 1,k + 1} = {2,2,4,11,8}, then the non-isomorphic
cases of H are: Ky(1,2,4,2,11,8), K4(1,2,4,2,8,11), K4(1,2,4,11,2,8),
K4(1,2,4,11,8,2),
K4El,2, 4, 8,2,11; and Ky(1,2,4,8,11,2). Equation (3) is not satisfied by

1,2,4,8,2,5
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any of these cases of H.

Subcase 1.3.3 Suppose k= j+3, i.e,, k=7, then G = K,4(1,4,2,7,2,1)
where! > 7 and g(G) = 7. Wehavek, j,k+1 € L7, thus2,2,3,3,5+1,1,1+
1 € Rf. By Equation (2), R’ = {2,2,j+1,k~1,1},i.e., R' = {2,2,5,6,1}.
By Lemma 2.1(2), g(H) = 7. But with R’ = {jl,kl,ll,ml,m{_' =
{2,2,5,6,l} and %, = 1, the girth of H cannot be equal to seven. This
is a contradiction.

Subcase 1.3.4 Suppose | +1 = j + 3, ie, I = 6, then G =
K4(1,4,2,k,2,6), where k = 4,5,6 and g(G) = 7. Since l+1,j,k+1 € L3,
we have ,j + 1,k,2,2,3,3 € R;. So, R = {2,2,5+ 1,l — 1,k} or
R ={2,2,j+1,l,k-1}.

If R ={2,2,j+1,l - 1,k} ={2,2,5,5, k}, then the non-isomorphic cases
of H occur only if k = 4 since g(G) = g(H) = 7, by Lemma 2.1(2).
These cases of H are as follows: K4(1,4,2,5,2,5), K4(1,4,2,5,5,2) and
K4(1,4,2,2,5,5). Note that G = K4(1,4,2,4,2,6). None of these cases
satisfies Equation (3).

IfR = {2,2,5+1,l,k—1} = {2,2,5,6,k — 1}, then the non-isomorphic
cases of H, where g(H) = 7, occur only when k =4,5.

Let k¥ = 4. The non-isomorphic cases of H are: Ky(1,2,5,2,3,6),
Ki(1,2,6,2,3,5) and K,(1,2,5,3,2,6). Note that G = K4(1,4,2,4,2,6
Equation (3) is satisfied when G = K4(1,4,2,4,2,6) and H &
K4(1,2,6,2,3,5). Thus, we get a solution for Equation (3) where
Ki(1.4.2,4.2.6) ~ K4(1,2,6,4,2,4), ie., G = K4(1,6,2,4,2,4) and
H = K,(1,2,6,2,3,5).

Let k = 5, ie, R = {2,2,5,6,4} and G = K4(1,4,2,5,2,6). Then
the non-isomorphic cases of H are: Kj(1,2,4,2,5,6), K4(1,2,4,2,6,5),
K4(1,2,4,86,5,2), K4(1,2,4,6,2,e53(, K4(1,2,4,5,2,6)
and K,4(1,2,4,5,6,2). It can easily be checked that none of these cases
satisfies Equation (3).

Subcase 1.3.5 Suppose | = j+2+k = k+6. Then G = K4(1,4,2,k,2, k+
6), where k > 4 and g(G) = 7. Since j,l,k+1 € L3, we have j + 1,{ +
1,k,2,2,3,3€ Rf. So, R ={2,2,j+1,l,k-1}or R' ={2,2,5,1+1,k-1}.

Subcase 1.3.5(a) Let R' = {2,2,j+ 1,,k—1} = {2,2,5,k+ 6,k — 1},
where k > 4. Then the only possible value of k is 5 for H to have girth seven.
If k = 5, then G = K4(1,4,2,5,2,11), g(G) = 7, G has only one cycle of
length seven and R’ = {2,2,5,11,4}. There are six non-isomorphic cases
of H, namely: K,4(1,2,4,5,11,2), K4(1,2,4,5,2,11), K4(1,2,4,2,11,5),
K4(1,2,4,2,5,11),

K4(1,2,4,11,5,2) and K,(1,2,4,11,2,5). It is easy to check that none of
these cases of H satisfies Equation (3).

Subcase 1.3.5(b) Let R’ = {2,2,7,!+ 1,k -1} = {2,2,4,k+ 7,k -1},
where & > 4, g(G) = 7 and G has only one cycle of length seven. Then
the following are the non-isomorphic cases of H: (i) K4(1,2,4,2,k—1,k+
7), K4(1,2,4,k — 1,2,k + 7) only when k > 4. Since if £ = 4 then H
will have two cycles of length seven which contradicts Lemma 2.1§2). (ii)
K4(1,2,4,k+7,2,k—1), K4(1,2,4,k+7,k—1,2) only when k > 5. Since
if kK = 4 then g(H) = 6 and if £ = 5 then H will have two cycles of
length seven which contradicts Lemma 2.1(2). (iii) K4(1,2, 4, 2,k+7,k—1),
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K4(1,2,4k — 1,k + 7, 2), where k > 4. Take note that if k£ = 4, then there
are two cycles of H that can be considered as its shortest cycles, namely,
(1,2,4) and (2,2,3), so, that g(G) = 7. The non-isomorphic cases of H
when (1,2, 4) is its shortest cycle are Ky(1,2,4,2,11,5), K4(1,2,15,11,2).
If we consider (2,2, 13) as the shortest cycle of H then the other two non-
isomorphic cases of H are K4(1,2,11,2,3,4) and K4(1,3,4,2,2,11), where
G = K4(1,4,2,4,2,10). None of these cases of H satisfies Equation (3).

Subcase 1.3.6 Suppose k = j+3andl =j+2+k,ie,k=7,j=4and
1 =13. Then G = K4(1,4,2,7,2,13), where g(G) = 7. Since k,j,l,k+1¢€
L3, we have j+1,141,2,2,3,3€ R}. So, we have R’ = {2,2,7,1+1,k~2}
or R =1{2,2,j+1,L,k—1}or R ={2,2,j+1,0+ 1,k — 2}.

Let R’ = {2,2,5,1+ 1,k -1} = {2,2,4,14,6}. Then the non-isomorphic
cases of H are: K4S]e 2,4,2,14,6), K4(1,2,4,2,6,14), K4(1,2,4,6,2,14),
K4(1,2,4,6,14,2), K4(1,2,4,14,6,2) and K4(1,2,4,14,2, 6). Equation (3)
is not satisfied by any of these cases of H. If R' = {2,2,7+ 1,1,k —
1} ={2,2,5,13,6} or R’ = {2,2,j+ 1,1+ 1,k — 2} = {2,2,5,14,5}, then
g(H) # 7. This contradicts Lemma 2.1(2).

ubcase 1.3.7 Suppose ] = j+3 and j = 4. Then! =7, G =
K4(1,4,2,k,2,7), where 4 < k < 7 and g(G) = 7.

Subcase 1.3.7(a) Let k = 4, i.e.,, j = k = 4. Then by Equation (2),
je L3 andk € RY. Thus, l,j,k+1€ L7 and 2,2,3,3,l+1,j+1,k € R}.
So we have R' = {2,2,j+1,l,k—1} or R' = {2,2,5,l+ 1,k —1}.
Assume that R’ = {2,2,7+ 1,l,k - 1} = {2,2,5,7,3}. Then we have
G = K4(1,4,2,4,2,7), g(G) = 7 and the non-isomorphic cases of H
where g(H) = 7, by Lemma 2.1(2)) are as follows: K,4(1,2,5,3,2,7),
4(1,2,7,3,2,5),

K4El,2,7, 2,3, 5; and Ky4(1,2,5,2,3,7). The solution for Equation (3)
is G = K,41,2,52,3,7) and H = K4(1,2,7,2,3,5). Note that
K,4(1,4,2,4,2, 73 = Ky4(1,7,2,4,2,4). So, the solution can be expressed
as G = K4(1,7,2,4,2,4) and H = K4(1,2,7,2,3,5).

Assume that R’ = {2,2,5,l+ 1,k — 1}, ie.,, R = {2,2,4,8,3}. Then
by Lemma 2.1(2), g(H) = 7 and H has only one cycle of length seven.
The non-isomorphic cases of H are as follows: Ky(1,2,4,2,8,3) and
K4(1,2,8,2,3,4). It is easy to verify that none of these two cases of H
satisfies Equation (3).

Subcase 1.3.7(b) Let j = 4, ! = 7and 4 < k < 7. Then G =
K4(1,4,2,k,2,7) and g(G) = 7. Since l,j,k+1 € L3, Il + 1,5 +
1,k,2,2,3,3 € R}, we have R’ = {2,2,5+1,l,k—1} or R' = {2,2,5,1 +
1,k—1}.

Assume that R’ = {2,2,j+1,l,k—1} = {2,2,5,7,k—1}, where k = 5, 6, 7.
By Lemma 2.1(2), g(H) = 7. The only possible way to have cases of H
with g(H) = 7 is when k¥ = 5. If £ = 5 then G = K4(1,4,2,5,2,7) and
R = {2,2,5,7,4}. Thus, we have {1,4,2,5,2,7} = {iy, 51, k1,1, m1, 71}
as mulltisets (since ¢; = 1). By Lemma 2.1(4(ii)), G = H.

Assume that R’ = {2,2,5,l+ 1,k — 1} = {2,2,4,8,k -1} and G =
K4(1,4,2,k,2,7}, where & = 5,6,7. Then the following are the non-
isomorphic cases of H: K4(1,2,4,8,2,k — 1} and K,4(1,2,4,8,k — 1,2},
where k = 6,7 (since for & = 5, there will be two cycles of length
7); Ka(1,2,4,2,8,k— 1}, K4(1,2,4,2,k— 1,8}, K4(1,2,4,k— 1,8,2} and
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K4(1,2,4,k— 1,2, 8}, where k = 5,6, 7. None of these cases of H satisfies
Equation (3) for all values of k = 5,6, 7.

In Cases 2-6, we follow the same procedure and will not be shown in this
paper since the process is very long and tedious. For the details of the rest
of the proof, the reader may contact the first author or may refer to our
technical report [2].
We now summarize our result. Please note that our reference for the solu-
tions derived from Cases 2-6 is our technical report [2].

We have obtained the following solutions:

() Kai(1,3,2,4,2,4) ~ Ka(1,2,3,2,3,5) (Cases 1,2,5/Subcases
1.1.1(b),2.2.1(2),5.2.1(a))

(i) Ka(1,4,2,4,2,4) ~ K4(1,2,4,2,3,5) (Cases 1,2,5/Subcases
1.1.2,2.2.1(b),5.2.1(b))

(iii) K4(1,6,2,4,2,4) ~ K4(1,2,6,2,3,5) (Case 1,3,4/Subcases
1.3.4,3.2.4(a),4.2.4(a))

(iv) Ka(1,7,2,4,2,4) ~ K4(1,2,7,2,3,5) (Cases 1,3,4/Subcase
1.3.7(2),3.2.2(2),4.2.2(a))

(v) K451,9,2,4,2,4) ~ K4(1,2,9,2,3,5) (Cases 1,3/Subcases
1.3.1,3.2.5(a))

(vii) K,(1,10,2,4,2,4) ~ K4(1,2,10,2,3,5) (Case 3/Subcase
3.2.3(b))

(viii) Ki(1,b,2,4,2,4) ~ K4(1,2,b,2,3,5),b > 4 (Cases 3,4/Subcases
3.2.1(d),4.2:1(b))

Clearly, all of these solutions can be expressed in a single result which is
K4(1,6,2,4,2,4) ~ K4(1,2,b,2,3,5), where b > 3. Let b = t. This com-
pletes the proof of Theorem 3.1.
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