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Abstract

Two cycles are said to be intersecting if they share at least one
common vertex. Let x{(G) and xj'(G) denote the list edge chromatic
number and list total chromatic number of a graph G, respectively.
In this paper, we proved that for any toroidal graph G without in-
tersecting triangles, x{(G) < A(G) + 1 and X/ (@) < A(G) + 2 if
A(G) > 6, and xi(G) = A(G) if A(G) > 8.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected.
We follow [3] for terminology and notation not defined here. Let G be a
graph. We use V(G), E(G), A(G) and §(G) (or simply V, E, A and 4) to
denote the vertex set, the edge set, thé maximum degree and the minimum
degree of G, respectively. For a vertex v € V, let N(v) denote the set of
vertices adjacent to v, and let d(v) = |N(v)| denote the degree of v. A k-,
k*- or k~-vertex is a vertex of degree k, at least k or at most k, respectively.
A k-cycle is a cycle of length k, and a 3-cycle is usually called a triangle.

A total k-coloring of a graph G = (V, E) is a coloring of V U E using at
most k colors such that all adjacent or incident elements receive distinct
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colors. The total chromatic number of G, denoted by x”(G), is the smallest
integer k such that G has a total k-coloring. It is clear that x”(G) > A(G)+
1. Behzad (1] and Vizing [17] independently conjectured that x"/(G) < A+2
for every graph G. This conjecture was verified for planar graphs with
maximum degree A # 6 ([4], [12], [13], [16], [20], [22]).

A total assignment of G is a mapping L that assigns to each element
z € VUE alist L(z) of colors. Given a total assignment L of G, an L-total-
coloring of G is a proper total-coloring such that each element receives a
color from its own list. A graph G is k-total-choosable if G has a proper
L-total-coloring for every total assignment L with |L(z)| > k for every
z € VUE. The list total chromatic number or total choosability of G,
denoted x}'(G), is the smallest integer k such that G is k-total-choosable.
The list edge chromatic numberor edge choosablity x}(G) is defined similarly
in terms of coloring only edges, the ordinary edge chromatic number is
denoted x'(G). Clearly, x{(G) > x"(G) > A +1 and x}(G) > x'(G) > A.

Suppose that G is a graph. Vizing, Gupta, Albertson and Collins, Bol-
lobés and Harris (see [2] or [10]) independently conjectured that x}(G) =
X'(G). It is well known as the List Coloring Conjecture. Borodin et al.
(5], and Juvan et al. [11] posed independently the conjecture which we
refer to as the Total List Coloring Conjecture (or simply TLCC) that
X/ (G) = x"(G). The conjecture has been proved only for a few special
cases. Borodin et al. [5] proved xj(G) = x'(G) = A and x}(G) = x"(G) =
A+1 for graphs with A > 12 which can be embedded in a surface of nonneg-
ative characteristic. Wang and Lih [21] confirmed TLCC for outerplanar
graphs. List edge and list total colorings are extensively studied and quite a
few interesting results about these two colorings of planar graphs have been
obtained in recent years (see [7], [8], [9], [14], [15], [18], [19]). In [21], Wang
and Lih proved that a planar graph without intersecting triangles is edge-
(A+1)-choosable where A # 5. In [7], Cranston proved that, for G being a
planar graph without triangles sharing a common edge, xj'(G) < A(G) +2
if A(G) 2 7, and x/(G) = A(G)+1 if A(G) > 9. Cranston also noted that
his result can be extended to graphs embedded into surfaces of nonnegative
characters. Liu et al. [15] prove that x{(G) = A(G) and x{'(G) = A(G) +1
if A(G) > 8 for a planar graph G without intersecting 4-cycles.

In this paper, we consider toroidal graphs with no triangles sharing a
common vertex. In 2008, Wu and Wang [19] proved that x{'(G) < A(G)+1
for A > 8. We consider A > 6 and obtain Theorem 1.1, and follow the
idea of Wang and Wu, get Theorem 1.2.

Theorem 1.1. Suppose that G is a toroidal graph without intersecting
triangles. If A(G) > 6, then xj(G) < A(G) +1 aend x]'(G) < A(G) + 2.

Theorem 1.2. Suppose that G is a toroidal graph without intersecting
triangles. If A(G) > 8, then x}(G) = A(G).
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2 Proofs

We use the following notation for convenience. Let G = (V,E, F) be
a toroidal graph, where F' is the face set of G. For a face f € F, the
degree of f, denoted by d(f), is the length of a boundary walk around f
(where each cut-edge is counted twice). A k-, k*- or k™ -face is a face of
degree k, at least k or at most k, respectively. Let vj,vs,...,vr be the
vertices incident with a k-face f such that d(v;) > d(v2) > --- = d(vg). We
define D(f) = (d(v1),d(vz),- -+ ,d(vk)), 6(f) = d(vi) (the minimum degree
of vertices incident with f), and call f a (d(v;),d(v2), - - , d(v))-face. Let
fr(v), fi+ (v) or fi-(v) denote the number of k-faces, k*-faces or k~-faces
incident with a vertex v, and let ni(v) and ny+(v) denote the number of
k-vertices and kt-vertices adjacent to v, respectively.

In the proofs we use the discharging method. We assign an initial charge
for each element. Then we design appropriate rules and redistribute weights
accordingly. Once the discharging is finished, we get the new charge for
each element which is nonnegative, and the sum of all the new charges is
positive. But by Euler’s formula, the total charge is still negative, which is
a contradiction.

We first introduce the following lemmas. A graph G is minimally non-k-
totally choosable if it is not k-totally choosable but all its proper subgraphs
are k-totally choosable. It is similar to define minimally non-k-edge choos-
able graphs.

Lemma 2.1. (Chang et al. [6]) The following hold for any minimally
non-k-totally choosable graph G with mazimum degree A < k — 1.

(a) G is connected.

(b) If e = uv is an edge in G with d(u) < 531, then d(u) +d(v) > k+1.
In particular, 6(G) > k+1— A and so G has no I-vertez.

(c) G has no even cycle vivz - - - vav1 with d(v;) < min{";21, k+1- A}
for each odd i.

In the same spirit of previous results in [5] and [6], we have the following
lemma similar as Lemma 2.1.

Lemma 2.2. The following hold for any minimally non-k-edge choosable
graph G with mazimum degree A < k.

(a) G is connected.
(b) If uv is an edge of G, then d(u) +d(v) > k + 2.

(c) G has no even cycle vivy - - - vgsvy with d(v;) < k+2— A for each odd
1.
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Proof. Clearly, (a) is true for the choice of G. We will show (b) and (c) as
follows.

(b) Suppose to the contrary that there is an edge uv such that d(u) +
d(v) € k+ 1. Suppose that L is an edge-list-assignment of G such that
|L(e)| > k for each e € E. Let G' = G — uv. By the minimality of G, G’
admits an L-edge coloring ¢. Since the neighbors of uv use at most & — 1
colors with respect to ¢, ¢ can be extended to G, a contradiction.

(c) Suppose to the contrary that G contains an even cycle C =: v;vg - - - v:v
with d(v;) < k+ 2 — A for each odd i. Suppose that L is a edge-list-
assignment of G such that |L(e)| > k for each e € E. By the minimality
of G, G — E(C) has an L-edge coloring. Then each edge in C has at least
k—(A—2)—(k+2— A —2) =2 permissible colors. Since any even cycle is
2-choosable, we can color the edges of C, hence G has an L-edge coloring,
a contradiction. |

Lemma 2.3. (Wang and Wu [19]) Let G be a minimally non-A-edge
choosable graph or a minimally non-(A + 1)-totally choosable graph. For
any integer 2 < k < |4, let Xx = {z € V(G) | d(z) < k} and ¥}, =
Uzex N(z). If Xx # 0, then there ezists a bipartite subgraph My of G
with partite sets X and Yy such that dag, (z) = 1 for each z € X and
dm, (y) < k—1 for each y € Y.

2.1 Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into two parts. First, we will
show the former part of the Theorem. Suppose the theorem is false. Let
G = (V,E) be a minimal counter-example. Let L be an edge assignment
of G with |L(e)| = A + 1 for any edge e € F such that G is not edge-L-
colorable. We still use G to denote a toroidal embedding of G and let F be
the face set of G. Let f € F be a face of G. By Lemma 2.2(b), 6(G) > 3
and each 3-vertex must be adjacent to three A-vertices. It yields that f
is incident with at most [%’“J A-vertices who is adjacent to at least one
3-vertex incident f.

We use a discharging procedure. The initial charge of an element z €
VUF of G is w(z) = d(z) — 4. Since G is a toroidal graph, by the Euler’s
formula |V| + |F| — |E| 2> 0, the total charge of the vertices and faces of G

is equal to
> (@) —4) + ) (d(f) -4) <0,

veV feF
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Then, we transfer the charges between vertices and faces, leading to a new
charge w/(z), by applying the following rules.

(R1) Each 3-vertex receives charge 3 from each of its adjacent A-vertices.
(R2) Each 3-face receives charge 1 from each of its incident 5+-vertices.

(R3) Each 5%-faces f sends charge 3 to its incident A-vertex if the A-
vertex is adjacent to at least one 3-vertex incident with f.

Let f € F be a k-face of G. It is easy to see that w/(f) > 0 for k£ = 4.
First, we suppose k > 5. Then we have w/(f) > w(f)— Z|x 1> % -4>
2>0ifk>6,and w'(f) > w(f)— %] x3=k-5>0if k=5 by (R3).

Now we may suppose that ¥ = 3. Then w(f) = —1. Note that the
neighbors of a 4~ -vertex are (A — 1)*-vertices by Lemma 2.2(b). So if
there is a 4~ -vertex incident with f, then it is incident with at least two
5+_vertices. Thus by (R2), w/(f) > -1+2x -% = 0. Otherwise, there are at
least three 5+-vertices incident with f and so w/(f) > ~1+3x 3 =1>0
by (R2).

Suppose that v is a k-vertex of G. Since G has no intersecting triangles,
each k-vertex is incident with at most one 3-face. If k£ = 3, then by (R1), v
receives 3 from each of its adjacent A-vertex, so w’(v) > w(v) +3 x 3=0.
If k = 4, then w'(v) 2 w(v) =0. If 5 <k < A — 1, since v is incident with
at most one 3-face, w'(v) > w(v) — 4 >k —4—-3 > 3 > 0 by (R2).

Suppose that & = A. Note that f3(v) < 1. By Lemma 2.2(c), G has
no (A, A, 3,3)-faces. If nz(v) > | S ], then there are at least na(v) — 4]
5*-faces. Then by (R1) and (R3), we have w’(v) > w(v) + (n3(v) — [ §]) X
Iong(v)xi-1>A-41-% >1>0frA>6. Ifng(v) < |5], wehave
W) 2w) —nz(v)x—1>2A-4-|§xi-1>88_4l>1>0

In all cases, we have w’(z) > 0 for each z € V U F, and furthermore
W'(v)>0ifd(v)=A >6. Hence 0 < Y _cyurw'(z) =D cvurpw(z) <0,
a contradiction. This contradiction completes the proof of the former part
of Theorem 1.1.

Now, we proceed to prove the latter part. Suppose the theorem is false.
Let G = (V, E) be a minimal counterexample. By [7], the assertion holds
for A(G) > 7 since no intersecting triangles yields no adjacent triangles. So
it follows that A(G) = 6. Thus by Lemma 2.1(b), 6(G) > 3, each 3-vertex
is adjacent to three 6-vertices, and hence each 4-vertex is adjacent to four
4%_vertices. Let L be a total assignment of G such that |L(z)| > 8 for
each x € VU F and G is not L-total colorable. We still use G to denote a
toroidal embedding of G and let F' be the face set of G.

Claim 1. G has no (4,4,4)-face.
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Proof. Assume to the contrary that G has a (4,4, 4)-face f. Let C = uvw
be the facial cycle of f. Consider the graph G' = G \ {uv, uw,vw}. By the
minimality of G, G’ has an L-total coloring. Uncolor u,v and w, then each
element incident with C touches at most four colors. This implies that each
element incident with C has at least four colors available. It follows from
x"(C) = x{(C) = 3 that C can be totally colored properly. This implies
that G is L-totally colorable, which is a contradiction. |

The initial charge of a vertex v of G is w(v) = 2d(v) — 6, and the
initial charge of a face f of G is w(f) = d(f) — 6. By Euler's formula
V| +|F| —|E| = 0, the total charge of the vertices and faces of G is equal
to

D _(2d(v) —6)+ Y _(d(f) —6) < 0.

veV feFr
Our discharging rules are as follows.

(R4) Each 4-vertex sends charge } to each of its incident k-faces f for
3<k<5.

(R5) From each 5-vertex to each of its incident k-faces f for 3 < k < 5,
transfers

(R5.1) 2, ifk=3;
(R5.2) 1, ifk=4or5.

(R6) From each 6-vertex to each of its incident k-faces f for 3 < k < 5,
transfers

(R6.1) 2, ifk=3;
(R6:2) 3, ifk=4or5.

Let f € F be a face of G. Clearly, w'(f) = w(f) = 0 if d(f) > 6.
Suppose that d(f) = 3. Then w(f) = —3. If §(f) = 3, then D(f) =
(6,6,3) by Lemma 2.1(b), and thus w'(f) > w(f)+2x2=1> 0 by
(R6.1). If 6(f) = 4, since 4-vertex is adjacent to only 4*-vertices and by
Claim 1, we have D(f) = (5%,4%,4). By (R4), (R5.1) and (R6.1), we have
W'(f) > -3+2+2x 3 =0. If 5(f) > 5, note that each vertex incident
with f sends 2 to f by (R5.1) and (R6.1), w'(f) > —-3+3x2=3>0.

Suppose that d(f) = 4. Then w(f) = —2. First we consider that 6(f) =
3. Note that f is incident with at least two 6-vertices. By Lemma 2.1(c),
it is impossible that D(f) = (6,6, 3, 3) Hence, D(f) = (6,6,4* 3) Since
each 4+-vertex glves at least cha.rge 5 to f and each 6-vertex give 3 3 to f,

Ww(f)>—-2+2x 1+ 3 =0. If §(f) > 4, by (R4), (R5.2) and (RS6. 2), then
J(f)>—2+4x1>0
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Suppose that d(f) = 5. Then w(f) = —-1. If J(f) = 3, then f is

incident with at least two 6-vertices of which each sends 2  to f, and hence

w'(f) > -1+2x3 =150 Ifé() > 4, then each vertex incident with f
sends 1 to it, andw’(f) >-1+5xi=2%>0.

Now let v be a k-vertex of G. Since G has no intersecting triangles,
each k-vertex is incident with at most one 3-face, i.e., fa(v) < 1. If k =3,
then w/(v) = w(v) > 0. If k = 4, then w(v) = 2 x 4 — 6 = 2. Note that
v sends cha.rge at most } to each incident face by (R4). Thus w'(v) 2
ww)—dxi=0 Ifk= 5 then w(v) = 4 and v is incident with at most
one 3-face, so w'(v) > w(v) —4 x 3 —2 > 0 by (R5).

At last, If £ = 6, then w(v) = 6 and v is incident with at most one
3-faces, then w'(v) > w(v) —5 x 3 —2 =1 > 0 by (RS6).

In all cases, we have w/(z) > 0 for each z € V U F, and furthermore
w'(v) >0ifd(v) =A =6. Hence 0 < ) cyurw'(2) = ) scvurw() <0,
a contradiction. This completes the proof of Theorem 1.1. 1

2.2 Proof of Theorem 1.2

Suppose the theorem is false. Let G = (V, E) be a minimal coun-
terexample. If G is not edge-A-choosable, we suppose that L is an edge
assignment of G with |L(e)| = A for any edge e € E such that G is not
edge-L-colorable. Suppose that G is not edge-A-choosable. It follows from
Lemma 2.2(b) that §(G) > A(G) + 2 — A =2, and hence every 2-vertex is
adjacent to two A-vertices.

The following notations are used in both [6] and [15]. Let G2 be the
subgraph induced by the edges incident with the 2-vertices of G. Since
A > 8, Gy does not contain any odd cycle. Thus, by Lemma 2.1(c), G2
is a forest. In each component T of G2, the leaves of T are all A-vertices.
It follows that G, contains a matching M that saturates all 2-vertices. If
uv € M and d(u) = 2, then v is called the 2-master of » and u is called the
dependent of v. It is easy to see that each 2-vertex has a 2-master and each
vertex of maximum degree can be the 2-master of at most one 2-vertex.

Let X be the set of vertices of degree at most 3 and Y = |J,¢x N(z).
By Lemma 2.3, we have that G contains a bipartite subgraph M = (X,Y)
such that dp(z) =1 and dy(y) =2 forallz€ X andy e Y. Wecall y
the 3-master of = if zy € M and £ € X. Therefore, each vertex of degree
at most 3 has a 3-master, and each vertex of degree at least A — 1 can be
the 3-master of at most two vertices.

We use a discharging procedure. The initial charge of an element z €
VUF of G is w(z) = d(z) — 4. Since G is a toroidal graph, by the Euler’s
formula |V] + |F| — |E| > 0, the total charge of the vertices and faces of G
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is equal to

3 (dw) — 4) + Y (d(f) - 4) <o.

veV fEF
Then, we use the discharging procedure, leading to a final charge w'(z),
defined by applying the following rules.

(R1) Each 2-vertex receives charge 1 from its 2-master.
(R2) Each k-vertex (2 < k < 3) receives charge 1 from each of its 3-masters.

(R3) Each 3-face receives charge 1 from each of its incident 5+-vertices.

Let f € F be a k-face of G. It is easy to see that w/(f) > 0 for k > 4.
Now we may suppose that £ = 3. Then w(f) = —1. Note that the neighbors
of a 4~ -vertex are (A — 2)*-vertices. Hence every 3-face is incident with
at least two 5%-vertices. So w/(f) > -14+2x § =0.

Suppose that v is a k-vertex of G. First, since G has no intersecting
triangles, each k-vertex is incident with at most one 3-face. Lemma 2.1(b)
and Lemma 2.2(b) yield that k£ > 8 if v is the 2-master of some vertex,
and k > 7 if v is the 3-master of some vertex. If k = 2, then by (R1) and
(R2), v receives 1 from its 2-master and receives 1 from its 3-master. So
w'(v) 2 w@)+1+1=0. If k = 3, then by (R2), v receives 1 from its
3-master, and thus w’(v) 2 w(v) + 1 =0. If k = 4, then w'(v) = w(v) =0.
If 5 < k < A — 2, since v is incident with at most one 3-face, w'(v) >
w(v) — 3 =3 >0. If k= A —1, then v can be a 3-master of at most two
3-vertices, and so w'(v) 2 w(v) —2x1—1=1>0. If k= A, then v can
be the 2-master of a 2-vertex and the 3-master of at most two 3~ -vertices.
Thus '(v) > w(w) -3-1=1>0.

In all the cases, we obtain that w/(z) > 0 for any element z € V' U
F. Since w'(v) > 0 when d(v) = A > 8, we see that ) .y rw(z) =
Yzevurw'(z) > 0, a contradiction. This completes the proof of Theo-
rem 1.2, |

In the proofs of Theorems 1.1 and 1.2, since we show that } ., p w'(z) >
0, the following two corollaries hold naturally.
Corollary 2.4. Suppose that G is a graph embedded in a surface of non-

negative characteristic and without intersecting triangles. Then x}(G) <
A(G) +1 and x}(G) < A(G) +2 if A(G) > 6.

Corollary 2.5. Suppose that G is a graph embedded in a surface of nonneg-
ative characteristic and without intersecting triangles. Then x}(G) = A(G)
if A(G) > 8.
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