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Abstract

This paper uses research methods in the subspace lattices, mak-
ing a deep research to the lattices of all subsets of a finite set and
partition of a n-set. At first, the inclusion relations between different
lattices are studied. Then, a characterization of elements contained
in a given lattice is given. Finally, the characteristic polynomials of
the given lattices computed.

1 Introduction

In this paper, we use terminology and notation in [1,2,4]. The character-
istic polynomials of partition lattices and subspaces lattices and lattices
of all subsets of the finite set have been given by [2]. Lattices generated
by orbits of subspaces have been detailed discussed in [3,4], and obtained
some important results. The purpose of this paper, with the way of [4],
is further studied the lattices of all subsets of the finite set and partition
lattices. At first, we shall study the inclusion relations between different
lattices. Then, we shall give a characterization of elements contained in a
given lattice. Finally, we shall compute the characteristic polynomials of
the given lattices.

Definitions of partially ordered set(Poset) and lattices are seen to [1] or [2].
Assume that P is a partially ordered set, a,b € P, a < b. If there exists no
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¢ € P such that a < ¢ < b, then b is called a cover of a and denoted by
a <-b.

Definition 1.1. Let P be a partially ordered set containing 0, and Ng be
a non-negative integer set. The mapping
r: P - No
a +— r(a)
is called the rank function in P, if the following conditions (i) and (i) hold:

(i) r(0) =0;

(i) r(b)=r(a)+1, for a,be P anda<-b.

Let L be a poset containing 0, elements covering 0 ‘is saled to be atoms
of L. The lattice containing 0 is saled to be the atom lattice, if for every
a € L\{0}, all a's are the supremum of some atoms in L, i.e.,

a=V{pe L0 <-p<La}.

Definition 1.2. Let L be the finite lattice containing 0. L is called the
geometric lattice , if the following conditions Gy and Gz hold:

G1 L is a atom lattice;

G, there exists the rank function r in L, and r(z Ay) +r(z Vy) <
r(z) + r(y), for allz,y € L.

Definition 1.3. Let P be a finite poset, K be a field of characteristic 0,
and p(z,y) be a binary function defined in P and taking values from K.
Assume that p(z,y) satisfies the following three conditions (i), (ii), and
(iii):

(i) for any x € P, there is always u(z,z) = 1;

(ii) forz,y € P, ifz £y, then u(z,y) =0;

(iii) forz,y€ P, ifz <y, then ) ., u(z,2) =0.
Then u(z,y) is called Mébius function defined in P and taking values
from K.

Definition 1.4. Let P be a poset containing 1 and 0, and there exist the
rank function r and the Mébius function p. Then the polynomial

x(P,z) = 3 (0, a)a™®=r@
a€EP
is called characteristic polynomial in P.

2 Lattice of all subsets of a finite set

Let S(n) = {z1,%2,**+ ,Zn}, P(S(n)) be power set of S(n). For X,Y €
P(S(n)), if X C Y, defining X <Y, then P(5(n)) generates a geometric
lattice by determinate partially ordered relation <[2l, If the partial order
of P(S(n)) is determined by reverse inclusion relation, then there are the
similar results.



Theorem 2.1. Assume that X,Y € P(S(n)), and X <Y is uniquely de-
termined by X 2 Y. Then P(S(n)) is generated a lattice by the determinate
partial order <, denoted by Lr(S(n)), and it is a geometric lattice.

Theorem 2.2. Let n > 1, then the characteristic polynomial of lattice
LR(S(n)) is ]
x(Lr(S(n)),t) = (t—1)".

Proposition 2.3. Let P be o finite poset with mazimum element 1, and K
be the field of characteristic 0. Let u(z,y) be the Mébius function defined in
P and teking values from K, f(x) be the function defined in P and taking
values from K. For any x € P, let

9(z) =Y f(v). (1)
Then i
fz) =) 9@)u(=,y). (2)
zly

Conversely, assume that g(z) is the function defined in P and taking
values from K. For = € P, define f(z) by (2). Then (1) holds. (1) and (2)
are said to be Mobius inversion of (2) and (1), respectively.

Theorem 2.4. Let M(S(m, n)) = {X € P(S(n)||X| = m}. Denote the
set consisting of the intersections of subsets in M(S(m, n)) by L(S(m,n)).
We regard the intersection of 0 subset in M(S(m, n)) to be S(n). If de-
fine partial order < of L(S(m, n)) by reverse inclusion relation, i.e., for
X, Y € L(S(m,n)), X <Y & X DY, then L(S(m, n)) is a finite lat-
tice, denoted by Lp(S(m, n)). It’s said to be lattice generated by reverse
inclusion relation in M(S(m, n)), and S(n) is the minimum element of
Lp(S(m, n)).

Proof. Clearly, |Lr(S(m, n))] < oo, and it is a poset generated by the
determinate relation ” < ”. Nxep(sim,n))X and §(n) are its maximum
element and minimum element, respectively. For X;, X, € Lgr(S(m, n)),
define as follows:

XivXe=XiNnXy XiAXy = n{Z € ﬁR(S(m, n))|X1 UX; C Z}
Since X; and X, are the intersection of elements in M(S(m, n)), respec-
tively, X1 VX2 = X1 N X, € Lp(S(m, n)). As X3 U X, C S(n), and
S(n) € Lr(S(m, n)), and in Lg(S(m, n)) the intersection of elements con-
taining X; U X, also contains X; U X, there exist exactly one element
containing X; U X3 in Lg(S(m, n)), i.e.,, Xy A Xy € Lg(S(m, n)). Thus
Lr(S(m, n)) is a finite lattice. Clearly, S(n) is the minimum element of
Lg(S(m, n)). O
Similar to the results of §2.4 in [4], we have the following results



Theorem 2.5. Let n > m > 0. Lr(S(m, n)) 2 Lr(S(my, n)) if and only
ifm > my > 0.

Theorem 2.6. Assume that n > m > 0, then Lg(S(m, n)) consists of
S(n) and all subsets of the number of elements < m in S(n).

Proof. From definition of Lg(S(m, n)) we deduce S(n) € Lr(S(m, n)),
and VP € Lg(S(m, n))\{S(n)}, P is the intersection of subsets with m
elements in S(n). Then |P| < m.
Contrarily, assume that P is subsets with k elements in S(n), and 0 < k <
m, then

P € M(S(k, n)) C Lr(S(k, n)).
By theorem 2.5,

Lr(S(k, n)) € Lr(S(m, n)).

Then P € Lr(S(m, n)). 0

Corollary 2.7. Let n > m > 0, then @ € Lr(S(m, n)). Therefore there
exists marimum element Nxem(s(m,n))X = @ in Lr(S(m, n)).

Corollary 2.8. Let m > 0. Then Lg(m, m+ 1) = Lg(S(m + 1)).

Theorem 2.9. Let 1 <m < n. For X € Lgr(S(m, n)), define as follows:
I(X) m+1—|X|’ zfX;éS(n),
if X = S(n).
Then r' : Lr(S(m, n)) — No is the rank function of lattice S(m, n).

Theorem 2.10. Let 0 < m < n. Then the characteristic polynomial of
Lg(S(m, n)) is

X(LR(S(m, m)), 8) = (£ — 1™ + (i (") - > (7)) -

=0 =0

Theorem 2.11. Let1 <m <n-—1. Then
(a) Lgr(S(1, n)) and Lr(S(n — 1, n)) are the finite geometric lattice.
(b) for2 <m < n-—2, Lp(S(m, n)) is a finite atom lattice, but it is
not a finite geometric lattice.

3 Partition lattice

For the definition of the partition lattice of a n-set, we see [2]. Obviously,
the partition consisting of just the single block is unique coarsest, whereas
the fineness partition is the one in which all block are singletons, and the
coarsest partition and finest partition is 1 and 0, respectively. Further
7 <-o if and only if o consists of the same block as 7 save one pair of
block of 7 which are joined into a single block in o. If 0 < .7, then 7 is the



atom of P(S). All p satisfying 7 < p < o is wrote [, o], and is called the
interval with @, o for the endpoint, for simplicity, is said to be interval .

Proposition 3.1. B Let S = {sy, s2, -+, sp}. Then [r, 1] =~ P(b(r)).

Proposition 3.2. 2l Assume that S = {s;, s9, -+ -, sn}, € P(n). Let
r:Pn) — Ny
w — 7(T) =n — b(w).
Then r is the rank function of P(n).

Proposition 3.3. 2 Assume that n > 2. Then the characteristic polyno-
mial of P(n) is
x(P(n), ) =(¢-1)(t—2)---(t—n+1).

Let (7) be equivalent a relation associating with the partition 7 of S,
VmoeP(S),a,beS,

a(m Ao)b < a(m)b and a(o)b,a(r Vo)b < Ja =ug, uy, ---, ug = b,
such that u;(m)ui41 or ui(o)uyy for all i(0 < i < ¢t —1). Hence P(n)
is a finite lattice, and it is a geometric lattice ([2]). Assume that S =
{s1, 52, -+, sn}, and the set consisting of all k(1 < k < n)—part par-
titions in P(n) is denoted by M(P(n,k)), and the set generated by the
intersection of subsets in M(P(n, k)) is denoted by L(P(n, k)). We agree
that the intersection of 0 subset in M(P(n, k)) to be 1, i.e., 1 € L(P(n, k)).
We use the part order relation < in P(n) to define the partial order relation
<in L(P(n, k)). Clearly, L(P(n, k)) is a finite poset, and Nxerq(P(n, £)) X
and 1 are its the minimum element and the maximum element, respectively
. For m,0 € L(P(n, k)), then m,6 € L(P(n)). Write A and V for the in-
tersection and union in £(P(n)), respectively. In L(P(n, k)), we define as
follows:

"M o:=7Ao, mVi0:=n{p€ L(P(n, k))p>nVa}.
Since A is closed in L(P(n)), A is closed in L(P(n, k)) . Consider that 7V
o€ L(P(n)), 1>27Voand 1€ L(P(n, k), {p€ L(P(n, k))|p=nVo}is
non-empty, and N{p € L(P(n, k))|p > wVo} containing 7, ¢ is minimum in
L(P(n, k)), i.e., for m,0 € L(P(n, k)), a,b € S, Ja = up, uy, -+, ug = b,
such that u;(m)ui41 or us(0)uip1 (=0, 1, -, t—1) holds. Then a(nV,0)b
contains in a block of the partition of L(P(n, k)). Hence V; is closed in
L(P(n, k)), and satisfy conditions of the lattice. Thus L(P(n, k)) is a finite
lattice. In the following, always denote A; and V; by A and V, respectively.

Theorem 3.4. Assume thatn>m > 2
L(P(n, m1)) € L(P(n, m)) (3)

if only and if
n2m; = m. (4)



Proof. We first prove sufficiency. When m; = 2, it is clear that (3) holds.
In the following let m; > 3. At first, we prove

L(P(n, m1)) C L(P(n, my —1)). (5)
Let 0 € M(P(n, my)), i.e., o is a m—part partition of S. Without loss of
generality, assume that

g = SIISQI s |Sm1.
Let
o=5U Szl ces ISmu o =5U Sa|52|54| see Ismx-
Since m; > 3, there exist the partitions o) and o2 of S and &,,02 €
M(P(n, my — 1)). Therefore o = 01 A o3 € L(P(n,m1 — 1)). Then (5)
holds.
Now let us prove (3). When m = my, clearly, (3) holds. Let m; > m.
From (5), we obtain
L(P(n, m1)) € L(P(n, m1 —1)) C--- C L(P(n, m)).

Then (3) holds.

Next we prove necessity. For any o € M(P(n, m,)), then o is a m;—part
partition of S, and

o € L(P(n, m;)) C L(P(n, m)).

Hence o is the intersection of m—partial partitions in £(P(n, m)). No-
tice that the partition of the intersection is finer than those partitions of
the partitions in the intersection. Therefore the partition ¢ is finer than
m—part partition. Hence n > m; > m, i.e., (4) holds. O

Theorem 3.5. Assume that n > m > 2. Then L(P(n, m)) consists of 1 .
and k—part partitions of S, where n 2 k > m.

Proof. According to the definition of £(P(n, m)), we have 1 € L(P(n, m)).
For 0 € L(P(n, m))\{1}, o is the intersection of m—partial partitions of
S. Hence the partitions in £(P(n, m))\{1} is not more coarse than the
m—partial partitions. If o is a k—partial partition, then n > k > m.
Conversely, assume that p is a k—part partition of S, n > k > m. Then
p € M(P(n, k)) € L(P(n, k)). By Theorem 3.4,

L(P(n, k)) € L(P(n, m)),
Hence p € L(P(n, m)).
Clearly, when n > m > 2, 1 is the maximum element of L(P(n, m)). O
But for the minimum element of £(P(n, m)), we have
Corollary 3.6. Assume that n > m > 2. Then
0 € L(P(n, m)),
and the minimum element of L(P(n, m)) is NxepmP(m,n)X = 0.



Corollary 3.7. Assume that n > 2. Then L(P(n, 2)) = L(n).

Theorem 3.8. Letn > m > 2. Forn € L(P(n, m)), we define as follows
_ [ n=b(m), fr#l,
r(m) = { n—-m+1l ifw=1.
Then r : L(P(n, m)) — Ny is the rank function of L(P(n, m)).

Proof. Clearly, r(0) = 0. For m,0 € L(S(n, m)), and # <o. When o # 1,
we have b(m) = b(o) + 1. Hence
r(o)=n—blo)=n—-b(x)+1=r(x)+1

When ¢ = 1, we have b(c) = 1, b(r) = m. Therefore
rle)=n-m+1=r(7)+1.

By Definition 1, r : £(P(n,m))—Np is the rank function of £(P(n,m)).0

Now we discuss the characteristic polynomial of £(P(n, m)). We have the

following the proposition.

Proposition 3.9. I Assume that S = {s1, s, -+, sp} andw € P(n), m =
5118a| - - - |Sh(ny, where |S;| =n;, T2 n; = n. Then
b(w)

[0, ] = [] P(ny).
=1

Proposition 3.10. !l Assume that Ly and L, are two finite lattices, and
characteristic polynomials are x(Ly, t) and x(Ls, t), respectively. Then the
characteristic polynomial of Ly x Ly is

X(Ll x Lg, t) = X(Ll, t) X X(Lz, t).

Theorem 3.11. Assume that S = {sy, s2, -+, s}, @ is a (m — 1)—part
partition of S, i.e., # = 81|S3|: - |Sm-1, and |S;| = n;. Let o € [0, ] be
a k—part partition, and o; is the k;—part partition corresponding to o in
Si. Then the number of k—part partitions of S in [0, «] is H:’;}l S(ni, k;),
where S(n;, k;) is Stirling number of the second kind (see [2] or [6]).

Proof. Since m € L(P(n)), m = 51|S2]-+-|Sm-1, and |S;| = n;, i =
1,2,---,m —1, for o € [0, 7], the partition o; in S; corresponding to
o is a k;—part partition, and the number of k;—partial partitions in S;
is S(ni, k;). Hence the number of k—part partitions of S in [0, 7] is
[177" S(ni, ki), where the representative of S(ny, k;) is given by [2]
or [6]. O
Assume that S = {s1, s2, -+, sp}, ™ is a (m — 1)—part partition of S,
i=1,2,--+, A; be the set generated by all m—partial partition of S con-
tained in m;. Let £(A;) be the set generated by the intersections of par-
tition in A;, and we agree that m; € L(A;). For 7,0 € L(A;), we define



7 < o <= 7 C 0. It is easy to verify that < is the partially ordered rela-
tion of £(.A;), and it forms a lattice, denoted by Lo(.A;). For simplicity we
write Lo = L(P(n, m)), L; = Lo(A:). For m € Ly and 7 € L;, we define
that

T = {0 € Lo|lo < 7} and L] = {0 € L;|o < 7},

respectively. Clearly, £} = Lo, LT* = L;. For m € Lo\{1}, there is
7 € Lj,j =1,2---. Without loss of generality let j = 1, then L§ = LY.
Assume that m; is a [—part partition of S, i.e., m = Su|Sw|- - |Swm)
where |Si;| =i, 1=1,2, -+, b(m), ng’l‘) ny; = n. From Proposition 3.9
we deduce [0, m) ~ [ P(n;). Since £3' = [0, m), L' = [ P(nss).
From Proposition 3.3, we have x(P(n:),t) = (¢ —1)(t —2) - (t —n; +1).
Again from Proposition 3.10, we have
b(mi)
x5, )= [[ -1 -2t -ni+1). (6)

1
By definition in Theorem .?:.8, r : Lo = Np is the rank function of lattice
Lo = L(P(n, m)), and 1 and 0 are its maximum element and minimum
element, respectively. Then

x(L3, t) = Z #(0, o)trM-(9),

oEL]
By MGdbius inversion
"™ = ST (L%, ) = ) x(£7, ). )
oeL) o€Lo
For m € L, define as follows
r(m) = n-b(m), ifn#m,

n—-m+1, ifr=m.

Then r ;: £; — Ny is the rank function of lattice£;, and its functional value
is the same as corresponding to the functional value in Lo. Since m; and 0
are its maximum element and minimum element, respectively,

x(LT, t) = Z 1(0,0)t" =T,
o€l

By Mébius inversion

"t = 3 x(LT, 1) = Y x(£5,t). ®)

GEC:‘ €L,
Then by (7) and (8), there exists
X(Lo, B) = > x(£L, )= Y XL, ).
c€L, : o€Lo\{1}

Notice that the number of k—part partitions of S is S(n, k), k =1,2,--- ,n.
Then the number of l—part partition in Lo is S(n, I),l =n,n—1,---,m,
where m = SulS(gl cee “S",(.,,,, ISu' =n;(i=12,-- ,b(ﬂ‘g)), and x([:g', t)

10



is given by (6). Let the k—part partition in £, o = §1|S;|--- |k, |Si| =
ngi (1 =1,2,.-- ,k)), 0; is a k;—part partition corresponding to ¢ in S; and
the number of o; in S; is S(ng;, k;), and
b(o:)
Xy, o = [[t-0DE-2) (t —nps +1).
i=1
Since the number of k—part partitions in £; is the number of k—part
partitions of S in in [0, w], by Theorem 3.11, the number of k—partial
partitions in £; is [T " S(ni, ki)
Hence we can deduce
Theorem 3.12. Letn > m. Then
x(ﬁo(P(n, m), t)) = x(Lo, ?)

b(ox)
Z HS(n,,, k) [T @-1)(¢-2)-- (¢ —nes +1)
k=m—1i=1 i=1
b(m)
- Z S(n, 1) H (t=1)(t—2)-- (t —ny +1).
l=m
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