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1 Introduction

The graph genus problem is NP-complete as shown by Thomassen [10].
The solution of genus embedding for complete graph K, was a long and
different way and gave birth to modern topological graph theory. Until now,
for certain special classes of graphs only with good symmetry, formulae for
their genera have been given. For example, complete graph K, complete
bipartite graph K, » etc. And for complete tripartite graphs, only partial
results for the genera of them are known. White conjectured the orientable
genus of the complete tripartite graph K, n is [u’;'*—"'zl] and proved
it is true for Kj m n, where m +n < 6, and for K, pn n, where m,n € N.
Ringel and Youngs also proved the orientable conjecture for Ky 5 . Stahl
and White proved it holds for K, , ,—2 when n > 2 is even, and for K25 9nn
when n > 1. In 1998, Craft proved that the orientable conjecture holds for
Ko mn whenl > m+n—2and m+n is even. And there were surprisingly
few results about the number of genus embeddings of graphs[6]. In 2003,
Liu[4] set up the joint tree model, so that the corresponding relation was
established between the joint trees and the embeddings. Based on it, the
minimum genera of further types of graphs, especially complete tripartite
graph K, » (1 > n > 1), have been got, such as [7-9)].

In this article, further, on the basis of the joint tree model, by dividing
the associated surfaces into segments layer by layer and doing a sequence of
exchangers in the layer division, we study the number of genus embeddings
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for complete tripartite graph K, (! > n > 1) and find a lower bound for
such numbers.

A surface is a compact 2-dimensional manifold without boundary. Since
it can be obtained by identifying each of pairs of edges along a given direc-
tion on a polygon with even number of edges, throughout this paper, an
orientable surface is regarded as a cyclic order P of letters such that both
a and a~ occur once on P for each a € P.

Use o(S) to denote the genus of surface S. Let S be the set of orientable
surfaces and let 0;,(S) = gnino(S’). By an elementary transformation|3]

on S, we shall mean one of theefollowing three operations and their inverses:

ElOVS€S,S=Aaa B, A#0,or B#0= S=AB.

EL1VS €S, S = AabBb~a=C = S = AaBa~C.

El2VS €S, S=AaBCa~D => S = BaADa"C.

If one of two surfaces S; and S; can be transformed into another by
a series of elementary transformations, then we say that S; and S; are
equivalent|3], denoted by S; ~ Sz2. And S and S; have same orientability
and genus.
Lemma 1.18l, For a,b,a=,b~ not belonging to {A, B,C, D, E}, we have

AaBbCa~Db~E ~ ADCBEaba™b".
Proof According to EL.O-El.2,
AaBbCa~Db~E ~ BaADb™ Ea™bC ~ Eb~ BaADCba™

~ ADCaEb~Ba~b~ EaADCba~"b~B ~ aADCba" b~ BE
~ baADCBEb~a~ ~ ADCBEb~a"ba ~ ADCBEaba™b".

According to the three operations and Lemma 1.1, it can be seen that
each orientable surface is equivalent to only one of the following canonical
forms:

agag , if the genus of a surface is 0;

O = k
* I aibia; b, if the genus of a surface is k.
i=1

Lemma 1.2[4l. Let S; and Sy be surfaces, a,b,a=,b~ ¢ S2. If S ~
Ssaba=b~, then o(S;) = o(S2) + 1.

An embedding of a graph G into a surface S is a homeomorphism 7:
G — S, such that each component of S — 7(G) is an open disc. The
embedding is called orientable if S is orientable. Throughout this article,
whenever we use the term embedding, we are referring to an orientable
embedding. Two embeddings 71: G — S and 73: G — S of a graph G
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in the orientable surface S are equivalent if there is a homeomorphism h:
S — S such that ks = 7y. The minimum genus y(G) of a graph G is
minimum genus of the surface into which G has an orientable embedding.
Throughout this paper, ”number of embedding” really means number of
equivalence class of embeddings.

In what follows, the joint tree model is introduced.

Given a graph G = (V, E), suppose that a subgraph T of G is a tree.
Then T is called a spanning tree of G if V(T) = V(G). (V,E\E(T)) is
called a cotree of G, and the number of cotree edges is called Betti number,
denoted by 5.

For a spanning tree T of G, split the cotree edge (u;, v;) into two semi-
edges (u;,%;) and (v;,¥;), which are, respectively, incident with u; and v;
for 1 < i < B to obtain a new tree T = (V + V;, E(T) + E;), where
Ey = {(ui, %), (v, %)l < ¢ < B}and Vi = {4, 5|l < i < B}. Let
o = {oy| v € V(G)} be a rotation of G, where o, is a cyclic permutation
of edges incident with v. Then T, determines an embedding of T on the
plane.

Write 71 instead of 7', when edges (u;, @;) and (v;, 3;) are labeled by a
same letter with different indices: +(always omitted) or — for 1 < i < 8.
The tree Tt with a rotation o of G is called a joint tree[5] of G, denoted
by T1.

On T t, according to a given orientation (clockwise or counterclockwise),
write down the letters used to denote semi-edges, then a cyclic order of 23
letters is got, and called an associated surface[5) of G. Two associated
surfaces are the same is meant that they have the same cyclic order. Oth-
erwise, distinct.

As shown K, in Fig.1.1 and a joint tree in Fig.1.2, an associated surface
of K4 is aba~cc™b~. a

B D D
B
(]
a c a [ g
[} b a™ e c”
Fig.1.1 K4 Fig.1.2 A joint treo of K4

From([5}, for a fixed spanning tree T of the graph G, there is a 1-to-1
correspondence between the associated surfaces and the embeddings of G.
It is soon seen that an embedding can be represented by a joint tree, further
by an associated surface.

Let G, be the embedding determined by a rotation o. We will refer to
Py as the associated surface corresponding to Tf. Let (Z,T1) = {Pyilo €
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L} where X is the set of all rotation for G.

Lemma 1. 34, For any oy # 02, the embeddings Gq, and G,,, as well as
Ty, and Ty, are distinct.

Lemma 1.44. Let T}, T, be two spanning trees of G. There is a bijection
between (2, T}) and (,TY).

Based on the lemmas above, the topological problem for enumerating
the number of genus embeddings of a graph is transformed into a combi-
natorial problem for counting the number of distinct associated surfaces of
the graph. To find the number of genus embeddings for complete tripartite
graphs, it suffices to calculate the number of all distinct associated surfaces
of them in the equivalent class of minimum genus.

In order to obtain the associated surface of minimum genus, a layer
division of an associated surface is defined for establishing an operation to
transform this surface into another associated surface. Given a spanning
tree T of G and v° € T with dr(v®) > 1. Any vertex of T and v° are
connected by a unique path. Then divide the associated surface S of G
into segments layer by layer. The Oth layer contains only one segment, i.e.
S, denoted by Syo. Suppose that N(v°) = {v},v},:--,v},}. The 1st layer
is obtained by dividing S0 into l; segments, i.e., Syo = (S,,{ S,,; . -S,,'ll),
where S,,jn (1 €7 <1,) is called a layer segment incident with v°. Suppose
that k — 1st layer is denoted (Svf_;Sv:_l e S”fk_ln)' For S”;:-l, we assume

that
N@FYn{u| dw,*) =k veT}= {vfj_,“,v{;_ﬁz, IR R

where tg = 0,t;, = lx. Then S k 1 = (S, “S,,k va
-1 tj—1

S”fa - (1<sm<t;— tj-1) is called a layer segment incident thh vertex

_:"'1 At this time, the kth layer is obtained by dividing each k-1st layer
segment as

,,k ), where

(S.uksvk SkSk Sype oSk oSk 2o Sk oo Sy
1 Vei+1 Vey 42 tg ‘(:’—1)‘“ t; Yty -1y +1
S,k .
o Se )

Each layer segment except for the layer segment S,, which has only one
element can be divided into other layer segments in the same way, where
v, is a vertex of T satisfying that dr(v;) = 1 and S, is constituted by
those letters used to label the semi-edges incident with v;. According to a
rotation system of G, the positions of any two layer segments incident with
a same vertex in a same layer can be interchanged, and every interchange
makes an associated surface S be transformed into another associated sur-
face S'. And the operation in a layer division is called an ezchanger(5],
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denoted by S — S’. Hence the associated surface of minimum genus can
be got by doing a sequence of exchangers on any associated surface.

Note that {) used to denote a layer segment does not change the associ-
ated surface itself, and is always omitted when the layer segment contains
only one letter.

A spanning tree of K324 is represented with thick lines as shown in
Fig.1.3 and a joint tree of K324 in Fig.1.4. Denote the cotree edge u;v;,
wxv; and wirug by b;-'l, a.;? +1 and a¥, respectively, for 4,j = 1,2 and k =
1,2,3. Let joint trees of K24 have an anticlockwise rotation at each
vertex. Then an associated surface is shown as

S = ala?adblbialaZadbl~ b~ alaZa3by bl bb3
1- 1— 1- 2- 2- 2- 3_ 3_ 3_

o 01 02703y @37 a37ay a6y ag

AN
DRI
PRI

w)] w3 wq

uy

Fig.1.3 K2 2.4 Fig.1.4 A joint troe of K3 2,4

Suppose that S = {Sy,). Then

5= (Suy) = (Suwebyb2Suw, Sws Sws) = ({Suz Svy Sua)b3b25w, Suy S ),
where

Su; = (a1aiaibib}), Su, = (aza3a3bi™b;7), Su, = (ajafadby™hy),

Sw; = (ai"ay ay") fori=1,2,3.

Obviously, the associated surface can also be shown as

S = ((ajafaibibs)(aza3a3b)~bi ™ Magadadhy by ™)) (b3b(a; " az a3 ™)

(a1~ a3”a3™){ai"a37ad")).

After doing a series of exchangers on S,

§ — 5 = (1)~ afadaib} ™) (blalaiaibl) (b3~ afaFazty™)bS(a3"al ey ")

- 2— 2—v/ 3— 3— _3—\10
(a3”ai"a3™ ) (a3 ay" a3 )by,
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namely an associated surface of minimum genus. Using the same method as
above, all associated surfaces of minimum genus for K3 2 4 can be obtained.

Sn = (b aja3azb) ") (biajafaibz) (b3~ a3a3a3bi™)(b3(a3" a1 "a;")
(03”02~ a3 )a3"ai a3 )b}
~ (a3a3a3)(a1ala})(a3a3al)((a3™ a1 a3~ a3~ a]"a3 ") a3 a}"a}")).
S1z = (azaja3){aia]a;)(e3aia3)((a3™ai a3 Na3 ai"a3")(a3 a1 " az7)).
513 = (aja3a})(ajaia?)(adaga3)((a3™ a1~ a3 ™ )(a3™ 0]~ af ™ )a3 ai a3 7).
S1 = (a3a}a3)(afala})(adatad)((af~al a3 ") (a3 a]"a}™)(af 0l a}7)).
Sis = (a30303)(afala1){o3a3ed) ({03 "1 a3 7)(a3 0l a3 ™){a5 a1 7a3 7))
Si6 = (a3aja3)(afaia?)(adadal) (a3 a1 a3 ™) (a} a1 a3 ™ Na3 a1 "a3 "))
Sz = (a3a}af)(afaia?)(a3adal) (03037 a1 ™) (a] a3 a3 ™ )(ag a1 a3 7).
Sz = (ajaja3)(afaiaf)(afa3al)((as™ a3 a1 ") (a} a3 a3™)(a3"ai a3")).
Sas = (a3a3a5)(ajata])(aga3a3)((a3 ™ 00" (el 033 ™M (ai a0z )).
Su = (a3a3a3)(alafa?)(adazad) (a3~ a3 a]")(a}"a5 a3 7N a5 a1 a3 7))
103a})(adaad) (a3~ a3~ e} ) (a1 03”0y Na3 "0} "a3 7).
afa})(ajafal)((a3"a3"ai")(a} a3 a3 Nas"ai ;7))

1= 1= 1-\;.2— 2= 2—\/.3— 3— 3
Ss31 = (a3aja})(alaiaf)(efaas)((a3 a1~ a3 ) (a3 a3 ai ") (a] a3 a37)).

S5 = (afa3ailoy
2
1

S26 = (a3a303)(a

- 92— 92— - 33—~ 3— - 1—_1-
S33 = (apafal)(afaiaf)(efatad)((a3~a]~a3 ) (a} a3 ai")(ai a5 a3 7))

)
Ss2 = (aJa3a})(ajaial)(a3alaz)((as™ a1~ a)™)(a} a3 e} Nai"a3"a}")).
)
Ssa = (a3aja3)(alaai){azazad){(a3™ a1~ a5 ™) (a; 03701 " )(a1 a3 a37))-
S35 = (afa}a3)(adaial)(ajadad) (a5 0] a3~ Naz~a3™a) ") (el a3 a3")).

3— 3— 3—\; 2— 2— 2—\; 1- 1— 1—
5’36=(aéagag)(a‘fa{af)(a%aéag)((aa ay~ay"){a3 a3"ai )aj"ez"a;" ).

Su = (a3a3a3)(alalal)(a3afed)((a;™a] a3™)a3 a]"a3™)(a3 a1 a37))-
- 1-_1- 3- _3- _3- 2- 2-_2-
Siz2 = (afa3az){ajaial)(adafal)((a3 a1 "a3™)(a3"a] 03" Na3 a1 a3")).

Si3 = (aja3af)(afaja)(aja3ad)((a3™ el a3 ) (a3 ™ e} a3 " Naz a1 az™))-

— 2= 2—\; 1= 1— 1—\/.3= 3— 3~
Saa = (a3a3a3)(afala})(a3aial)((a3 "0l a3 ") (a3 ai"a;") (a3 0 a37)).
Sus = (a3a}a3)(aialal)(ajazad)((a3™ay a3 Maz~a1"a;™){a3 " ai"a3")).
3— 83— 3—y\; 2— 2— 2—\; 1— 1— 1-—
S = (a},a%ag)(afafa})(a%agag)((az ay~a3” ){a3"ay" a3 ){a;"a; a3 ).

- 1= 1—yg 2— 2— 2\ 3— 3— 3—
Ss1 = (afazal)(afaial)(afadas)((a27 03" a1 " )(a]1 6373 Naz~ar a3 ))-
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Ss2 = (ajaja3)(ajala})(a3aas) (a3~ a5™al " Hai~a3"af " Ma3 ai"a3")).
Ss3 = (aja3af)(ataiat)(azafad)((a3”a3"a] " )a] a§ a3 Naz"ar7a7))-
Ss4 = (a3a3a})(aiafad)(aFalad) ((a]™ a3l Nai a3~ a}™)(af e} a3)).
Ss5 = (a3afad)(alafai)(azalad)((a3 a3 ™ el ™)(a} a3 ™al ) (ag"a1 a3 7))-
Ss6 = (a3afa3)(alaial)(aFalad)((a] ~as™ a7 ™)(ai a5 ™a} ) (a3 "0l a3 "))
Se1 = (a3a3a3)(aiaiaf)(afada3){(a)™ al™ a3 ™ Na3"a3"a]")(a} a3 a3")).
Se2 = (a3afe3)(aiaia})(adada})((ay™ a1 a3™)(a3™a3"ai ") (a] "0 "a3")).
Sea = (aa3a3)(alaia})(adajal) (a3~ al"a3™)(a3"a3"a] ) a1 "az7a37)).
Ses = (a3aja)(afaial)(aja3ad)((a3~al af ") ag™az7a1™)(al" a5 a37)).
Ses = (a3a3a8)(afala)(aFalad)((a3 0] af™ N ai a3~ ai"Nai"az7a;7)).

- 3= 3- - 1-_1- - 2— 2o
See = (a3a3as)(aiaial)(azadad) (a3~ a]~a3")a3"az"ai"){ai a3 a5 7).

2 Main results

For complete tripartite graph K, (! > n > 1) with tripartition (X,Y,
Z) where X = {ulsu21" : ,'u'n}s Y= {’Ul,'Uz,"','Un} and Z = {w11w2)' )
w}, choose all edges incident with u; except the edges joining X to Y, and
all edges incident with w; to obtain a spanning tree. Denote cotree edge
u;Vj, Wil and wiv; by b;_l, a’s‘_l and aﬁ,H_l, respectively, for 1 < 7,5 < n,
1<k<l-1and 2 < s <n. And all letters are distinct. Let the joint
trees of K, ni have an anticlockwise rotation at each vertex. Then the
associated surface can be shown as

S = (Fy(,n)Fa(l,n) - - - Fac1(l,n)G1(L, n)Ga(l,n) - - - G (I, m)){En BE 1Y,
where

Gj(lim) = (@h_14j0% 14 - Oy 00T 05 TUT), B = 830308,

Fy(l,n) = (aa? - a{~"0{b} .- bi), BV = BP0 p{n0... g1~Y),
BB = BV B BT VBB BT,
BE" Y = (ak=ak~...ak7 Vfor1<i<n-1,1<j<nand1<k<I-1

Let §' = Gi(L,n)Fy (L, n)Ga(l,n)F2(l,n) - -+ Gnoy (L)

Fo_1(1,n)Gn(l,n)(E.BZ7~1).

135



Then
S = B2 Ga(l,n — 2)bL ) (B Fy (I, n — 2)BE)(bY~ Ga(l, n — 2)B37)

(b3 -+ Fa(l,n — 2)63) (032~ G (i — 2000 7Y B2 P (Ln — 2)

bR (b8~ Gn (L — 2)807)b(Ena B2 )

~Gi(l,n-2)Fi(L,n—2)Ga(l,n —2)Fa(l,n —2) -+ Gp_1(l,n — 2)
Foo1(l,n = 2)Gn(l,n — 2)(Ea—2B{*7 V) = So.
Let

8" = Gi(l,n)Fi(l,n)Ga(l,m) -+ - Fi(,n)G; (L, n) Foa (4 m) - - Fy(l,m)

Gi(l,n)Fj1(,n) - - Gue1 (I, n) Foer (1, n) G (l, n)(E. B2~ 1)y,
Obviously,

(G1(1,0)F1(1,0)G2(l, 0)Fy(l, 0) - - - Gy (1, 0) Fa1 (1, 0)Gn(l, 0)) (B

is an associated surface for Kop .

Let {S} be meant the set of such elements obtained by doing a sequence
of exchangers on associated surface S. Use ny(G) to denote the number of
genus embeddings of graph G; ny({S}), the number of distinct surfaces of
minimum genus in {S}.

Lemma 2.1. opin({S'}) = omin({S"})-
Proof VS € {S"}, without loss of generality we may assume that
S” =G (lv n)Fl(l’n)G2(l)n) e Flt(lv n)GJ(L n)-Fi-f-l(lan) U F‘J(li n)

Gi(l, n)Ei-i-l (n)- - Gaoa(l, n) Fae1(l,n)Gn(l, n)(Enﬁg(i,;_l))-

Then do a sequence of exchangers between b? and b9, a%_, ,; and af_,,;

for 1 <k <1—1 to obtain S°, namely S” — S°. At this time, there must
be S' € {S'} such that o(S°) = o(S’). Then omin({S'}) < omin({S"}),
vice verse.

Let D, be the dipole, which consists of two vertices joined by n edges
and g, (G) be the number of embeddings of the graph G into the surface
of genus m.

(%)
2.-(n—1)! m
ST E s(n+1,n — 2m)z™,

m=0

Theorem 2.21%. ¢[D,](z) = —
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where s(n, k) is the Stirling numbers.

Corollary 2.3. The number of such surfaces as ajaz---ax(a;ay - --ay)

. (20)!
of genus t is -ﬁll

Proof An associated surface of Dg;; is equivalent to {a1az - - - a2:){a] a3 ag,).
From Theorem 2.2, the corollary holds.

Theorem 2.417, (K., ) = [M%"—_ZZ], m,n > 2.

Theorem 2.5, ng(Kis2) > (G2)*22"~4(4t + 1)!(n — 1)!, where
n>4t+2, t>1.

Theorem 2.6!7. ny(Kq.n) > (ZF2)2*73127 (4t — 1)!(n — 1)!, where
n>4t, t> 1.

Theorem 2.717. ny(Kaeqan) > ((Z522)2(Z=D!)2)232130%7%) (424-2) ! (n~
1)), wheren >4t +2, t > 1.

Theorem 2.8, n,(Kyeq1n) > (ZF2)A213122) (4t))(n — 1)), where
n>4t+1, t>1.

Firstly, since Kan,; is a subgraph of Knng, Y(Kn,nt) = 7(K2ng) =
I-!n-l!!l-Z!-I.

2

Theorem 2.9. ny(Kpny) >

(1, n=1
(Rlacllyi-ngl-4T, | 1>3n-2,14#n is odd;
gn-2(Cm=DIAPR1GERT, 9 <l<Br -2 l-n+1=4m;
‘ gn-2(&mhyan—292n—4T, 2<i<3n-2,l-n=4m;
2”'2(£2m—_4)l)["_2]2[2"-3]T 2<i<3n=-2,l-n—1=4m;
\ 2n_2($2m_n:2£)2[2_“§_]3[24‘;]Tm 2<li<3n-2,l—-n+2=4m.

where T, = (20=2yn-29n-2() _ 1)Inl(n — 1)} and I > n > 1.
Proof Casel n4(Kj, ;) =1 whenn=1.
So = G1(,0)(E;B{Y) = (ala}--- i '63")(9B{V BV .- BY))

= (afa? {60 Ralad -,
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Since the minimum genus of K3;,1 is 0, ny(K1,1,) is equal to the

number of such surfaces as (a}a}---a{~'6{")(bJa}"al™---a}Z,), namely

ng(K1,1,1) = ng(K2,141). Then ng(Ky,1) =11

Case2 n is odd and greater than 1.
Case2.1 Sy — G1(l-1,n—2)alal Fi(I-1,n—2)G2(I-1,n—2)a} 0} F,

(I-1,n=2))-+-Gn_1(l—1,n~2)al, _sal_1Fa1(l~1,n-2)Gu(l-1,n—-2)
aha-1(abn 101" ar"a} k3, - apT el o))y (Bama(B2) TV - BTV
~ G1(I-1,n-2)c; Fy (I-1,n—2)G3(I-1,n—2)ca Fy(I-1,n=2) - - - Gy (I-1,
n=3)b2= 1 en1Fae1(l-1,n=2)Gn(l-1,n=2)(cic5 - - c_g)er 162 _ 1 (En_s
B - B M)
~Gi(l-1,n-2)F(l-1,n-2)Ga(l-1,n - 2)Fy(l - 1,n-2)..- F,,,
(1-1,n=2)Gn(i-1,n=2) Fi(I-1,n—2)G3(I-1,n—2) F3(I-1,n—2)G,4(I-1,
n=2)-Foog(l—1,n=2)Gn-1(1—-1,n—3)(Ea-3(BZ; ™~ B V))0ucs
~Gil-1,n-3)FR(l—1,n-3)Gs(l—1,n—3)Fy(l-1,n—3)---F,_,
(1-1,n—3)Gp(I—1,n—3)Fy(I-1,n—3)G,(I-1,n—3) F3(l-1,n—3)G,(I-1,
n=3)-- Fpz(l=1,n=3)Gn-1(I-1,n~3)(En-3(BZ} ™ - B{" ")) 0ns.
Case2.2 Sp— o 1G(I-1,n-2)Fi(I-1,n— 2)a‘1'1a£"_|_11G2(l -1,n-2)
By(l-1,n-2)a  al hGs(l - 1,n = 2)---abyl yGua (I - 1,n — 2)

Fﬂ_l(l -1,n- 2)“;—_110!2;1_1Gn(l -Ln- 2)(Eﬂ-2—B-l(i;—1))

I-1)— (I-1)— (-1)— (I-1)— I-1)- (i=1)= (1=1)~
(a$;+1) ag ) a$z+2) ag ) "'a;n—% afz—l) af~1")

~Gil=1,n-2)F(-1,n-2ec1Ga(l —1,n—2)F(l—1,n—2)c
Ga(l-1,n—=2)---cn_2Gna(l—1,n—2)F1(I — 1,n — 2)cpa
Gnll = 1,n = 2)(En—2B{>y V)eT s - cn_y)
~Gy(l-1,n-3)F;,(1-1,n-3)G,({-1,n-3)F;,(-1,n-3)---Gi,_,
(-1,2-3)F;, ,(I-1,n=8)Gi, (I 1,0~ 3)(En_3B; V)0ns = SV
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A sequence of such types of operations above from Sp to Sgl) are defined
by a step. So S§2) can be obtained after a step on Sfl). Then after n — 2
steps, S\~ can be shown as

5D = Gy, (L - n+2,0)F, (| —n+2,0)Gry (I =+ 2,0)F, (I —n +2,0) - - -

Groi(l =7+ 2,0)F, (1~ +2,00Gk, (Il - n + 2,0 B ) O-n-a,

where 4,43 - - - 4, and ky k3 - - - k,, are permutations on {1,2,---,n}, j1j2
jn—1 and ilo - -1,y are permutations on {1,2,---,n — 1}. Then by The-
orem 2.4,

V(Enni) < w +(Kan-(n-2)) < f————(n — 1)2(l — 2)]_

That is to say, by doing a sequence of such exchangers as above, an associ-
ated surface of minimum genus can be got, when 7 is odd and greater than

1.
From Sy, according to Corollary 2.3 and the proof of Case 2, there are

at least (H,:'_—_lzl!')"‘2 . 2"‘26(% ways to obtained S{"~2.

By Lemma 2.1, when 7 is odd and greater than 1,

2- (n 2) yrozgnoz 2DV gnmayy v .

ng(Kﬂ,n l) = ( (l n+ 1)' Ng

In this case, if | > 3n — 2, applying Theorem 2.5, then
2.-(n—-1)!

no({8{"7}) 2 22 ) TN - n o DL
Therefore
ng(Knms) 2 (2 '1(:1__12)!)"'2(2 (1= Dhyingt=4 _ 1)tntn — 1).

n+1
If | < 3n — 2, according to Theorem 2.5-2.8, ng(Knn,) >

(@moD BT, |y = gm
n—2(M)4l""]3[”“'“]Tm l-n+1=4dm;
n—2( 'i"_;)l')zn 292n-4T, | —n=dm;

3L (=PI FIT,, I-n—1=4m.
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where T, = (22=2!)7~2972(]  1)In}(n — 1)L.

Theorem 2.10. ny(Kn ny) >

([ (Re=D2A=g3U=g, | > 30— 2, n is even;

(M)zl"‘"m[“”' H,, l-n+2=4m;

) (QE.;?L)4["”13[”“31H,,, l—n+1=4m;
(%)211-2227:-4}[ l—n=dm;

\ (Cmihyi2piglr2l gy, l-n—1=4m.

where Hy, = (22202 _ 1)inl(n — 1)! and I > n > 1.
Proof When n is even,

So = Gi(l— 1,n—2)aral Fi(l - 1,n — 2)Ga(l - 1,n — 2)a} 0}
F(l-1,n-2)Gs(l - 1,n—2)al a3 F3(l—1,n—2)---Gny (I - 1,

7 —2)a3,_205_1Fno1(l — 1,n = 2)Gn((l - 1,n - 2)a},_;)a3,_,
(ai"ap"a}"ar3, - alTyahn )by (En-s(BZ7 " — B ™))
~Gi(l-1,n-2)aF(l-1,n-2)G(l-1,n—-2)cFo(l —1,n—2)

Gi(l-1,n-2)csF3(l—1,n=2)---Gao1(l - 1,2 —3)b2 jcp1 Fu1(l - 1,
n=2)Gal = 1,n = 2)(e] ¢ -+ €a_o)Ca-180-1(En-a(BZY " ~ B V)
~G(l-1,n-2)F(l-1,n-2)G3(l—-1,n—-2)F4(I-1,n—2)Gs(1-1,n—2)
Fpo2(l-1,n-2)Gpo1(1-1,n=3)en-1Fn-1(l-1,n-2)G,(I-1,n—2)
Fi(1-1,n-2)Go(l-1,n—2)F3(1-1,n—2)G4(I-1,n—2) - - - F,_3(l-1,n—2)
Gn-2(l = 1,n = 2)c5_y (En-3(B2; ™ = BP"™V))0na
N b°_2(a§',,_1)" g ;) g-l)— (-1)-, (1 1)- (l_;)- (ln 1)- (l 1)—

almD=gft=D=gl=D= g-1)=  o0-1)- g_n—au—n_)(az_xcl(l_2 n—3)

b} ) (B2 F2(l—2,n—3)as ) (6t 5 Ga(l — 2,n — 3)b5 ™) (B3 Fa(l — 2,n — B)ai?)
(e Gs(l—2,n = 3)bS ) (BEF3(1—2,n—3)ag ") -+ (b} 3Fn—2(l—2,n—3)
2, 29)(a5m 2Cn1(! — 2, — 3))en—1 (B3 23 Fn1(! — 2,n — B)ay T ) (a5, L,

Gn(l — 2,n — 3)BL)(BLFL(L — 2,n — 3)a! ™) (!5} Ga(l — 2,n — 3)b37) (b3
F3(1-2,n—3)ay ) (0} 5Ga(1-2,n=3)b;7) - - (BR=3Fus(l-2,n—3)al}y
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(a5 L gb02Cn—2(1 — 2, = )05 T )en_y (Bn-a(BES ™ = B 7V))0nos
~d_ (d7dy - d]_p)G1(I-2,n—3)Fa(I-2,n—3)d, G3(I-2,n—3) Fa(l -2,
n—3)d,Gs(l-2,n—3)Fa(I~2,n~3)ds- - Fo_y(l~2,n=8)du-2Gpn1(I-2,
n—3)cp—1 F; _1(1—2,n—3)d§Gn(l-2,n—3)F1(l——2, n—3)d2_§_'_.~G2(l—2,n—3)
Fy(l-2,n—3)dngs Gy(1-2,n—3) -+ Fo_3(I~2,n—8)dn_1Gn_2(1-2,n—4)
Ca-1{En-a(BZ3 ™) — B V)0
~ Gy, (1=2,n~4)Fj, (1-2,n—4)Gy, (I-2,n—4) Fj,(1-2,n—4) - -- G;,_, (1-2,
n—4)F;,_,(1-2,n—4)C;, (1-2,n—4)(En—a(B3 V- B0, = SV

A sequence of such types of operations above from Sp to Sgl) are defined
by a step. So 5’52) can be obtained after a step on Sél). Then after "T‘2
(n-2)
steps, S can be shown as

S8 = G, (1-n+2,0)F, (I —n+2,0)Gk, (1 —n+2,0)F, (I —n+2,0) - --

G (l=n+2,0)F,_,(I-n+2,0)Ck,(l-n+2, 0)1_3,(3',‘,;‘1’05"-,%”-2, ,

where 4143 - i, and kj kg - - - k, are permutations on {1,2,---,n}, j1j2---
jn—1 and ljls - - -1, are permutations on {1,2,--.,n — 1}. Then by The-
orem 2.4,

+v(Kanji—(n-2)) < [

HKn) < = 2U22D)

(n=D(-2),
2

That is to say, when n is even, an associated surface of minimum genus can
be got by doing a sequence of such exchangers as above.
From So, according to Corollary 2.3, there are at least (Z{2=21)n-2.

U‘—‘n_l-i-)l'ﬂ ways to obtained S{"~%,
Therefore, by Lemma 2.1, when = is even,

2(n 2)!

) e (Sl - L

In this case, if I > 3n — 2, according to Theorem 2.6, then

ng(Knni) 2 (

no((5" ) = (2P ytisig=g
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Therefore
2(n 2)! n—24apiegtl)pt=aty)
ng(Knnt) 2 [——] 3 ({ = Dnl(n - 1)
If | < 3n — 2, according to Theorem 2.5-2.8, ny(Kpn ny) =

(2 (n-2)!)n—-2( (2m—2)l)2["“ 132272 ](l —Dinlr—1), l—n+2=4m;
(e=Alyn-2( Cm=Da22131252) () _ )nl(n - 1)], —n+1=4m;
(2in=2yn-2( @mllyan-292n-4() _ 1)ini(n — 1), l—n=dm;

(Ho=Alyn-2( @m-D (221252 () _ 1)lnl(n 1)), l-n—1=4m.

Since n! ~ v2me~"n"*%, we extend Theorem 2.9-2.10 as follows:

Theorem 2.11. For integersl > n > 1, K, n1 has about Vi Lf(l) when!l=
1, and at least CC2m+0s fc"""'c*‘(;";—i)\/n(n NI —1D)(n—2)"2f(n)

flr=0f(l-1) f" 2(n — 2) distinct genus embeddings when | > 1, where
Ci(1 < i < 6) is a constant depending on the residual of | — n modular 4

and f(n) = vVEr(2)".
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GRACEFULNESS OF A CYCLE WITH
PARALLEL CHORDS AND PARALLEL
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Abstract
In this paper we prove that every n-cycle (n > 6) with parallel
chords is graceful for all n > 6 and every n~cycle with parallel
Pi-chords of increasing lengths is graceful for n = 2 (mod 4) with
1<k< |3 -1
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