GRACEFULNESS OF A CYCLE WITH PARALLEL CHORDS AND PARALLEL P_k -CHORDS OF DIFFERENT LENGTHS

A. ELUMALAI*and G. SETHURAMAN†

Department of Mathematics

B.S.A.Crescent Engineering College, Chennai - 600 048

Email: s.elu@yahoo.com

Abstract

In this paper we prove that every n-cycle $(n \ge 6)$ with parallel chords is graceful for all $n \ge 6$ and every n-cycle with parallel P_k -chords of increasing lengths is graceful for $n = 2 \pmod 4$ with $1 \le k \le \lfloor \frac{n}{2} \rfloor - 1$.

Key words: Graph labeling, Graceful graphs, Cycle with parallel chords, Cycle with parallel P_k -chords.

AMS subject classification: 05C78.

^{*}Corresponding author.

[†]Currently working in the Department of Mathematics, Anna University, Chennai - 600 025.

1 Introduction

A function f is called a *graceful labeling* of a graph G with m edges if f is an injection from the vertex set of G to the set $\{0, 1, 2, ..., m\}$ such that, when each edge xy is assigned the label |f(x) - f(y)|, the resulting edge labels are distinct. For an excellent survey on graph labeling see [2].

A graph G is called *cycle with parallel chords* if G is obtained from a cycle $C_n: v_0v_1, \cdots, v_{n-1}v_0 (n \geq 6)$ by adding the chords $v_1v_{n-1}, v_2v_{n-2}, \ldots, v_{\alpha}v_{\beta}$, where $\alpha = \lfloor \frac{n}{2} \rfloor - 1$ and $\beta = \lfloor \frac{n}{2} \rfloor + 2$, if n is odd or $\beta = \lfloor \frac{n}{2} \rfloor + 1$, if n is even.

A graph G is called cycle with parallel P_k -chords of increasing lengths if G is obtained from the cycle $C_n: v_0v_1\dots v_{n-1}v_0 \ (n\geq 6)$ by adding disjoint path of length k, P_{k+1} , between the pair of vertices (v_k, v_{n-k}) , for $1\leq k\leq \lfloor\frac{n}{2}\rfloor-1$. The path P_{k+1} joining the pair of vertices (v_k, v_{n-k}) is called P_{k+1} -chord, for $1\leq k\leq \lfloor\frac{n}{2}\rfloor-1$.

In [1] Delorme et al., proved that every cycle with a chord is graceful. Koh and Yap [3] have shown that cycles with P_3 -chords are graceful and conjectured that all cycles with a P_k -chords are graceful. This was proved for $k \geq 4$ by Punnim and Pabhapote [4].

In this paper we prove that every n-cycle $(n \ge 6)$ with parallel chords is graceful and every n-cycle with parallel P_k -chords of increasing lengths is graceful for $n = 2 \pmod 4$ with $1 \le k \le \lfloor \frac{n}{2} \rfloor - 1$.

2 Gracefulness of a cycle with parallel chords and parallel P_k -chords of different lengths

In this section we prove that every n-cycle $(n \ge 6)$ with parallel chords is graceful and every n-cycle with parallel P_k -chords of increasing lengths is graceful for $n = 2 \pmod 4$ with $1 \le k \le \lfloor \frac{n}{2} \rfloor - 1$.

Theorem 1: For $n \ge 6$, every n-cycle with parallel chords is graceful.

Proof: Let G be an n-cycle with parallel chords for $n \ge 6$.

Let v_0, v_1, \dots, v_{n-1} be the vertices of an *n*-cycle of G. Observe that by definition, G has n vertices and $M = \frac{3n-\rho}{2}$ edges, where $\rho = 3$, if n is odd or $\rho = 2$, if n is even.

We give labels to the vertices of G in the following two cases:

Case 1: When n is odd

Define
$$f(v_0) = 0$$

$$f(v_{2i-1}) = 3i - 2, for 1 \le i \le \left\lceil \frac{n-1}{4} \right\rceil$$

$$f(v_{2i}) = \frac{3n - 6i + 1}{2}, for 1 \le i \le \left\lfloor \frac{n-1}{4} \right\rfloor$$

$$f(v_{n-(2i-1)}) = \frac{3n - 6i + 3}{2}, for 1 \le i \le \left\lceil \frac{n-1}{4} \right\rceil$$

$$f(v_{n-2i}) = 3i, for 1 \le i \le \left\lceil \frac{n-1}{4} \right\rceil$$

Case 2: When n is even

Define
$$f(v_0) = 0$$

$$f(v_1) = 1$$

$$f(v_{n-1}) = \frac{3n-2}{2}$$

$$f(v_{2i}) = \frac{3n-6i+2}{2}, \quad \text{for } 1 \le i \le \left\lfloor \frac{n-4}{4} \right\rfloor$$

$$f(v_{n-(2i+1)}) = \frac{3n-6i}{2}, \quad \text{for } 1 \le i \le \left\lfloor \frac{n-4}{4} \right\rfloor$$

$$f(v_{n-2i}) = 3i, \quad \text{for } 1 \le i \le \left\lfloor \frac{n-4}{4} \right\rfloor$$

$$f(v_{2i+1}) = 3i + 2, \text{for } 1 \leq i \leq \delta,$$

$$\text{where } \delta = \left\lfloor \frac{n-4}{4} \right\rfloor - 1, \text{when } n = 4r, \text{for some } r \geq 1$$

$$\text{or } \delta = \left\lfloor \frac{n-4}{4} \right\rfloor, \text{ when } n = 4r + 2, \text{ for some } r \geq 1$$

$$f(v_{\frac{n}{2}-1}) = \begin{cases} \frac{3n}{4}, & \text{when } n = 4r, \text{ for some } r \geq 1 \\ \frac{3(n+2)}{4}, & \text{when } n = 4r + 2, \text{ for some } r \geq 1 \end{cases}$$

$$f(v_{\frac{n}{2}}) = \begin{cases} \frac{3n-8}{4}, & \text{when } n = 4r, \text{ for some } r \geq 1 \\ \frac{3(n+4)+2}{4}, & \text{when } n = 4r + 2, \text{ for some } r \geq 1. \end{cases}$$

It is clear that f is injective and the edge values are distinct and range from 1 to M. Thus f is graceful labeling. Hence the graph G is graceful.

Theorem 2: For $n \geq 6$ and $n \equiv 2 \pmod{4}$ every n-cycle with parallel P_k -chords of increasing lengths is graceful with $1 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1$.

Proof: Let G denote an n-cycle with parallel P_k -chords of increasing lengths with $n \equiv 2 \pmod 4$ and $1 \le k \le \lfloor \frac{n}{2} \rfloor - 1$. By definition of G, G is obtained from the n-cycle of order $n: v_0v_1\cdots v_{n-1}v_0 (n \ge 6)$ by adding disjoint path of length k, P_{k+1} , between the pair of vertices (v_k, v_{n-k}) , for $1 \le k \le \lfloor \frac{n}{2} \rfloor - 1$. Observe that G has $N = \frac{n^2 + 2n + 8}{8}$ vertices and $M = \frac{n^2 + 6n}{8}$ edges (when $n \equiv 2 \pmod 4$), here n denote the number of vertices of an n-cycle in G).

Observe that G has a hamiltonian path containing all the P_k -chords of G, starting with v_0 of n-cycle in G and ending up with v_α of an n-cycle in G, where $\alpha = \lfloor \frac{n}{2} \rfloor$. Let $u_0u_1 \cdots u_{N-1}$ be the hamiltonian path in G.

We give labels to the vertices $u_0, u_1, \dots, u_{N-2}, u_{N-1}$ in the following two cases.

Case (i):

When n = 4k + 2, for some $k \ge 1$ (i.e., $n \equiv 2 \pmod{4}$, and k even).

Then equivalently, we can consider n = 8t + 2, for some $t \ge 1$.

Define
$$f(u_0) = 0$$

 $f(u_{2i}) = i$, for $1 \le i \le \left(\frac{N-4}{2}\right)$
 $f(u_{2i-1}) = M - (i-1)$, for $1 \le i \le \left(\frac{N-(4t+2)}{2}\right)$
 $f(u_{N-(2j+1)}) = M - \left(\frac{N}{2}\right) + j - 1$, for $1 \le j \le t$
 $f(u_{N-(2t+2j+1)}) = M - \left(\frac{N}{2}\right) + t + j$, for $1 \le j \le t$
 $f(u_{N-1}) = f(u_{N-(4t+1)}) + 1$
 $f(u_{N-2}) = f(u_{N-4}) + 2$.

Case (ii):

When n = 4k + 2, for some $k \ge 1$ (i.e., $n \equiv 2 \pmod{4}$, and k odd).

Then equivalently, we can consider n = 8t - 2, for some $t \ge 2$.

Define
$$f(u_0) = 0$$

 $f(u_{2i}) = i$, for $1 \le i \le \left(\frac{N - (4t+1)}{2}\right)$
 $f(u_{2i-1}) = M - (i-1)$, for $1 \le i \le \left(\frac{N-1}{2}\right)$
 $f(u_{N-(2j+1)}) = \left(\frac{N+3-2j}{2}\right)$, for $1 \le j \le t$
 $f(u_{N-(2t+2j+1)}) = \left(\frac{N - (2t+2j-1)}{2}\right)$, for $1 \le j \le t-1$
 $f(u_{N-1}) = f(u_{N-(4t-1)}) - 1$.

It is clear that f is injective and the edge values are distinct and range from 1 to M. Thus f is graceful labeling. Hence the graph G is graceful.

Here, in this paper we have proved that graph obtained from an n-cycle of order $n: v_0v_1 \dots v_{n-1}v_0$ $(n \geq 6)$ by adding the path P_{k+1} of length with k or 1 between a pair (v_k, v_{n-k}) , for $1 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1$ are graceful. Is it true that the graph obtained from an n-cycle of order $n: v_0v_1 \dots v_{n-1}$ by adding P_k -chord of an arbitrary length k-1 between the pairs (v_k, v_{n-k}) , for $1 \leq k \leq \lfloor \frac{n}{2} \rfloor - 1$ is graceful?

Acknowledgement

The authors would like to thank the referee for his / her valuable suggestions in improve the presentation of the paper.

References

- C. Delorme, K.M. Koh, M. Maheo, Teo H. Thuillier, Cycles with a chord are graceful, J. Graph Theory, 4 (1980), 409-415.
- J.A. Gallian, A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, (2006), # DS6.
- K.M. Koh and K.Y. Yap, Graceful numbering of cycles with a P₃-chords, Bill. Inst. Math. Acad. Sinica, 12 (1985), 41-48.
- 4. N. Punnim and N. Pabhapote, On graceful graphs: cycles with P_k -chord, $k \ge 4$, Ars Combin, 23A (1987), 225-228.